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BACKGROUND Genomic analyses have suggested that the LPA gene and its associated plasma biomarker,

lipoprotein(a) (Lp[a]), represent a causal risk factor for coronary heart disease (CHD). As such, lowering Lp(a) levels has

emerged as a therapeutic strategy. Beyond target identification, human genetics may contribute to the development of

new therapies by defining the full spectrum of beneficial and adverse consequences and by developing a dose–response

curve of target perturbation.

OBJECTIVES The goal of this study was to establish the full phenotypic impact of LPA gene variation and to estimate a

dose–response curve between genetically altered plasma Lp(a) and risk for CHD.

METHODS We leveraged genetic variants at the LPA gene from 3 data sources: individual-level data from 112,338

participants in the U.K. Biobank; summary association results from large-scale genome-wide association studies; and LPA

gene sequencing results from case subjects with CHD and control subjects free of CHD.

RESULTS One SD genetically lowered Lp(a) level was associated with a 29% lower risk of CHD (odds ratio [OR]: 0.71;

95% confidence interval [CI]: 0.69 to 0.73), a 31% lower risk of peripheral vascular disease (OR: 0.69; 95% CI: 0.59 to

0.80), a 13% lower risk of stroke (OR: 0.87; 95% CI: 0.79 to 0.96), a 17% lower risk of heart failure (OR: 0.83;

95% CI: 0.73 to 0.94), and a 37% lower risk of aortic stenosis (OR: 0.63; 95% CI: 0.47 to 0.83). We observed no

association with 31 other disorders, including type 2 diabetes and cancer. Variants that led to gain of LPA gene function

increased the risk for CHD, whereas those that led to loss of gene function reduced the CHD risk.

CONCLUSIONS Beyond CHD, genetically lowered Lp(a) levels are associatedwith a lower risk of peripheral vascular disease,

stroke, heart failure, and aortic stenosis. As such, pharmacological lowering of plasma Lp(a) may influence a range of

atherosclerosis-related diseases. (J Am Coll Cardiol 2016;68:2761–72) © 2016 by the American College of Cardiology

Foundation.
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AND ACRONYMS

CHD = coronary heart disease

CI = confidence interval

CKD = chronic kidney disease

DNA = deoxyribonucleic acid

eGFR = estimated glomerular

filtration rate

GWAS = genome-wide

association study

HDL = high-density lipoprotein

HF = heart failure

LDL = low-density lipoprotein

Lp(a) = lipoprotein(a)

OR = odds ratio

PVD = peripheral vascular

disease

SNP = single nucleotide

polymorphism
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L ipoprotein(a) (Lp[a]) is a circulating
lipoprotein in which the constituent
apolipoprotein B on a low-density

lipoprotein (LDL) particle is modified by the
covalent addition of another protein, namely
apolipoprotein(a) (1,2). Higher plasma Lp(a)
levels are associated with an increased risk
for incident coronary heart disease (CHD) (3),
heritable, and largely determined by variation
in the LPA gene, which encodes apolipopro-
tein(a) (2). Genetic variants in LPA that in-
crease Lp(a) levels also increase CHD risk,
suggesting that Lp(a) is a causal risk factor
for development of CHD (4–6). Consequently,
lowering Lp(a) levels has emerged as a thera-
peutic strategy to reduce the risk of CHD (2,7).

Beyond identifying a therapeutic target
gene, human genetics may help estimate
the probable efficacy and safety of
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In the present study, we leveraged genetic variants
across the allele frequency spectrum and 3 large data
sources to evaluate the phenotypic consequences of
genetically lowered Lp(a) levels. The effect of a
genetically mediated 1 SD decrease in Lp(a) levels on
cardiometabolic disease and range of other disorders
was estimated.

METHODS

The overall study design is shown in Figure 1. Several
data sources were leveraged to provide greater power
for estimating the effect of genetically lowered Lp(a)
level on cardiometabolic traits and outcomes, to
conduct a phenome-wide association study, and to
examine the effect of rare loss-of-function variants in
the LPA gene on risk of CHD.

Individual-level data from 112,338 individuals of
European ancestry from the U.K. Biobank, a large
population-based cohort (Online Appendix), were
used (15). Characteristics of individuals are provided
in Online Table 1. These individual-level data were
supplemented with summary results from 7 genome-
wide association study (GWAS) consortia examining
blood lipid levels, anthropometric traits, glycemic
traits, diabetes, CHD, heart failure (HF), and renal
dysfunction, all predominantly containing in-
dividuals of European descent (Online Appendix,
Table 1) (16–23). Our estimates for CHD were derived
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FIGURE 1 Study Design

• Genetic score composed
   of four LPA DNA-
   sequence variants
• Effect on lipoprotein(a)
   estimated in ARIC

• UK Biobank
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• MIGEN Consortium
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• CKDGen
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• UK Biobank
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• CKDGen
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Primary Analysis: Nine
different cardiometabolic
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Secondary Analysis:
Fifteen different
cardiometabolic traits

Secondary Analysis:
Phenome-wide
association study of 28
different phenotypes

Variants Analyses

Study Design

Data Sources

This study included 1 primary and 2 secondary analyses to estimate the effect of a lipoprotein(a) (Lp[a]) on a range of outcomes. ARIC ¼
Atherosclerosis Risk in Communities; CARDIoGRAM ¼ Coronary Artery Disease Genome-wide Replication and Meta-analysis; CHARGE-HF ¼
Cohorts for Heart and Aging Research in Genomic Epidemiology–Heart Failure; CKDGen ¼ Chronic Kidney Disease Genetics Consortium;

DIAGRAM ¼ Diabetes Genetics Replication and Meta-analysis; DNA ¼ deoxyribonucleic acid; GIANT ¼ Genetic Investigation of Anthropo-

metric Traits; GLGC ¼ Global Lipids Genetics Consortium; MAGIC ¼ Meta-Analyses of Glucose and Insulin-related traits Consortium;

MIGen ¼ Myocardial Infarction Genetics.
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DNA SEQUENCE VARIANTS. To estimate the effect of
genetically lowered Lp(a) level on a wide range of
phenotypes, individual-level data from U.K. Biobank
were combined with summary-level data from large-
scale GWAS. Four single nucleotide polymorphisms
(SNPs) in the LPA gene were used that have been
previously associated with plasma Lp(a) levels:
rs10455872, rs3798220, rs41272114, and rs143431368
(Online Table 3). Together, rs10455872 and rs3798220
explain approximately 36% of variation in plasma
Lp(a) levels (5); the other 2 (rs41272114 and
rs143431368) are loss-of-function variants associated
with lower Lp(a) levels.

To standardize the estimates to a 1 SD decrease
in Lp(a) levels, estimates of the effect of each
variant on Lp(a) levels from the ARIC (Atheroscle-
rosis Risk In Communities) study were used (Online
Table 3, Online Appendix). ARIC is a community-
based study of 15,792 white and black partici-
pants, ages 45 to 64 years, who were first enrolled
in 1987 (24). The analysis was restricted to 2,758
individuals of European ancestry in the ARIC cohort
who had Lp(a) levels measured at the baseline
visit by using a double-antibody enzyme-linked
immunosorbent assay (25). Participants fasted for 12
to 24 h before blood collection. Plasma was sepa-
rated from cells with centrifugation within 1 h of
collection and stored at –70�C. Analyses were per-
formed within 2 weeks. The assay was shown to
have high internal reliability in a validation study
in ARIC (r ¼ 0.90) and in a separate comparison
versus a newer assay calibrated by using Interna-
tional Federation of Clinical Chemistry reference
material (r ¼ 0.88) (26). Linear regression was used,
adjusting for age, sex, and 5 principal components
of ancestry, to estimate the association between
each variant and Lp(a) level in an additive model.
Because Lp(a) levels were non-normally distributed,
log-transformed Lp(a) levels were used, as previ-
ously described (5).

STATISTICAL ANALYSIS. For analyses of both U.K.
Biobank and summary-level data, a gene variant score
was created out of the 4 SNPs. For each variant, we
modeled the Lp(a)-lowering allele and weighted by
the effect of each SNP on log-transformed Lp(a) levels
in SD units (Online Table 3). The effect of this gene
variant score on each trait and outcome was then
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TABLE 1 Characteristics of Genome-Wide Association Studies Utilized

Consortium (Ref. #) Outcome/Trait Sample Size Genotyping

GLGC (17) LDL cholesterol
HDL cholesterol
Total cholesterol
Triglycerides

Up to 188,587
individuals

37 studies using Metabochip,
23 studies using various
arrays

MAGIC (18) Fasting glucose
Fasting insulin
2-h glucose
HbA1c

Up to 133,010
individuals

Various arrays, imputation to
2.5 million SNPs using
HapMap reference panel

GIANT (37,38) Waist-to-hip ratio
Waist circumference
Hip circumference
Body mass index

Up to 322,154
individuals

Various arrays, imputation to
2.5 million SNPs using
HapMap reference panel

CKDGen (39) Serum estimated
glomerular
filtration rate

Chronic kidney
disease

Up to 133,413
individuals

Various arrays, imputation to
2.5 million SNPs using
HapMap reference panel

CARDIoGRAM Exome
Consortium (22)

Coronary heart
disease

Up to 42,335
case
subjects/
78,240
control
subjects

Illumina HumanExome
BeadChip array or the
Illumina OmniExome array

DIAGRAM (20) Diabetes Up to 34,840
case
subjects/
114,981
control
subjects

37 studies using Illumina
Metabochip, 23 studies
various arrays, imputation
to 2.5 million SNPs using
HapMap reference panel

CHARGE-HF (23) Heart failure Up to 2,526
case
subjects/
18,400
control
subjects

Various arrays, imputation to
2.5 million SNPs using
HapMap reference panel

CARDIoGRAM¼ Coronary Artery Disease Genome-wide Replication and Meta-analysis; CHARGE-HF¼ Cohorts for
Heart and Aging Research in Genomic Epidemiology–Heart Failure; CKDGen ¼ Chronic Kidney Disease Genetics
Consortium; DIAGRAM ¼ Diabetes Genetics Replication and Meta-analysis; GIANT ¼ Genetic Investigation of
Anthropometric Traits; GLGC ¼ Global Lipids Genetics Consortium; HbA1c ¼ glycosylated hemoglobin; HDL ¼
high-density lipoprotein; LDL ¼ low-density lipoprotein; MAGIC ¼ Meta-Analyses of Glucose and Insulin-related
traits Consortium; SNP ¼ single nucleotide polymorphism.
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examined, standardized per SD decrease in log-
transformed Lp(a) levels.

For U.K. Biobank, an LPA gene variant score was
generated in units of SD Lp(a) by multiplying each
variant by its effect on Lp(a) levels. This gene variant
score was then included in a logistic regression
analysis adjusting for age, sex, 10 principal compo-
nents of ancestry, and a dummy variable for array
type. For the summary-level data, this approach is
equivalent to an inverse variance–weighted, fixed
effects meta-analysis of the effect of each variant on a
trait or outcome of interest, divided by the effect of
each variant on Lp(a) levels (27).

For the primary outcomes (the 9 cardiometabolic
diseases), a Bonferroni-adjusted level of significance
of p ¼ 0.05/9 ¼ 0.0056 was set. For the secondary
analysis of cardiometabolic traits, which included 15
traits, a level of significance of p ¼ 0.05/15 ¼ 0.003
was set. For the phenome-wide association study of
28 phenotypes, a level of significance of p ¼ 0.05/28 ¼
0.0018 was set.

LOSS-OF-FUNCTION VARIANT ANALYSIS. To
examine whether loss-of-function variants in the
LPA gene influence CHD risk, whole exome
sequencing data from the MIGen Consortium were
used (Online Appendix). This consortium is
composed of 10 coronary artery disease case-control
studies (28,29). Loss-of-function variants were
defined as follows: 1) nonsense mutations that
resulted in early termination of the apolipopro-
tein(a) protein; 2) frameshift mutations due to in-
sertions or deletions of DNA; or 3) splice-site
mutations that resulted in an incorrectly spliced
protein. These loss-of-function variants in the
MIGen Consortium were combined with loss-of-
function variants that were genotyped (either
directly or imputed) in the U.K. Biobank. Variants
are provided in Online Tables 4 and 5. We analyzed
rare variants (<1%) separately to a common loss-of-
function variant in the LPA gene (rs41272114, allele
frequency of 3.8% in U.K. Biobank) (30,31).

We tested for the association of CHD with the
presence of a loss-of-function variant using logistic
regression. In the MIGen Consortium, the analysis
was adjusted for sex, 5 principal components of
ancestry, and a dummy variable for each cohort. We
did not adjust for age in the MIGen Consortium
because cases in some cohorts were selected for early-
onset myocardial infarction, resulting in age being
significantly and inversely associated with the pres-
ence of CHD. In the U.K. Biobank, the analysis was
adjusted for age, sex, 10 principal components of
ancestry, and array type.
All analyses were performed by using R version
3.2.3 software (The R Project for Statistical
Computing, Vienna, Austria).

RESULTS

We first estimated the effect of LPA gene variant score
on plasma Lp(a) levels in ARIC participants. Variants
rs3798220 and rs10455872 altered Lp(a) levels by 0.98
and 0.91 SD, respectively, whereas rs41272114 and
rs143431368 altered Lp(a) levels by 0.62 SD and 0.92
SD (Online Table 3). In this study, 1 SD in Lp(a) levels
equaled 28 mg/dl. The distribution of LPA gene
variant score in the U.K. Biobank is provided (Online
Table 6).

We examined the effect of genetically lowered
Lp(a) level on 9 different cardiometabolic diseases
(Central Illustration). Genetically lowered Lp(a), a 1
SD genetic decrease, was associated with a 29%
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The goal of this study was to establish the full phenotypic impact of LPA gene variation and to estimate a dose–response curve between genetically altered plasma

lipoprotein a (Lp[a]) and risk for coronary heart disease. Estimates were derived in U.K. Biobank using logistic regression, adjusted for age, sex, 10 principal com-

ponents and array type, with the exception of chronic kidney disease (CKD), which was derived by using summary statistics from the Chronic Kidney Disease Genetics

Consortium, and heart failure, which was derived in both UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology Heart Failure Con-

sortium. One SD genetically lowered Lp(a) level was associated with reduced risk of 5 cardiometabolic diseases. Although the estimate for CKD did not reach

Bonferroni-adjusted significance, it was included as a significant outcome because the underlying trait (estimated glomerular filtration rate) was significantly asso-

ciated with Lp(a) (p ¼ 2 � 10–5). OR ¼ odds ratio.
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lower risk of CHD (odds ratio [OR]: 0.71; 95% confi-
dence interval [CI]: 0.69 to 0.73; p ¼ 3.2 � 10–90).
Genetically lowered Lp(a) had similar strengths of
association with CHD across subpopulations (Online
Figure 1). Beyond CHD, genetically lowered Lp(a)
level was associated with a 31% lower risk of PVD
(OR: 0.69; 95% CI: 0.59 to 0.80; p ¼ 1.9 � 10–6), a 13%
lower risk of stroke (OR: 0.87; 95% CI: 0.79 to 0.96;
p ¼ 0.004), a 37% lower risk of aortic stenosis (OR:
0.63; 95% CI: 0.47 to 0.83; p ¼ 0.0011), and a 17%
lower risk of HF (OR: 0.83; 95% CI: 0.73 to 0.94;
p ¼ 0.0045).

Although genetically lowered Lp(a) levels were
only nominally associated with a 9% lower risk of
CKD (OR: 0.91; 95% CI: 0.81 to 1.00; p ¼ 0.043), it
was highly significantly associated with the under-
lying quantitative trait (eGFR), as described later.
Genetically lowered Lp(a) level was not associated
with diabetes, venous thromboembolism, or atrial
fibrillation. To examine if the association of genet-
ically lowered Lp(a) with HF and aortic stenosis was
mediated by CHD, we excluded participants with
CHD in the U.K. Biobank (n ¼ 4,461). After exclu-
sion, a 1 SD genetic decrease in Lp(a) levels had
similar strengths of association with HF (OR: 0.84;
95% CI: 0.66 to 1.07; n ¼ 107,877) and aortic ste-
nosis (OR: 0.70; 95% CI: 0.49 to 0.99; n ¼ 107,877).
A sensitivity analysis excluding those with preva-
lent aortic stenosis (n ¼ 193) yielded a similar
strength for the association between a 1 SD decrease
in Lp(a) levels and HF (OR: 0.85; 95% CI: 0.72 to
1.02; n ¼ 112,145).

In contrast to the effects of Lp(a) on car-
diometabolic disorders, we found no association of
genetically lowered Lp(a) with any of 28 different
disorders, including 4 gastrointestinal disorders, 3
endocrine disorders, 2 renal/urological disorders, 3
psychiatric disorders, 4 musculoskeletal disorders, 4
respiratory disorders, and 8 different cancers (all
p > 0.01) (Figure 2).

We next estimated the effect of LPA gene variant
score on 15 quantitative traits (Figure 3). A significant
association of genetically lowered Lp(a) with
improved kidney function was observed: a 0.04 SD
(95% CI: 0.02 to 0.05) increase in eGFR per SD
genetically lowered Lp(a) (p ¼ 1.4 � 10–5). This sce-
nario corresponds to an approximate 2.0 ml/min in-
crease in eGFR per SD lower Lp(a). As expected, a 1 SD
genetically lowered Lp(a) was associated with total
cholesterol and LDL cholesterol (0.14 SD decrease in
total cholesterol [95% CI: 0.11 to 0.16; p ¼ 3.5 � 10–27)
and a 0.14 SD decrease in LDL cholesterol (95% CI:
0.11 to 0.16; p ¼ 4.7 � 10–27). These estimates corre-
spond, approximately, to a 5.6 mg/dl decrease in
total cholesterol and a 4.9 mg/dl decrease in LDL
cholesterol. We found no significant association of
LPA genetic risk score with waist-to-hip ratio, waist
circumference, hip circumference, body mass index,
systolic blood pressure, diastolic blood pressure, HDL
cholesterol, triglycerides, fasting glucose, fasting in-
sulin, 2-h glucose, or glycosylated hemoglobin (p >

0.05 for each). LPA gene variant risk score remained
unassociated with systolic and diastolic blood pres-
sures when use of antihypertensive therapy was
not accounted for (0 SD [95% CI: –0.02 to 0.01]
and 0 SD [95% CI: –0.01 to 0.02] per SD lower Lp[a],
respectively).

Figure 4 provides a dose–response curve for CHD
derived from gain and loss-of-function variants at
the LPA gene locus. The impact of LPA variation on
CHD risk is directly proportional to its effect on
circulating Lp(a) levels. The Lp(a)-increasing alleles
of common variants rs3798220 and rs10455872,
which increased Lp(a) levels by 0.98 and 0.91 SD,
respectively, increased risk of CHD by 57% (OR: 1.57;
95% CI: 1.46 to 1.69) and 38% (OR: 1.38; 95% CI: 1.33
to 1.43). Rare synonymous variants, which had no
significant effect on Lp(a) levels, also had no sig-
nificant effect on CHD (OR: 0.98; 95% CI: 0.86 to
1.12). A common loss-of-function variant rs41272114,
which decreased Lp(a) levels by 0.62 SD, was asso-
ciated with a 12% lower risk of CHD (OR: 0.88; 95%
CI: 0.84 to 0.93; p ¼ 3.4 � 10–7). Presence of a rare
(allele frequency <1%) loss-of-function variant in the
LPA gene was associated with a 24% lower risk of
CHD (OR: 0.76; 95% CI: 0.59 to 0.98; p ¼ 0.033)
(Online Figure 2).

DISCUSSION

To evaluate the phenotypic consequences of geneti-
cally lowered Lp(a) levels, we leveraged the
following: 1) 4 DNA sequence variants that alter
plasma Lp(a) level; 2) individual-level genotype and
phenotype data from >100,000 participants in the
U.K. Biobank; 3) summary genetic association results
from 7 large-scale GWAS; and 4) LPA gene sequences
in >15,000 participants. We found that 1 SD geneti-
cally lowered Lp(a) was associated with a range of
atherosclerosis-related diseases, including CHD, PVD,
stroke, HF, and aortic stenosis, but was not associated
with 31 other different diseases in a phenome-wide
association study.

These data allow for several conclusions. First,
using naturally occurring DNA sequence variation, a
dose–response relationship between perturbation of
Lp(a) and risk for CHD was provided. We examined
the effects of both common and rare variants, as

http://dx.doi.org/10.1016/j.jacc.2016.10.033
http://dx.doi.org/10.1016/j.jacc.2016.10.033
http://dx.doi.org/10.1016/j.jacc.2016.10.033


FIGURE 2 Associations of Genetically Lowered Lp(a) With a Range of Diseases
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ratio; other abbreviations as in Figure 1.
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FIGURE 3 Association of Genetically Lowered Lp(a) (1 SD Decrease) With

Cardiometabolic Quantitative Traits
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significant associations seen between 1 SD decrease in Lp(a) and other traits measured.

BMI ¼ body mass index; DBP ¼ diastolic blood pressure; eGFR ¼ estimated glomerular

filtration rate; HbA1c ¼ glycosylated hemoglobin; HDL ¼ high-density lipoprotein;

Lp(a) ¼ lipoprotein a; SBP ¼ systolic blood pressure; SNP ¼ single nucleotide

polymorphism.
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well as gain-of-function variants that increase
Lp(a) levels and loss-of-function variants that
decrease Lp(a) levels. The effects of these different
variants on CHD were consistently proportional
to their effect on Lp(a). Consistent with 2 recent
reports (30,32), a low-frequency loss-of-function
variant (rs41272114) and a burden of rare loss-
of-function variants in LPA protected against
CHD. In combination, these results suggest that
greater pharmacological reductions in Lp(a)
levels should produce proportionally greater re-
ductions in CHD risk, thus supporting intensive
Lp(a) lowering.

Second, these results suggest that Lp(a) inhibition
may be a viable therapeutic strategy to prevent a
range of diseases beyond CHD. This study extends
previous research demonstrating that LPA variants
are associated with cardiovascular disease
(5,6,11,12,33,34). In a report of up to 12,716 in-
dividuals from 35 case-control studies, LPA variants
were associated with peripheral arterial disease,
ischemic stroke, and coronary artery disease (11). In
contrast, in an analysis of 14,465 individuals in the
Heart Protection Study, LPA variants were associated
with PVD but not with stroke (12). Our results suggest
that LPA variants are associated with PVD, stroke,
and HF. Furthermore, our report of a significant as-
sociation with aortic stenosis is consistent with
recent analyses demonstrating a significant effect of
LPA variants on aortic valve calcification and stenosis
(9,10). Inclusion of these diseases in composite end-
points of trials of Lp(a)-reducing therapies (in addi-
tion to CHD) may increase the likelihood of a positive
trial outcome, highlighting the potential benefits of
genetic analyses for trial design and clinical drug
development.

Third, a surprising finding of this study was that
genetically lowered Lp(a) was associated with a
modest but significant improvement in kidney func-
tion as assessed by 2 phenotypes—eGFR and preva-
lence of CKD. This lower risk of CKD may be mediated
through a reduction in renal atherosclerotic burden.
These findings are consistent with a recent GWAS of
metabolites that revealed a strong association be-
tween LPA rs10455872 and creatinine levels (35).
These results implicate Lp(a) metabolism in the
development of CKD.

STUDY LIMITATIONS. This study’s major strength
was the scale and variety of data sources, which
improved our power to detect an effect of genetically
lowered Lp(a) on a wide range of diseases and car-
diometabolic traits. Our use of the largest available
cohorts provided requisite power to demonstrate that
genetic Lp(a) lowering was associated with a lower
risk of PVD, stroke, HF, and CKD. Our use of the U.K.
Biobank allowed us to examine the association of
genetic LPA variants across a wide range of non-
cardiovascular diseases, for which we failed to find an
association.

Several study limitations deserve mention. First,
our use of a 2-sample design, with exposure esti-
mates from ARIC and outcome estimates from the
U.K. Biobank and various GWAS, prevented us from
examining whether the effect of LPA variants
differed according to baseline levels of Lp(a). Sec-
ond, our phenome-wide association study might
have been underpowered to detect a significant ef-
fect of Lp(a) on many of the outcomes. Because
the U.K. Biobank develops validated phenotypes
and accumulates a greater number of events, a
phenome-wide association study may be better-
powered to detect an effect on different disorders.



FIGURE 4 Effect of LPA Variants on Lp(a) and CHD
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Logistic regression was used to test the association of coronary heart disease (CHD) as an outcome and DNA sequence variant as a predictor,

adjusting for sex and principal components of ancestry, with additional adjustment for array type and age in U.K. Biobank. The impact of LPA

variation on CHD risk is directly proportional to its effect on circulating Lp(a) levels. Lp(a) ¼ lipoprotein(a).
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Third, we used prevalent events based on a verbal
interview with a nurse for our phenome-wide asso-
ciation study of 28 different disorders. Although
these events are likely to be of greater specificity
than coded hospitalization data, they have not been
independently validated. Finally, our population
was limited to individuals of European ancestry,
and our results may not be generalizable to in-
dividuals of different ancestry. Indeed, both Lp(a)
levels and the number of Kringle IV domains in
Lp(a) have been shown to vary substantially
with ancestry, suggesting that the impact of Lp(a)
on cardiovascular disease may also differ by
ancestry (36).



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: A genetic pre-

disposition to lower blood levels of Lp(a) was associated with

protection from coronary artery disease, stroke, PVD, aortic

stenosis, HF, and CKD but was not associated with type 2 dia-

betes, gastrointestinal disorders, or specific cancers.

TRANSLATIONAL OUTLOOK: Further research should be

conducted to determine whether more intensive lowering of

Lp(a) levels results in proportionally greater reductions in

cardiovascular risk.
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CONCLUSIONS

Genetically decreased Lp(a) was associated with a
range of cardiometabolic disorders, including CHD,
stroke, PVD, aortic stenosis, HF, and renal dysfunc-
tion. Pharmacological lowering of Lp(a) levels may
reduce the risk of these disorders.
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