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SUMMARY

Genetic screens help infer gene function in mamma-
lian cells, but it has remained difficult to assay com-
plex phenotypes—such as transcriptional profiles—
at scale. Here, we develop Perturb-seq, combining
single-cell RNA sequencing (RNA-seq) and clus-
tered regularly interspaced short palindromic re-
peats (CRISPR)-based perturbations to perform
many such assays in a pool. We demonstrate Per-
turb-seq by analyzing 200,000 cells in immune cells
and cell lines, focusing on transcription factors
regulating the response of dendritic cells to lipo-
polysaccharide (LPS). Perturb-seq accurately iden-
tifies individual gene targets, gene signatures, and
cell states affected by individual perturbations
and their genetic interactions. We posit new func-
tions for regulators of differentiation, the anti-viral
response, and mitochondrial function during im-
mune activation. By decomposing many high con-
tent measurements into the effects of perturbations,
their interactions, and diverse cell metadata, Per-
turb-seq dramatically increases the scope of pooled
genomic assays.

INTRODUCTION

Genetic screens systematically analyze gene function in

mammalian cells. Such screens are designed in either: (1)

an individual (‘‘arrayed’’) format, where each perturbation
C

is delivered and assessed separately; or (2) a pooled format,

performed en masse. Pooled readouts measure cell auton-

omous phenotypes, such as growth, drug resistance, or

marker expression. Pooled screens are more efficient and

scalable, but have been limited to low-content readouts.

Distinguishing between different molecular mechanisms that

yield similar phenotypes requires time and labor intensive

follow-up.

Bridging the gap between rich profiles and pooled screens has

been challenging. In mammalian cells, a few studies transcrip-

tionally profiled hundreds of individual perturbations (Berger

et al., 2016; Parnas et al., 2015). In yeast (Hughes et al., 2000),

up to �1,500 knock out (KO) strains have been assessed (Kem-

meren et al., 2014). Even signature screens were only performed

in centralized efforts (Lamb et al., 2006).

Profiling may particularly help interpret the combined

nonlinear effects of multiple factors. Comprehensive analysis

of genetic interactions in growth phenotype between pairs of

genes has been performed in yeast (Costanzo et al., 2016). In

mammals, only small sets of pre-selected pairs have been as-

sessed for cell viability (Bassik et al., 2013) ormorphology (Laufer

et al., 2013). One yeast study determined the combined effects

of regulators on expression profiles in a circuit of three to five

genes (Capaldi et al., 2008). Very few studies have examined

higher order interactions (Elena and Lenski, 1997; Haber et al.,

2013) and none have coupled those with a high content scalable

readout.

To address this challenge, we develop Perturb-seq, com-

bining the modularity of clustered regularly interspaced short

palindromic repeats (CRISPR)/Cas9 to perform multi-locus

gene perturbation (Cong et al., 2013; Qi et al., 2013) with

the scale of massively parallel single cell RNA sequencing
ell 167, 1853–1866, December 15, 2016 ª 2016 Elsevier Inc. 1853
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Figure 1. Perturb-Seq: Pooled Screening of Transcriptional Profiles of Perturbations

(A) Overview.

(B) Perturb-seq vector. Vector encodes sgRNA (green) along with a PolII transcript with a selection marker, fluorescent marker, and guide barcode (black).

(C) Perturb-seq screens in this study.

(D) Distribution of number of guides detected per cell in stimulated BMDCs.

(E) Distribution of the significance (-log10(p value)) of the effect of each guide on its target (gray shaded rectangle corresponds to p < 0.05 threshold).

(F) Modeling framework. We fit coefficients of a (regulatory) matrix (b) to the observed expression profiles of each cell matrix (Y) given the sgRNA and other

covariates in the design matrix (X).

See also Figure S1 and Table S1.
(scRNA-seq) (Klein et al., 2015; Macosko et al., 2015) as a

rich genomic readout. We demonstrate Perturb-seq in pri-

mary post-mitotic immune cells and in proliferating cell lines.

We develop a computational framework, Multi-Input-Multi-

Output-Single-Cell-Analysis (MIMOSCA), to decipher the ef-

fect of individual perturbations and the marginal contributions

of genetic interactions on the level of each transcript, pro-

gram, and cell state. Our framework can be extended to

other high dimensional molecular phenotypes or diverse cell

metadata.
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RESULTS

Perturb-Seq: Pooled, Combinatorial CRISPR Screens
with scRNA-Seq Readout
We developed Perturb-seq to combine a pooled CRISPR screen

with scRNA-seq by encoding the identity of the perturbation on

an expressed guide barcode (GBC) (Figures 1 and S1). We first

infect cells with a pool of lentiviral constructs that encode sin-

gle-guide RNAs (sgRNAs) (Figure 1A). Here, and in a companion

study (Adamson et al., 2016 [this issue ofCell]), we designed and



used a CRISPR lentiviral vector that both delivers an sgRNA to a

cell and reports on the identity of the sgRNA by an expressed

GBC (Figure 1B). By varying the multiplicity of infection (MOI),

we tune the screen to study single gene or epistatic effects. Cells

are grown, differentiated, and/or stimulated, followed by scRNA-

seq (Figure 1A). scRNA-seq, performed in a single pool, tags

each cell’s mRNA, including the GBC, with a unique cell barcode

(CBC) and a unique molecular identifier (UMI) (Figure 1A). The

CBC associates the cell’s transcriptional profile with the deliv-

ered genetic perturbation(s), encoded by the GBC. Here, we

use CRISPR/Cas9 in the KO context. In a companion study

(Adamson et al., 2016), Perturb-seq is used with CRISPRi.

We performed six Perturb-seq experiments, analyzing

200,000 cells (Figure 1C). In bone marrow-derived dendritic cells

(BMDCs), we targeted 24 transcription factors (TFs) (Table S1)

(Amit et al., 2009; Garber et al., 2012) and measured the effects

pre-stimulation (0 hr) and at 3 hr post-lipopolysaccharide (LPS).

In K562 cells, we targeted 14 TFs and 10 cell-cycle regulators

in separate pooled experiments (Table S1). For K562 TFs, we

performed experiments using lower and higher MOI and at two

time points. We collected reference scRNA-seq data from

unperturbed cells separately (Table S1).

Perturb-Seq Detection of GBCs and On-Target
Knockdown
We developed an optimized enrichment protocol to detect the

GBCs (STAR Methods). We associated each sgRNA with its

corresponding GBC by sequencing and converted the plasmids

into lentivirus for pooled transduction. The plasmid construct

included an ORF encoding a Puromycin-T2A-BFP (Figure 1B),

allowing us to select for transduced cells by fluorescence-acti-

vated cell sorting (FACS) or by antibiotics. Finally, we designed

a PCR protocol to enrich for the GBC following whole transcrip-

tome application (WTA) (Figure 1B). In some cases, we

observed more than one GBC in a cell. To distinguish between

those arising frommultiple infections and those due to PCR chi-

meras or ambient RNA, we filter low-abundance contaminants

by normalizing the observed GBCs within each CBC (Figures

S1D and S1E) and retain cells with more than one GBC for epis-

tasis analysis (Figure 1D). Most of these are not doublets, given

their higher frequency than expected by our cell yield and their

comparable number of genes versus single GBC cells

(Figure S1F).

We estimated the probability of GBC detection and MOI by

assuming a zero-truncated Poisson distribution (due to BFP+

selection), convolved with a binomial process (for the probabil-

ity of detection) (STAR Methods). The predicted fit was

indistinguishable from the observed frequencies of number

of guides per cell (Figures S1A–S1C, Kolmogorov-Smirnov

[KS] test). We had a 94% (92%–96%) detection probability

with an initial MOI of 0.63 in the K562 TF pool, a 98% proba-

bility with an MOI of 0.35 in the cell-cycle pool, and a 60%

detection probability with an MOI of 1.4 in BMDCs at 3 hr.

The lower detection in BMDCs is due to the lower complexity

of these smaller cells’ profiles (Table S1) and increases (to

70%) after filtering cells with the lowest complexity. Rather

than apply an arbitrary filter, we address the detection rate

in our analysis.
For most of the guides, there is a significant reduction in the

expression of the targeted gene (Figures 1E and S1G–S1I, aver-

aged over cells with a particular guide). The ability to determine

a reduction is affected by the target’s expression level in wild-

type (WT) cells (Figure S1I), the cell’s capture efficiency, and

incomplete nonsense-mediated decay of frameshifted

transcripts.

A Computational Model to Stratify Transcriptional
Effects of Single-Cell Perturbations
We devised a computational framework (MIMOSCA) based on a

regularized linear model, to estimate the impact of perturbations

on gene expression (Figures 1F, 2, and S2; STAR Methods). In

simplest form, the model predicts each gene’s (log) expression

level (expression matrix Y) as a linear combination of the effects

of guides (design matrix X), fitting the regulatory effect of each

guide on each gene (coefficient matrix b). We do not use informa-

tion on which gene each guide targets or which guides target the

same gene. We fit the coefficient matrix with elastic net regulari-

zation, to reduce the number of hypotheses tested, and to

address correlated covariates and noisy data. We evaluate the

significance of the each coefficient with a permutation-based

test (Figures S2D–S2G).

Next, we use the framework to account for technical covari-

ates (Figures 2A–2H). We account for the number of observed

transcripts in a cell (cell quality) (Shalek et al., 2014) by including

them as covariates in the model. We also address the probability

that a perturbation successfully affected the cell, distinguishing

cells that did not have a successful perturbation (Figures 2H

and S2I; STAR Methods), as often observed in CRISPR experi-

ments. To this end, we use the initial regulatory matrix (b) fit by

the model as a first assessment of the perturbations’ effects.

We revisit each cell and evaluate the extent to which its profile

was consistent with the assigned perturbation (Figure 2H, left).

Finally, we re-estimate the model with a corrected perturba-

tion-to-cell assignment. (This iteration is analogous to applying

expectation-maximization to the linear model). Based on the

estimated fit, over 66% of cells are affected by their delivered

perturbation, on average (Figure 2H, right). While filtering signif-

icantly improves the model fit, we did observe consistent, albeit

dampened, effects without this procedure.

We also consider biological covariates of distinct cell sub-

types (e.g., in BMDCs) (Helft et al., 2015; Shalek et al., 2014)

or states (e.g., the cell cycle in K562 cells) (Figures 2D, 2E,

and 2G) (Buettner et al., 2015; Zeisel et al., 2015). We classify

profiles using the matched, genetically unperturbed, experi-

ments (STAR Methods) and incorporate the predicted classifi-

cations of each cell as covariates. We fit the model either with

or without cell-state covariates. Cell states explain a significant

proportion of observed variation (Figure 2D), and some of the

sgRNAs’ effects are accounted for (Figure 2F versus 2G), sug-

gesting that those perturbations may have primarily affected

subtype proportions.

We can incorporate nonlinear interactions in our framework,

by adding interaction terms between covariates, such as genetic

interactions between perturbations or interactions between per-

turbations and cell states (cell-state-specific gene expression

changes). Here, we do this for genetic interactions.
Cell 167, 1853–1866, December 15, 2016 1855
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Figure 2. MIMOSCA: A Scalable Model for Perturb-Seq

(A) Model relates a continuous phenotype (arrow) to a covariate (here, guide identity).

(B–D) Accounting for differences in cell quality and state. Scatterplots show for every cell (dot) the relation between the expression of Ccl17 (y axis) or its residual

after a model is fit and the number of transcripts in the cell (x axis; log [total transcripts detected]), in the original data (B), after including quality measures as

covariates (C) and after also including cell-state proportions (D).

(E) Cell states. Cells are in either of two states (red, blue) and perturbation by sgRNA1 increases the proportion of cells in one over the other.

(F and G) Accounting for cell states. Effect on Ccl17 expression (y axis) in cells with (+) and without (�) sgRela-3, in the original model (F) and when including cell-

state proportions (G). Boxplots denote three quartiles, distribution with whiskers, and outliers as dots. Table: high Ccl17 expression in cell-state 6, whose

proportion changes most due to sgRela-3.

(H) Distinction of cells affected or unaffected by a perturbation. Left: distribution of number of cells with sgStat1-3 that have a given fit (x axis) to the model of the

effect of this perturbation. Right: distribution of percentage of cells confidently perturbed by each guide.

(I) Contribution of each model component (y axis) to the % variance explained (x axis) by R2 values from cross-validation. Error bars indicate 95% confidence

interval. +adjust: distinguishing which cells are effectively perturbed; +transcripts: including quality covariates; +cell states: including state co-variates.

(J) Correlation matrix between genes in the residuals of the model.

See also Figure S2.
The Linear Model Is Robust, Reproducible, and
Predictive
We determined the proportion of the variance in the data ex-

plained by each of the three components of the model (Figures

2I and S2A–S2C; STAR Methods). For stimulated BMDCs, the
1856 Cell 167, 1853–1866, December 15, 2016
perturbations explain 5% of the variance, 17% is explained

when adding cell quality covariates, and up to 20% with added

cell-state covariates (Figure 2I). We obtain similar results with

the other datasets (Figures S2A–S2C). Gene-gene correlations

in the residuals were also significantly reduced as we added
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Figure 3. The Role of 24 TFs in BMDCs

Stimulated with LPS

(A) TF modules. Pearson correlation (color bar)

between the regulatory coefficients of each pair of

guides (rows, columns) in a model without cell-

state covariates. Yellow rectangles, TF modules.

Leftmost column, on-target effect.

(B) Agreement between guides targeting the same

gene. Distribution of correlations between guides

targeting the same gene (gray) or different genes

(blue).

(C) Cell states. Enrichment (-log10(q value)) of

induced (red) and repressed (blue) genes with GO

gene sets (rows) in each cell state (columns)

defined for wild-type-stimulated BMDC.

(D) TF effects on cell-state proportions. q values

for enrichment (red) or depletion (blue) of guides in

cells in each state (columns; as in C).

(E and F) TF-specific effects. Heatmap (E) as in (A)

in a model with cell-state covariates. Distribution

of correlations (F) between guides targeting the

same (gray) or different genes (blue).

See also Figure S3 and Tables S2 and S3.
covariates (Figure 2J). We note that guides targeting genes have

stronger and more consistent effects than a control guide

(Figure S2I).

Perturb-Seq Dissects the Transcriptional Program in
the BMDC Response to LPS
To show how Perturb-seq recovers the correct genes, pro-

cesses, and states regulated by TFs, we analyzed the effect of

24 TFs in BMDCs. Approximately 2,000 genes are induced in

this response through the action of dozens of TFs (Amit et al.,

2009). The response is not fully synchronous (Shalek et al.,

2013, 2014), and moreover, cells may consist of at least two

sub-types whose function is not fully elucidated (Helft et al.,

2015).

We cultured precursors from the bone marrow of Cas9 trans-

genicmice inGM-CSF (Platt et al., 2014), andafter 2days, infected
Cell
themwith a lentiviral pool targeting 24 TFs

(67guides) andanon-targeting control.Af-

ter another 7 days, we stimulated the cells

with LPS and collected cells for scRNA-

seq at 0 and 3 hr (32,624 and 37,369 cells,

respectively, Table S1). Perturbations did

not strongly affect fitness (Figure S3E) or

thenumberof transcripts/cell (FigureS3D).

Pilot experiments validated our sensitivity

(80%) and specificity (90%) to detect—

with �100 single cells/guide—the correct

genes regulated by the perturbation

compared to bulk RNA-seq following the

same perturbation (Parnas et al., 2015)

(Figures S3F).

A simple model (without cell states) for

stimulated BMDCs (Figures 3 and 4;

Table S3; STAR Methods) performed

well by two basic measures: guides tar-
geting the same gene had a similar impact (Figure 4A), with

correlated regulatory coefficients profiles (Figure 3B, p < 10�9,

Wilcoxon signed-rank test), and guides typically repressed their

direct target (Figure 3A, left column).

Next, we used the regulatory effects of each perturbed TF on

each gene, to group TFs into modules by their similar regulatory

effects and to group genes into programs by how they are

affected by the perturbations. There were four TF modules

(M1–M4) (Figures 3A and 4A): (M1) the anti-viral TFs Stat1 and

Stat2; (M2) the pioneer factor Cebpb, with JunB, Rela, Stat3,

and Hif1; (M3) Rel, Irf2, and Atf3; and (M4) the pioneer factor

Spi1/Pu.1, with Runx1, Irf4, andNfkb1. There were five gene pro-

grams, each enriched for distinct processes (P1–P5; Figures 4A

and 4B; Table S6): (P1) an anti-viral response; (P2) antigen

presentation, cytoskeleton, and ribosomal proteins (RP); (P3)

mitochondrial function and biogenesis; (P4) an interferon gamma
167, 1853–1866, December 15, 2016 1857
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Figure 4. A Gene Regulatory Circuit for BMDCs Balances States and Responses

(A and B) TF modules controlling transcriptional programs. (A) Regulatory coefficient (b) of each guide (columns, color coded) on each gene (rows) in a model

without cell-state covariates. Guides and genes are clustered. Green-white, enrichment of ChIP-bound targets of each TF (columns) in each program (rows). (B)

Graph, based on (A), associating TF modules (top) to programs (bottom). Blue/red arrows, module TFs activate/inhibit program (opposite of regulatory coeffi-

cient). Bottom: module TFs that are members of program (blue/red, activator/repressor of program).

(C and D) TF circuit. (C) Heatmap, as in (A), but only of genes (rows) that encode TFs targeted by guides (columns). (D) Schematic of the associations in (C). Nodes,

TFs; blue/red arrows, activation/inhibition; modules, gray shading.

(E–G) Agreement with ChIP-seq. (E) Expected effects of TF perturbation. (F) Average regulatory effect of each guide (rows) on the genes bound by its target at four

time points (columns). (G) Proportion of bound targets at 120min post-LPS for each TF (rows) that are repressed (blue), activated (red), or unaffected (gray) by the

TF’s perturbation. Asterisks: significant (as in F, p < 0.05).

See also Figure S4 and Tables S3 and S6.
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response to intracellular pathogens; and (P5) an inflammatory

TNF response.

The TF modules regulate programs consistent with known

functions. For example, Stat1 and Stat2 (M1) are known ac-

tivators of the anti-viral program (P1) (Gao et al., 2012). The

predicted repression of the antiviral program by M2 (Rel,

Irf2, Atf3) is supported by studies (Labzin et al., 2015) that

Atf3 is a transcriptional repressor of interferon beta and the

anti-viral response. Our prediction that Stat1 and Stat2 are

repressors of mitochondrial biogenesis (P3) (Figures 4A and

4B) is supported by Stat1’s inhibition of mitochondrial

biogenesis in mouse liver (Sisler et al., 2015) and Stat2 muta-

tions in children with mitochondrial disorders (Shahni et al.,

2015).

The model predicts the details of regulation of the anti-para-

sitic response genes Gbp2, Gbp2b, Gbp3, Gbp4, Gbp5, and

Gbp7. These are all positively regulated by Stat1 and Stat2

and negatively regulated by Rel and Irf2, consistent with studies

on Stat1 (Ramsauer et al., 2007) and Rel (Wei et al., 2008). Our

model also predicts that Stat2 activates Irf8—a key TF that

controls GBP expression (Tussiwand et al., 2012), suggesting

that Stat2’s impact on GBPs may be mediated through Irf8.

Conversely, Batf is induced by Stat2 perturbation, a possible

compensation (Tussiwand et al., 2012).

Opposing Programs of BMDC Differentiation Controlled
by Two Modules Wired by Positive and Negative
Feedback Loops
Further analysis shows that Module M2 and M4 have opposite

effects on the proportion of cells in two mutually exclusive cell

states, reflected by programs P2 and P4/5. These correspond

to alternative cell differentiation or maturity types. The opposing

functions are wired throughmultiple positive and negative loops,

such that perturbing the module controlling one subtype

switches the cells to the other.

Specifically, modules M2 and M4 had opposite effects on P2

(repressed by M2 and induced by M4) and P4 and P5 (induced

by M2 and repressed by M4) (Figures 4A and 4B). P4 and P5

reflect key aspects of the response to LPS and pathogens. P2

is enriched for genes for antigen presentation, cytoskeleton pro-

teins, and RPs, and includes key genes associated with distinct

cell identity, especially SerpinB6 (from ‘‘cluster disrupted cells,’’

a sub-population that expresses some maturation genes even

prior to stimulation) (Shalek et al., 2014) and CD86 (DC matura-

tion) (Cannoodt et al., 2016; Schlitzer et al., 2015). Ribosomal,

cytoskeletal, and MHC II proteins are induced in pre-DCs, and

several pre-DCs and late-pre-DC genes are members of P2

(e.g., lglas3, Itgax, Crip1, Cd74, H2-Ab1, H2-AA, H2-Eb1) (Can-

noodt et al., 2016; Schlitzer et al., 2015), as are Il12, Id2, Irf8, and

Cd24a (whereas Zeb2 and Sirpa are in P4). Thus, P2 may reflect

a distinct cell state or type, either less differentiated or abortive

ex vivo.

We hypothesized that the regulatory effects on P2 and P4/5

reflect the impact of the perturbed TFs on the distribution of cells

across possible BMDC subtypes (STAR Methods). To test this,

we identified seven cell clusters in 1,310 wild-type LPS-stimu-

lated cells (Figure 3C). The clusters are significantly associated

with the induction of genes from the five programs (P2 in clusters
2, 5, 6; P3 in cluster 1; P4/5 in clusters 0, 1, 3, 4; Figure S4A).

Thus, induction of P2 and P4/5 represent different BMDC states,

which are present even when the cells are not genetically

perturbed. Testing the association of each guide or targeted

gene with each state (Figure 3D), cells perturbed for M2 TFs

(Cebpb, Rela, JunB) are enriched in clusters matching P2 and

depleted in clusters matching P5, whereas those perturbed

for M4 TFs (Spi1, Irf4, Nfkb1, Runx1) have the opposite effect

(Figure 3D).

Thus, M2 and M4—with their distinct pioneer factors Cebpb

and Spi1, respectively—have mutually opposing effects: M2

may promote differentiation, leading to LPS-responsive pro-

grams (P4 and P5), whereas M4 promotes a mutually exclusive

state that is either less differentiated or less productive ex vivo

(P2). Both states are present in different cells absent genetic

perturbation; the perturbations shift their proportions. The two

TF modules are present and have the same effect even

prior to LPS stimulation (Figures S3A, S3B, and S4B, P1 and

P3; Table S6).

Our modules self-reinforce and mutually inhibit to balance the

programs. First, P2 and P5 include as member genes their key

positive and negative regulators (Figure 4B, bottom): Irf4 from

M4 is a member of P2 (positive feedback), whereas Stat3 from

M2 is also in P2 (negative feedback); Cebpb and Hif1a of M2

are members of P5 (positive feedback), but so is Spi1 of M4

(negative feedback). Similarly, in the antiviral program (P1),

Stat1 of M1 is a member (positive feedback), but so are Irf2

and Atf3 of M3 (negative feedback). Moreover, based on the sig-

nificant transcriptional effects of the perturbed TFs on each other

(Figures 4C and 4D), most of the TF modules (Figure 4D, shaded

areas) have internally reinforcing activation (e.g., Hif1a and

Cebpb by each other and by JunB, Stat3, Rela [M2]; Stat1 by

Stat2 [M1]; Irf4 by Nfkb1 and Runx1 [M4]), and repression be-

tween modules (e.g., Cebpb and Hif1a in M2 repressed by

Runx1 and Nfkb1 in M4; Rela in M2 repress Irf4 in M4; Stat3

and Rela in M2 repress Rel in M3).

The Genetic Circuit Is Supported by TF Binding Profiles
The targets our model predicted for most TFs are strongly sup-

ported by chromatin immunoprecipitation sequencing (ChIP-

seq) data of the genes bound by these TFs in bulk populations

(Garber et al., 2012) (Figures 4E–4G; STAR Methods). For

example, targets bound in either unstimulated or stimulated cells

by the constitutively bound, activating TFs Rela and Cebpb are

downregulated when these TFs are perturbed. Targets bound

at 2 hr post-LPS by the dynamically bound activators Stat1

and Stat2 are downregulated in perturbed BMDCs post-

stimulation.

The model also correctly predicted the targets and logic of

repressors (Figures 4F and 4G), such as Irf2, Atf3, and Nfkb1.

Perturbing Irf2 affects its bound targets both pre- and post-stim-

ulation, consistent with its role as a repressor pre-bound pre-

LPS (Garber et al., 2012) (Figure S4B). The targets bound by

Atf3 and preferentially induced by its perturbation are enriched

for anti-viral genes (p < 10�5), supporting it as a repressor of

the antiviral response. Nfkb1 (encoding p50) is predicted by

the model to act as a repressor for its bound targets, suggesting

that its perturbation affected a p50-p50 repressor homodimer
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(Elsharkawy et al., 2010), more than a p50-p65(Rela) activator

heterodimer post LPS.

The TF binding patterns also support their direct regulation of

P1, P4, and P5 (Figures 4A and 4B, green/white heatmap).

Genes bound by M1 TFs are enriched in P1 and P4 (positively

regulated by M1); genes bound by the repressors Atf3 and Irf2

(M3) are enriched in P1 (negatively regulated by M3); genes

bound by Atf3 are also enriched in P4 (including IL-6) (Gilchrist

et al., 2006); Stat3- and Rela- (M2) bound genes are enriched

in P4, and Cebpb bound genes are enriched in P5 (both posi-

tively regulated by M2). Bound targets of M4 TFs (Irf4, Runx1,

Nfkb1) are enriched in P4, and Nfkb1 targets are also weakly en-

riched in its repressed target program P5. The remaining two

programs do not show such enrichments for bound TF targets

(Figure S4C), for example, suggesting that Stat1 and Stat2

regulate P2 indirectly, perhaps through mitochondrial signaling

(Meier and Larner, 2014).

TF-Specific Programs Revealed Once Accounting for
Global Effects
Global effects on cell states may mask other specific effects of a

TF within cells in a given state. To recover those, we added the

assignment of the perturbed cells into the seven states (Fig-

ure 3C; Table S2) as covariates. Following this, guides targeting

the same TF grouped particularly tightly (Figures 3E and 3F

compared to 3A and 3B). For example, the model showed that

MHCII genes are positively regulated by Runx1 and Ctcf and

negatively regulated by Rel (Figure S4D; Table S6) and a strong

repression of the IFNg response by Irf2. The two models are

complementary: one emphasized global effects; the other un-

covers TF-specific effects.

Genetic Interactions Affect Gene Expression and Global
Cell States
To dissect how the effects of multiple TFs combine, we analyzed

cells containing more than one guide after strict filtering of GBCs

(Figures 1D, 5, and S1E). First, in many cases pairs, and even

triplets of TFs affected in a non-additive way the probability

that a cell assumes one of the seven cell states (Figure 5B).

For example, cells containing GBCs for all three of Maff, Rel,

and Stat2 have a lower probability of being in cell-state 3 than

expected by their individual and pairwise effects (Figure 5C).

Next, we assessed the effect of genetic interactions on the

expression of each gene using our model with interaction terms

(Figure 5A; STAR Methods). For each pair of perturbed TFs, we

assessed the relative proportion of target genes where their rela-

tion is additive (no interaction), synergistic, buffering (antago-

nistic), or dominant (when the two factors have opposing effects

and the interaction term enhances one of them) (Figures 5D and

5E). Most TF pairs involving one of Runx1, Irf1, Irf2, or Irf4

had mostly additive effects, whereas pairs with combinations

of Stat1, Stat2, Stat3, Rela, Nfkb1, and Spi1 were enriched for

interactions. Only those involving Nfkb1 (Stat1-Nfkb1, Stat3-

Nfkb1, Rela-Nfkb1, Spi1-Nfkb1) were enriched for buffering

interactions (Figure 5E).

Finally, we related the different categories of interactions to TF

binding, illustrated for Nfkb1 and Rela (Figure 5F). Individually,

Nfkb1 and Rela have opposing effects on the genes in P4 and
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P5: Nfkb1 as a repressor and Rela as an activator. These target

genes are partitioned in two by the model with genetic interac-

tion (Figure 5F, hatched boxes): in one subset, the joint perturba-

tion of Rela and Nfkb1 is additive (no interaction), whereas in the

other there is a dominant interaction (of Nfkb1 over Rela). Both

sets belong to the same programs (Figure 5F, hatched boxes)

and both are enriched for ChIP targets of both Nfkb1 and Rela

(Figure 5F, right), but only the set with the dominant interaction

is enriched for co-binding (Figure 5F, right). Similar cases, where

genetic interactions are present only when the two factors are

co-bound, are found for additional pairs (e.g., Runx1-Rel, Irf4-

Nfkb1).

Global Transcriptional Modules and Specific TF Effects
in K562 Cells
To test the generality of our approach, we performed Perturb-

seq targeting ten TFs in K562 cells, a rapidly proliferating cell

line (Figures 6, S5, and S6; Table S4). Fitting a linear model

without cell-state covariates, the TFs partition into two modules

(Figure 6A). Guides to the same gene were correlated in their ef-

fects, both within and across experiments of different durations

(Figures 6E and S6B).

We defined nine cell states by clustering of WT cells (Fig-

ure S6G) and found specific perturbations enriched in individual

states (Figure 6C), consistent with known functions of the

perturbed genes. For example, cells perturbed in EGR1 are

depleted from cell-state 6, which has an increased expression

of hemoglobin biosynthesis genes, consistent with EGR1’s

known role (Sripichai et al., 2009). Cells perturbed in YY1 are en-

riched in state 5 (induction of cholesterol biosynthesis genes),

consistent with its known role as a repressor of this process

(Villagra et al., 2007).

Next, we fitted amodel that accounted for cell states. Because

these states are likely continuous (e.g., cell-cycle phase) rather

than discrete types, we performed PCA on WT K562 cells,

scored the cells from the Perturb-seq experiment against those

PC scores, and introduced the state PC scores as covariates. In

the resulting model (Figure 6B), individual guides to the same

gene are more consistent in their effects, especially across ex-

periments and durations (Figure 6E), suggesting that TF-specific

effects are reproducible even if cell-state proportions change

over time.

The model correctly predicts individual TF functions. For

example, GABPA perturbation represses mitochondrial func-

tions (p < 10�8, Figure S6C; Table S6), consistent with its known

role (Yang et al., 2014). YY1 perturbation is correctly (Goffart and

Wiesner, 2003) predicted to represses oxidative phosphorylation

(p < 10�10) and induce an innate immune response (p < 10�10)

and is enriched for its ChIP-seq targets (Guo and Gifford, 2015).

Perturbations of Cell-Cycle Regulators Reveal Distinct
Profiles Associated with Similar Fitness Effects and
Mitotic Arrest
Individual cells in a rapidly dividing cell line vary in their cell-cycle

state, readily observed by scRNA-seq (Buettner et al., 2015; Ma-

cosko et al., 2015). Cell-cycle phenotypes can be screened by

morphology or markers, but two genes with the same pheno-

typic effect may act through different mechanisms. To address
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Figure 5. Genetic Interactions between TFs in BMDCs

(A) Model with interactions.

(B) TF interactions affecting cell states in stimulated BMDCs. Enrichment (red) or depletion (blue) of single, pair, and triplets of guides (rows) in cells in each state

(as in Figure 3C).

(C) Three-way genetic interaction reduces probability of cell-state 3. Probabilities of assignment to cell-state 3 (y axis) of the individual, pairwise, and three-way

interactions (x axis).

(D) Twenty-seven genetic interaction categories between two genes (A and B), with positive (red), negative (blue) or no (white) regulatory coefficients marginally

associated with each individual guide or their combination.

(E) Distribution of target genes in each of the 27 categories (rows) for every pair of perturbations assayed for interaction (columns).

(F) Genetic interaction between Rela and Nfkb1 associated with co-binding. Marginal regulatory coefficients for Rela, Nfkb1, and their interaction term for each

gene (rows) with at least one non-zero coefficient, sorted by key categories (color code, left). Right: ChIP-seq enrichment of individually bound and co-bound

targets in each group.
this, we targeted in K562 cells 13 genes (33 guides) (Table S1)

that were previously identified by a mitotic arrest phenotype

in a genome-wide imaging screen in HeLa cells (Figure S6D)

(from Neumann et al., 2010).

Determining the fitness effects of each perturbation (STAR

Methods), we found a strong proliferative advantage conferred

by perturbing PTGER2, CABP7, and CIT, and a disadvan-

tage when perturbing AURKA, TOR1AIP1, and RACGAP1
(Figure S6H). (Among K562 TFs, perturbing EGR1 had a disad-

vantage; Figure S6A.) Furthermore, supervised analysis using

signature gene sets for cell-cycle phases (Macosko et al., 2015)

showed that perturbations of AURKA and TOR1AIP1 (both

decrease fitness) are associated with an increase in G2/M and

M signatures (Figure 6F). Perturbation of CABP7 (increases

fitness) has an opposite effect: decrease in G2/M and M signa-

tures and increase in theM/G1 signature (Figure 6F). Perturbation
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Figure 6. Perturb-Seq of Non-essential TFs and Cell-Cycle Regulators in K562 Cells

(A–E) Perturbation of TFs. (A and B) Modules. As in Figure 3A, for models either without (A) or with (B) cell-state covariates. (C) TFs effects on cell-state pro-

portions. As in Figure 3D, for TFs (rows) in each state (shown in Figure S6G). (D and E) Agreement of guide effects across time points. Distribution of correlations

between guides targeting the same gene (gray), different genes (blue), and a gene and an intergenic region (red) within and across time points (T1 = 7 days, T2 =

14 days), in either a model that does not (D) or does (E) include cell-state covariates.

(F) Perturbation of cell-cycle regulators. The effect (color bar, average regulatory coefficients) of guides targeting each gene (rows) on cell-cycle phase signatures

(columns).

See also Figures S5 and S6 and Tables S4 and S5.
of CIT increases G1/S and S states, a different cell-cycle route

manifested as increased fitness (Figure 6F).

Our model (Figure S6E; Tables S5 and S6) shows that distinct

processes are affected by factors with positive and negative

fitness effects, and highlights two different routes underlying

increased fitness. Perturbation of CABP7 strongly induced a pro-

gram of mitochondrial respiration and biogenesis (p < 10�10), nu-

clear factor kB (NF-kB) signaling (p < 10�5), and mitotic division

(p < 10�8), consistent with the fitness advantage. Perturbation of

CIT and PTGER2 (also increased fitness) repressed these pro-

grams but induced the expression of other genes, especially 11

histone genes induced by CIT. The overall partitioning of factors

by their regulatoryeffects (FigureS6E)mostly followed their group-

ings by morphology in HeLa cells (Figure S6D) (Neumann et al.,

2010): (1) CIT, PTGER2, and RACGAP1 (binuclear phenotype);

(2) CENPE and ARHGEF17 (grape-like phenotype and mitotic

delay); and (3) Aurora kinases A, B, and C (proliferation andmigra-

tiondefects).Anexception isCABP7,which,despiteasimilarbinu-

clear phenotype to that of CIT, PTGER2, and RACGAP1, has a

distinct transcriptional phenotype (Figure S6E, above).

A Guide to the Miserly: Effects on Gene Signatures Are
Robust to Downsampling of Cells and Reads
The regulatory coefficients associated with our perturba-

tions are highly structured (Figures 3, 4, 5, and 6), with sets
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of targets similarly affected across sets of perturbations,

consistent with modular gene regulation (Heimberg et al.,

2016; Kemmeren et al., 2014). Thus, it should be possible to

recover effects on gene signatures—e.g., guides that affect

the antiviral response—even with low numbers of cells and

reads.

We quantified our ability to detect gene level regulation versus

signature or state level regulation (data-driven clusters or known

gene sets), whenwe down-sample cells and reads/cell (Figures 7

and S7; STARMethods). The number of cells and reads required

for signature level effects is lower than that needed to detect

effects on individual genes (10’s versus 100–200 cells/perturba-

tion; 400 versus 1,000 transcripts; Figures 7A, 7B, S7B–S7H, and

S7J–S7L). These estimates provide helpful guidelines for future

Perturb-seq applications.

To support the feasibility of large Perturb-seq screens, we

also demonstrated that all steps in Perturb-seq could be per-

formed in a single pool (Figure S5). We synthesized an array

of sgRNAs targeting seven chromatin regulators and five inter-

genic controls and performed pooled cloning, virus prepara-

tion, transduction, cell growth, scRNA-seq (14,000 cells), and

model fitting. Guides to the same gene agreed well (p <

10�3). Early pooling may cause recombination in lentivirus but

allows large screens with appropriate strategies (Adamson

et al., 2016).
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Figure 7. Prospects for Perturb-Seq

(A and B) Saturation analysis. Effect of the number of cells (y axis) and transcripts (x axis) on recovery as measured by correlation (color bar) with either the per

gene (A) or cell-state signature (B) effects observed in the full data for BMDCs at 3 hr. The number of cells per perturbation (1.0) is a mean of 300 and a median of

155 and the number of transcripts per cell (1.0) is a median of 5,074.

(C) Tradespace of number of cells (x axis) and measurements per cell (y axis) required for scaling Perturb-seq.

(D) Future extensions, by scaling the number of cells (left) or incorporating other cell covariates (right), such as lineage (tree), marker expression (binned dis-

tribution), or time course information (timer), and a more generalized modeling of the relationship between X and Y (Y = f(X)).
DISCUSSION

We developed Perturb-seq, a method to analyze the transcrip-

tional effect associated with genetic manipulations on genes,

processes, and states. Perturb-seq decreases the time and

cost associated with assaying the complex effects of large

numbers of perturbations, including combinations.

Future Enhancements of Precision and Facility
An important advantage of using Perturb-seq is that higher

order interactions can be assayed without further need to

generate complex reagents. Due to the Poisson loading of

perturbation per cell, the same experiment used for a single

perturbation can also uncover the genetic interactions between

the perturbed genes. Future work could leverage the ability of

Cpf1 to autonomously process an entire array and deliver

several sgRNAs (or an unprocessed array) on one construct

(Zetsche et al., 2016).

Current and Future Scale of Perturb-Seq
At its current scale, Perturb-seq can be readily applied for tar-

geted screens of a subset of genes of interest and their interac-

tions (Figure 7C), as we have done here. In some systems,

growth or marker-based screens may first be performed to iden-

tify this subset prior to Perturb-seq (see Adamson et al., 2016;

Parnas et al., 2015). Perturb-seq will scale as both the cost of

sequencing and of scRNA-seq decreases (Figure 7C).
By varying the number of surveyed cells and the sequencing

depth, screens can be adjusted to focus on cell states and sig-

natures or on effects on individual genes. Our analysis suggests

that a broad survey of transcriptional phenotypes across thou-

sands of perturbations can be performed with a few tens of cells

per perturbation (Figure 7B).

Genome-wide or large combinatorial screens will also require

increased computational bandwidth. MIMOSCA (Figure S2H)

is designed foreseeing screens with millions of cells, with fast,

scalable, and parallelizable algorithms. It is publically available

with worked examples (https://github.com/asncd/MIMOSCA).

Challenges and Opportunities for Understanding the
Vast Space of Possible Genetic Interactions
As we showed, Perturb-seq can in principle dissect higher or-

der effects (Figure 5), but systematic analysis of genetic

interactions remains an ambitious goal. First, both the proba-

bility of detecting all perturbations and the probability of all

perturbations resulting in an effect scale exponentially with

the order of perturbations (Figure S7A). Our inference frame-

work (Figure 2) and future improvements can help deconvolve

mixtures of knockouts, and is potentially scalable to higher

order interactions. However, while Perturb-seq significantly

reduces time and cost, these still scale linearly with the

number of perturbations assayed, whereas the size of combi-

nation space grows exponentially as the order of combinations

grows.
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We hypothesize that a plausible alternative strategy exists,

combining substantial under-sampling of this vast space with

appropriate analytics (Beerenwinkel et al., 2007; Du and Hwang,

2000; Weinberger, 1991) that make inference possible even

when the number of possible combinations is much larger than

the number of samples. We are motivated by two biological as-

sumptions: (1) modularity (Costanzo et al., 2016; Ihmels et al.,

2002), as we have shown for both the perturbations and the

gene targets; and (2) sparsity, such that themajority of gene pairs

(or higher order combinations) do not manifest genetic interac-

tions (supported by fitness studies of genetic interactions in

yeast) (Costanzo et al., 2016). If sparsity holds for expression

phenotypes, a subset of experiments can be performed in which

most cells receive a relatively large number of perturbations

(e.g., five), and we infer both partially observed and even entirely

unobserved interactions at a lower order effects (e.g., two or

three). Perturb-seq was designed bearing in mind such future

studies, which will leverage group structure in perturbations

and their interactions.

A General Framework to Combine Rich Readout with
Cellular Metadata
Other CRISPR-based perturbations are readily compatible with

Perturb-seq, including CRISPRi as in our companion study

(Adamson et al., 2016), CRISPRa, and alternative editors (e.g.,

Cpf1). Expressed barcodes can also be used to mark cells

derived from a common ancestor for the purposes of lineage

tracing (Figure 7D). Othermeasurement platforms, such asmulti-

plex PCR (Fan et al., 2015) or multiplex protein measurements

(Frei et al., 2016) can help focus on a subset of target transcripts

or proteins, respectively. It should also be possible to apply

Perturb-seq in vivo, or in co-cultures of perturbed cells in

droplets, merging them with scRNA-seq.

We hope that the experiments and analysis provided here and

in Adamson et al. (2016) will be starting points for future experi-

ments that combine scRNA-seq and pooled screens. These will

bridge the gap between genetic screening and molecular follow-

up experiments and will facilitate causal studies of how specific

genotypes lead to phenotypes.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cas9 transgenic mouse
For all BMDC experiments, we derived cells (as described below) from six- to eight-week old constitutive Cas9-expressing female

mice, from the transgenic mice we described previously (Platt et al., 2014), and that are also available from the Jackson labs. All an-

imal protocols were reviewed and approved by the MIT / Whitehead Institute / Broad Institute Committee on Animal Care (CAC pro-

tocol 0609-058-12) and all experiments conformed to the relevant regulatory standards.

Bone marrow derived dendritic cells
To obtain a sufficient number of cells, we implemented amodified version of the DCs isolation protocol as previously described (Amit

et al., 2009; Chevrier et al., 2011; Garber et al., 2012; Lutz et al., 1999; Rabani et al., 2011). RPMI medium (Invitrogen) supplemented

with 10%heat inactivated FBS (Invitrogen), b-mercaptoethanol (50 mM, Invitrogen), L-glutamine (2mM, VWR), penicillin/streptomycin

(100U/ml, VWR), MEM non-essential amino acids (1X, VWR), HEPES (10mM, VWR), sodium pyruvate (1mM, VWR), and GM-CSF

(20 ng/ml; Peprotech) was used throughout the study. At day 0, cells were collected from femora and tibiae and plated in 100mm

non tissue culture treated plastic dishes using 10ml medium per plate at concentration of 2 3 105/ml. At day 2, cells were fed

with another 10ml of medium per dish. At day 5, 12ml of the medium were carefully removed (to avoid removal of cells) and 10ml

of fresh medium were added back to the original dish. Cells were fed with another 5ml medium at day 7. At day 8, all non-adherent
Cell 167, 1853–1866.e1–e8, December 15, 2016 e1

mailto:aregev@broadinstitute.org
mailto:aregev@broadinstitute.org
http://support.10xgenomics.com/single-cell/software/overview/welcome
http://support.10xgenomics.com/single-cell/software/overview/welcome
http://github.com/asncd/MIMOSCA


and loosely bound cells were collected and harvested by centrifugation. Cells were then re-suspended with medium, plated at a con-

centration of 10x106 cells in 10ml medium per 100mm dish. At day 9, cells were stimulated with LPS (100ng/ml, rough, ultrapure

E. coli K12 strain, Invitrogen) and harvested. Cells were always plated at concentration of 23 105/ml at day 0. Cells were harvested

post stimulation after 0hr or 3hr and cells from cultures that contained 10% BFP positive cells were sorted for BFP+ and GFP+

(contain CAS9).

K562 cell cultures
We used transgenic K562 cells constitutively expressing Cas9 (Wang et al., 2015). K562 cells were transduced using several titers of

virus and cells were spin infected in 2,000 rpm for 30 min. For the low MOI experiment, we used cultures that contained 10% BFP+

and for the high MOI 50% BFP+. Cells were grown in RPMI medium 1640 + GlutaMAX (ThermoFisher) + 10% heat inactivated FBS

(Invitrogen). Cells were grown to a confluence of 30%–60% and spun down at 300x g for 5 min. The supernatant was removed, and

cells were suspended in 5 mL of 1x PBS + 0.2% BSA (Sigma cat #A8806) for sorting: BFP+ and GFP+ (CAS9 expressing) cells were

sorted. Cells were harvested for library preparation 7 days post transduction for most experiments and 13 days post transduction for

the second time point of the TF pool experiment.

After sorting, BFP+ GFP+ cells were passed through a 40-micron cell strainer (Falcon, VWR cat #21008- 949), washed twice, and

counted.

METHOD DETAILS

Construction of lentivirus-vector and transduction
A lentivirus backbone was constructed containing: antiparallel cassettes of a mouse U6 promoter for sgRNA and EF1a pro-

moter for expression of puromycin, BFP and a polyadenylated GBC cassette (same vector here and in Adamson et al.,

2016). The vector was digested using BlpI and BstXI and annealed oligonucleotides, encoding sgRNAs, were ligated in an ar-

rayed format. Association between GBCs and sgRNAs was determined using Sanger sequencing to generate a sgRNA/GBC

dictionary. sgRNAs for BMDCs were designed using published methods for BMDCs (Doench et al., 2014) and the K562 guides

were from a published library design (Wang et al., 2015). Plasmids were pooled together prior to lentivirus preparation.

Cloning of array-synthesized guide pools
We also devised, for proof-of-concept experiments, a two-step cloning procedure to perform cloning in a pool followed by next gen-

eration sequencing to create the sgRNA/GBC dictionary, as in Figure S5A.

Vector backbone compatible with pooled cloning

We assembled pPS (Figure 5), a lentiviral vector similar to the one described above (Figure 1B) containing antiparallel cassettes

of a human U6 promoter for sgRNA expression and a cloning site for high-diversity library of GBCs. However, in place of the

EF1a-Puro-T2A-BFP cassette, we inserted a NotI site so the sgRNA and its GBC are sufficiently close to be associated through

next generation sequencing.

sgRNA library cloning

We synthesized an oligo pool corresponding to several sgRNA libraries with PCR tags (purchased from CustomArray, Bothell, WA):

GGCCAGTGAGCTCGACAAGTTTCAGtatcttgtggaaaggacgaaacaccGNNNNNNNNNNNNNNNNNNNNgtttaagagctatgctggaaacag

catagGGGTGGTTAGTGATTTGCCCGTCAC.

(Ns denote guide RNA sequence, uppercase denotes subpool specific PCR handles, lowercase denotes PCR handles for

GuidePool Fwd/Rev).

We enriched for the desired sub-pool of oligonucleotides by PCR using sub-pool-specific primers (SubpoolAmp Fwd/Rev)

and purified the product using a 2x volume of AMPure XP SPRI beads (Beckman Coulter, Danvers, MA). We then added homol-

ogy arms for Gibson assembly by performing PCR with primers GuidePool Fwd/Rev and purified the product with 1x SPRI

beads.

We prepared the vector backbone by digesting sgPS with BsmBI (New England Biolabs (NEB), Ipswich, MA) followed by purifica-

tion with 0.753AMPure XP SPRI beads.We assembled 70 ng amplified library into 500 ng digested vector in a 50 mLGibson reaction

(NEB), cleaned it with 0.753 AMPure XP SPRI, eluted in 15 mL H2O and electroporated the entire volume into Endura competent cells

(Lucigen, Middleton, WI). We expanded the cells in liquid culture for 18 hr at 30�C.
Next generation sequencing to create sgRNA/GBC dictionary

We generated a paired-end Illumina sequencing library, where read1 corresponded to the sgRNA and read2 corresponded to the

GBC by amplifying the intermediate plasmid pool with custom PCR primers containing Illumina sequencing adaptors, and

sequenced them to an average depth of > 100 reads per GBC with an Illumina MiSeq.

Insertion of EF1a-Puro-T2A-BFP cassette

We amplified the EF1a-Puro-T2A-BFP cassette from the vector described above (Figure 1B) by PCR with primers to add Gibson

arms compatible for cloning into the NotI-digested intermediate pool. We assembled 300 ng of the amplified cassette into

300 ng of a digested intermediate pool in a 20 mL Gibson reaction (NEB), cleaned it with 0.75 3 AMPure XP SPRI, eluted in

15 mL H2O and electroporated the entire volume into Endura competent cells (Lucigen). We expanded the cells in liquid culture
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for 18 hr at 30�C and purified the pooled library plasmid with the Endotoxin-Free Plasmid Maxiprep Kit (QIAGEN, Hilden,

Germany).
Name Sequence Note

SubpoolAmp_Fwd GGCCAGTGAGCTCGACAAGTTTCAG

SubpoolAmp_Rev GTGACGGGCAAATCACTAACCACCC

GuidePoolAmp_Fwd GGCTTTATATATCTTGTGGAAAGGACGAAACACCG

GuidePoolAmp_Rev CTTATTTAAACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC

IlluminaPoolSeq_Fwd AATGATACGGCGACCACCGAGATCTACA NNNN CGATTTCTT

GGCTTTATATATCTTGTGG

Ns denote sequencing barcode

IlluminaPoolSeq_Rev CAAGCAGAAGACGGCATACGAGAT NNNNNNNN ACAGTCG

AGGCTGATCAGC

Ns denote sequencing barcode

CustomRead1 Primer CGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG

CustomRead2 Primer GCTGATCAGCGGGTTTAAACGGGCCCTCTAGG

CustomIndex Primer CCCGTTTAAACCCGCTGATCAGCCTCGACTGT

CassetteAmp_Fwd TCGCCAGGGTTTTCCCAGTCACGACGCTTAATTAAGCTTGTG

CCCCAGT

CassetteAmp_Rev TTGGGCTGGCAAGCCACGTTTGGTGGCGTGCCCGTCAGTGGG
Lentiviruswasmadeusing293Tcells transfectedwithperturb-seqvector (pBA439orpPS), psPAX2 (Addgene: 12260), andpMD2.G

(Addgene: 12259) at a 10:10:1 ratio, using Lipofectamine LTX and additional reagents according to the manufacturer’s instructions.

Single cell library preparation
In our current implementation, we rely on a droplet method, which is now commercially available (Zheng et al., 2016), but our design is

compatible with additional single-cell RNA-seq methods (Fan et al., 2015; Klein et al., 2015), and we have tested it successfully with

Drop-Seq (Macosko et al., 2015) in both K562 cells and BMDCs, albeit with different gene targets than in the rest of this study (A.D.,

O.P., B.L., and A.R., unpublished data).

Prior to analysis, cells were diluted to the final concentration in 1x PBS+ 200 mg/mLBSA (NEB, cat # B9000S). Sorted cells (BMDCs

or K562 cells) were loaded on the 10X Chromium system (Zheng et al., 2016) (8,000 cells/channel) and single cell RNA-seq libraries

were generated following the manufacturer’s instructions.

Following WTA, a fraction of the WTA was used to amplify GBCs using a dial-out PCR strategy with the primer sequences below

(the full primer sequence is a concatenation of the columns). The templatematerial was approximately 5ng ofWTA libraries. 25 cycles

of PCR were performed using one of the dial-out primers below with the P7 Illumina reverse primer.

Primer sequences
P5 Barcode R1 Primer (BFP location of pBA439)

AATGATACGGCGACCACCGAGATCTACAC NNNNNNNN TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC TCGCCTTA TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC CTAGTACG TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC TTCTGCCT TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC GCTCAGGA TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC CATGCCTA TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC GTAGAGAG TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG

TAGCAAACTGGGGCACAAGC
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P7 Ilumina Reverse Primer

CAAGCAGAAGACGGCATACGAGAT.

We used the following PCR protocol:
1 rxn

Q5 2X master mix 25

P7 primer @10uM 1.25

pBA439_rev @ 10uM 1.25

Template (5ng total) x

water (qs up to final rxn of 50ul) y

Total 50

Temp time

98 C 10 s

98 C 2 s repeat for 25 cycles

65 C 5 s

72 C 10 s

72 C 1 min
The resulting PCR product was run on a 2% Agarose gel, the appropriate band was extracted, and next-generation Illumina

sequencing was performed using NextSeq.

QUANTIFICATION AND STATISTICAL ANALYSIS

Read alignment and generation of expression matrix
A digital expression matrix was obtained for each experiment using 10X’s CellRanger pipeline with default parameters. Their pipeline

uses STAR for alignment. All subsequence analysis information is also available and maintained in current form in the following Git

repository https://github.com/asncd/MIMOSCA.

Alignment of cell barcode / GBC libraries
To associate cell barcodes with guides, we used the sgRNA/GBC dictionary generated by either Sanger sequencing or NGS.

Paired-end reads containing a cell barcode and UMIs on one side and GBC barcode on the other side were isolated

and collapsed into unique molecules by first demultiplexing a sequencing run using bcl2fastq2 with the following options –create-

fastq-for-index-reads–barcode-mismatches 1–no-lane-splitting–mask-short-adaptor- reads 5–minimum-trimmed-read-length 5 us-

ing a sample-sheet containing one line with polyG tracts in the index read columns (see below). The resulting Undetermined fastq files

were split using kentools into two folders called split1 and split2 containing chunked R1 and R2 reads, respectively.
Sample_ID Sample_Name I7_Index_ID index I5_Index_ID index2

1 placeholder silly1 GGGGGGGGGGGGGG silly2 GGGGGGGG
The reads were then concatenated and GBC reads isolated using the following constant sequence within the GBC transcript:

GGCACAAGCTTAATTAAGAATT.

All split files containing a particular index barcode were finally concatenated and collapsed to uniquemolecules using the following

command.

cat *${inputbc}.txt j sort j uniq -c j sort -k1,1g j awk ‘{print $1’’yt’’$2’’yt’’$3’’-’’$4}’

the result file format looks as follows (gray highlighting for actual barcode portion of GBC read):

279 1:N:0:GGTGATACCTCATT+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCGATCAACGCAGAGACGGCC

TAG-GCGTATAAGT

282 1:N:0:TCGAGCCTTATGGC+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTGCTTGACTCGTTAGCGAGCC

TAG-CACGATACCG

286 1:N:0:ACTCGAGAGTTCGA+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCGATCAACGCAGAGACGGCC

TAG-GTCTAATGAA
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294 1:N:0:GCACGTCTACTAGC+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCTAACTCAGCGACTGGAGCC

TAG-CATGTGCCCG

297 1:N:0:ATAGATTGTCCGAA+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTGCTTGACTCGTTAGCGAGCC

TAG-AAAAGGATGG

299 1:N:0:GAGCAGGAGCTATG+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTAAACCCTCACTGCCGACGCC

TAG-ACCTGTTACG

333 1:N:0:GGAGGCCTGTTACG+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTAGGGCTTGCAGTGCACGGCC

TAG-AACGTCAAGA

339 1:N:0:CGACTCACGTTCAG+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCGATCAACGCAGAGACGGCC

TAG-CAGACTGGGC

Counts 1:N:0:Cellbarcode+Index/SampleBarcode GBCread-UMI.

The resulting file alongwith the preassociatedGBCand sgRNAdictionary was parsed using a customPython script to create a new

table of probability estimates of which sgRNAs are present in each cell. The probability estimate is thresholded to create a dictionary

of which cell barcodes contain which sgRNAs (Figure S1E).

For strict filtering, chimeric readswere removed by thresholdingmolecules that, for a given unique combination of cell barcode and

UMI, received less that 20% of the reads.

See https://github.com/asncd/MIMOSCA for more on filtering chimeric reads.

Fit of distribution of guides per cell
We simultaneously fit a generative model of the number of guides per cell and the detection probability of observing a guide if a cell

contains it using a maximum likelihood approach.

To approximate our probability of GBC detection, we considered two factors: (1) the initial MOI and (2) the technical

transcript capture efficiency of the library preparation protocol. A third factor, the fitness effects of each of the guides, was not

considered. We reasoned that for both our BMDCs TFs and K562 TFs pools our guides generally did not have strong fitness effects

since their final representation correlated strongly with their initial abundance (Figures S3E and S6A). While fitness effects due to hav-

ing multiple guides can create a skewed distribution, we noted a consistent distribution between the two time points in our K562 TF

pool (separated by seven days of cell culture, Figures 6D and 6E).

We reasoned that these should be described well by a generative model, where we assume a zero-truncated Poisson distribution

for infection with a guide-carrying lentivirus (zeros are truncated by BFP+ selection), convolved with a binomial process (for the prob-

ability of detection). Specifically we determined the maximum of the log likelihood by varying the two parameters: a, the detection

probability and l, the estimate of the initial MOI. The log-likelihood is evaluated as:

LLða; lÞ=
X10
k = 0

log

 
OðkÞ

X10
j = k

�
m
j

�
ajð1� aÞm�j

�
lj

j!ðel � 1Þ
�!

;

where O(k) is the number of cells with k guides detected. A ‘‘birth
day problem’’ correction could be applied to account for the prob-

ability the same guide was present more than once in a cell, but this did not appear to significantly change our MOI or detection prob-

ability estimates (while more problematic for higher MOIs and low complexity libraries, this will not be an issue for high complexity

libraries).

Determination of on-target effect
To assess the extent to which our observed reduction in on-target expression was significant, we performed a one-sample t test to

determine if the mean of our observed data was significantly less than zero. We also permuted the assignments between GBCs and

cells and obtained a distribution of permuted means and compared to our observed means from which we calculated a permutation

p value (as in Figure 1E).

Linear model
To fit the linear model we compiled our covariate matrix X and our expression matrix (or one of the continuous covariates; as done for

some assignments of cell states; below) as our matrix Y. We fit our model using an elastic net regularization (Zou and Hastie, 2005)

through the Python implementation with the following parameters.

sklearn.linear_model.ElasticNet(l1_ratio = 0.5,alpha = 0.0005,max_iter = 10000).

The two regularization parameters were determined through cross-validation.

Alternating descent fit of perturbation probability
An overview of the problem, proofs that bound error for related approaches under specific assumptions, and useful citations can be

found in Loh and Wainwright (2012).
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To account for the contribution of unperturbed cells in the population containing a particular sgRNA, we constructed an approach

in which the presence of sgRNA in a given cell was converted into a probability measure of that sgRNA having a phenotypic effect on

the cell, as follows:

We note that by Bayes’ rule, the probability of being in a particular class of a two class outcome can be written as:

PðXj = 1jYÞ=PðY jXj = 1ÞPðXj = 1Þ
PðYÞ =
PðY jXj = 1ÞPðXj = 1Þ
PðY jXj = 0ÞPðXj = 0Þ+PðY jXj = 1ÞPðXj = 1Þ=
1

1+ e�LLðYÞ:

The derived equation is effectively a logistic transform of the log likelihood.

For a single output (y) that could belong to one of two possible Gaussian distributed classes, the log likelihood can be written as

follows:

LLðyÞ= log

0B@ 1
2ps2

e�ðy�m1Þ2
2s2

1
2ps2

e�ðy�m0Þ2
2s2

1CA=
ðy � m0Þ2 � ðy � m1Þ2

2s2
:

Based on the derivations above, we fit using the multivariate regression on Y = X with bY =Xb

Next, we evaluate the fit with the guide covariate set to 0, Xo

PðXj = 1Þ= logistic

 X
i

½Yij � Xobi�2 �
h
Yij � bY ij

i2
2s2

!
; where

logisticðxÞ= 1

1+ e�x:

Finally, we use the new covariate matrix XM whose entries consist of PðXj = 1Þ= 1 to recompute bM:

Significance testing for coefficients of linear model
Wedevised a permutation strategy to empirically obtain a null distribution of the coefficients associated with our sgRNA effects. Spe-

cifically, we randomized the guide assignments to cells (such that co-occurrence between guides was preserved) and the linear

model was recomputed with all other covariates being held constant. We repeated this ten times. We noticed that three significant

as-yet latent factors impacted the empirical null distribution of coefficients: (1) themean expression level of a gene; (2) the variance in

expression of a gene; and (3) the number of cells a particular sgRNA was present in.

To control for these factors when assessing significance, each empirical null coefficient’s value was assigned a point in 4-space:

[Gene mean, gene variance, number of cells, value]. We then estimated the multivariate density using a binning approach (np.histog-

ramdd in Python). True nonzero coefficients were evaluated for significance relative to a matched set of bins (to create an empirical

conditional cumulative probability distribution) conditioned on the first three factors.

A less stringent null was generated by obtaining a permuted distribution of coefficients based on a permuted cell-to-guide assign-

ment, but only calculating the significance on a per guide basis without consideration of the mean expression level or variance of the

gene being considered.

In both cases, we used a Benjamini-Hochberg procedure to control for multiple hypothesis testing.

Residuals analysis
To determine the marginal effect of each covariate in explaining the observed gene expression variation, we estimated the model R2

by cross-validated (trained on 80% of the data and tested against 20%) for the addition of each of the covariates.

Todetermine theextent towhich our covariates explained themajor axes of variation in our data,wedecomposed the residuals using

the same randomizedPCAapproachdescribed in theDefinition ofCell States section. Twomajormetricswere evaluated: (1) the eigen-

value distribution, and (2) the extent to which the top loadings were enriched for biological terms. This analysis is relevant for Figure 2J.

Cross validated R2

To estimate the generalizability of themodel, we determined a cross-validated R2 by training ourmodel on 80%of our data and deter-

mining the fit on the remaining 20%. This analysis is relevant to Figures 2I and S2A–S2C.
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Definition of cell states
Cell states were defined using parallel experiments with cells without any introduction of sgRNAs. Starting from an expression matrix

Y, variable genes were selected based on fitting a nonparametric Loess regression (using amoving window of 25 percent of the data)

to the relationship between the average expression of a gene and its respective coefficient of variation (after normalizing each cell for

complexity). Geneswith high residuals (i.e., more variable than genes at comparable expression levels) were selected (approximately

1,000 genes).

Next, the expression matrix was normalized per cell (the sum of the number of transcripts for each cell was renormalized to

10,000), log2 transformed with a pseudocount of 1 and the genes were Z-transformed. Randomized PCA was performed on the Z

transformed expression matrix using Facebook’s implementation through the python package fbpca retaining the top 50

components.

To determine the number of principle components to retain, we used a combination of the elbowmethod looking at the eigenvalue

gap of each component, GO enrichment of each component using jackstraw (Chung and Storey, 2015) and a PC robustness analysis

(in which increasing amounts of random noise is added to the data and the stability of each principal component with respect to the

original components is evaluated). We generally retained approximately 10 principle components.

Clustering was performed using Infomap (Rosvall and Bergstrom, 2008) with k refined so that slightly more clusters are created

than onewould expect. Clusters are subsequently merged in an iterative fashion such that no pairwise comparisons between clusters

have fewer than 100 differentially expressed genes (Shekhar et al., 2016). Differential expression is evaluated using a Welch’s t test

(adjusted for unequal variance) on the Z-transformed values between each cluster and the rest of the cells. A Benjamini-Hochberg

FDR procedure (Benjamini and Hochberg, 1995) was used to control for multiple hypothesis testing. The clusters are evaluated for

GO enrichment using FDR corrected p values (see Interpretation of Results).

Relation of perturbed cells to unperturbed states
To define the relationship between the cell states in the unperturbed cells and the perturbed cells, we projected the perturbed cells

onto the same significant principal component vectors derived from the unperturbed cells. The projection onto these components

was used as a covariate by itself, especially with K562 cells, where the major axes of variation, such as cell cycle, describe more

continuous processes. For BMDCs, discrete cell types are readily discernable. There, we trained a random forest classifier using

class labels obtained by the merged Infomap clusters with features consisting of PC scores.

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators = 100,n_jobs = �1,oob_score = True,class_weight = ‘balanced’)

We used the out-of-bag probability estimates to generate ROC curves to determine the sensitivity and specificity of classification

per cluster. Finally, the random forest was applied to the projected PC scores of the perturbed cells to obtain class membership

predictions.

Tests of sgRNA effect on outputs other than gene expression
To evaluate the effect of an sgRNA on an output such as number genes detected, transcripts detected, or cell state, our regression

framework is modified to predict these outputs instead of gene expression. The major modification is that the L1 sparsity-inducing

penalty is removed, resulting in ridge regression.

Fitness effects of sgRNAs
To assess the fitness effects of sgRNAs we obtained estimates of the initial abundances of each sgRNA in the pool, by NGS of the

GBC. The GBC / sgRNA dictionary was used to convert the readout into a relative abundance estimate of sgRNA in the initial pool.

Then, we calculated the fold change of the observed abundance of cells containing a particular sgRNA compared to its respective

abundance in the original pool. This analysis is relevant to Figures S3E, S6A, and S6H.

To quantify the significance of these fold changes we developed a Bayesian probabilistic model that computes the expected

probability of each guide in the resulting cell population. The model is based on the null hypothesis that the fitness effects

of gene targeting guides is equivalent to the fitness effects of non-targeting or intergenic guides. Let M, d, fg, and dg,c denote

the MOI, the overall guide detection rate, the frequency of guide g in the initial library, and the event of detecting guide g

in cell c, respectively. We model the infection with guide g as a Poissonðfg,MÞ. To avoid effects of genetic interactions

we compute the expected probability of each guide given that the cell was infected only with one guide and survived BFP

selection.

P

 
dg;c = 1

�� X
g

dg;c = 1;BFP

!
=

efgMd � 1P
gðefgMd � 1Þ:

We then examine if the observed frequency of each guide in the pertaining cell subpopulation deviates from the expected fre-

quency, compute a binomial p value, correct for multiple hypotheses via Bonferroni correction, and report the significant findings.
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Analysis of perturbation effects on individual genes and gene modules
The most variable genes from each Perturb-Seq experiment were filtered by using the jackstraw approach (Chung and Storey, 2015)

to identify the most significant genes (q-value < 0.01) in the top 20 PCs of the coefficient matrix. The genes were then clustered using

k-means clustering by their coefficients. kwas chosen by visual inspection of clustering results. Gene ontology (GO) enrichment anal-

ysis was performed on each cluster using goatools (Tang et al., 2015) with FDR threshold of 0.05.

Comparison to ChIP-seq binding profiles
We analyzed assignments of TF binding in gene promoters in BMDCs following LPS stimulation across four time points (0, 30, 60, and

120 min) (Garber et al., 2012). We used two tests for significant binding. First, the regulatory coefficients of bound genes were

compared to those of unbound genes using a non-parametric Mann-Whitney test to identify significantly different means. Because

of the possibility that this significance was driven by skewed covariates from unbound genes, we also tested whether the coefficients

of bound genes significantly deviated from 0, using the non-parametric one-sample Wilcox test. Second, because TFs could both

activate and repress genes, we examined the number of bound genes significantly up- or downregulated. To do this, we used the

distribution of covariates of unbound genes to define thresholds at the 5th percentile of lowest negative and highest positive coeffi-

cients. Any bound genes with coefficients that surpassed the thresholds were considered significant. Between the set of genes with

significant positive and negative coefficients, we used the larger set to infer whether the transcription factor was overall activating or

inhibiting gene expression. Only BMDC expressed genes were considered in all ChIP-Seq analysis.

Power analysis and experimental design considerations
Power analysis was performed to determine howmany cells are required to observe a signal as a function of observed effect size and

baseline expression of a gene.

As an estimate of required read depth, we downsampled at the UMI level. For example, for a vector of gene expression for a cell

with the following values: [2,0,1,6] we convert it into the following vector [1,1,3,4,4,4,4,4,4] on which downsampling is performed with

equal probability without replacement. It is reconstructed into the original probability space by binning the observed integer counts.

We also downsampled cells without replacement from our observed set.

We performed our regression analysis on the downsampled expression matrix for various amounts of downsampling and recom-

puted the resulting regulatory matrix. For each level of downsampling, 10 instances are averaged.We compared between the original

regulatory matrix and the matrix that results after downsampling using a Pearson correlation. For the supplementary figures, we

thresholded the original regulatory matrix at the specified effect size and then calculated the sensitivity and specificity relationship

for each downsampled regulatory matrix. We report the maximum sensitivity achievable if the false positive rate is kept under 10%.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the plasmid data reported in this paper are Addgene: 85967 and 85801. The accession number for the

expression data reported in this paper is GEO: GSE90063.

The expression data are also available in the Single Cell Portal (https://portals.broadinstitute.org/singlecell). The code for the

analyses reported in this paper is available at https://github.com/asncd/MIMOSCA. The Google forum for technical troubleshooting

is located at https://groups.google.com/forum/#!forum/perturb-seq.
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Supplemental Figures

Figure S1. Performance of Perturb-Seq, Related to Figure 1

(A–C) GBC detection and MOI. Top: Log-likelihood functions as a function of detection probability (x axis) and MOI (y axis) for a zero-truncated zero-inflated

Poisson distribution for the indicated experiment (label on top). Bottom: Cumulative distributions for the observed distribution of guides per cell (blue) and the

expectation from the maximum likelihood estimate (green).

(D) Specificity of GBC detection. Scatterplot shows the percentage of reads for a GBC within a given cell (CBC: cell barcode) (y axis) as a function of the

log2(reads) it received in that cell (x axis). Low level contaminants are below the red line.

(E) Same as (D), after filtering out chimeric reads.

(legend continued on next page)



(F) Relationship between the number of GBCs detected (x axis) and the number of genes detected for a given CBC (y axis). Cells with multiple GBCs are not

associated with a higher number of transcripts, suggesting they are not doublets. Boxplots denote three quartiles, distribution with whiskers, and outliers as dots.

(G) Distribution of on-target effects in BMDC at 3h post-LPS. Shown is the distribution of on-target expression (x axis) in cells carrying the corresponding targeting

guides (blue) and permuted results for a single permutation (gray). Rectangle is the 99% confidence interval for the permuted mean. Mean on-target effects of

individual guides are in tick marks, including one outlier exceeding even the permuted data.

(H) Effect on target. Cebpb transcript expression (y axis) in cells carrying an sgRNA targeting Cebpb (sgCebpb-1, right) compared to all other cells (left). Boxplots

denote three quartiles, distribution with whiskers, and outliers as dots.

(I) Relationship between overall mean expression of the on-target gene (x axis) and the observed effect on its expression (y axis) by the guides that target it, in

BMDCs at 3h post-LPS.

(J and K) Relationship between population expression measurements and a 10-cell average (top) and a 100-cell average for BMDCs (J) and K562 cells (K).

(L) Relationship between transcript length (x axis) and the difference between population expression and single cell average expression (y axis).
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Figure S2. Performance of MIMOSCA Framework, Related to Figure 2

(A–C) Contribution of each component in the model (y axis) to the % variance explained (x axis) based on the R2 values from cross-validation in each of three

screens (labeled on top). Error bars indicate 95% confidence interval.

(D–F) Significance of regulatory coefficients. Shown are the distributions of signed log10(q-value) for each of three sgRNAs (marked on top). Values capped at 3;

Zero coefficients (due to shrinkage by regularization) have no assigned FDR.

(G) Relationship between the number of cells carrying a given sgRNA (x axis) and the number of genes significantly affected by each sgRNA (y axis). One outlier

guide (sgStat1-2) is marked and – while included for completeness in all subsequent plots – was not considered in any biological analysis.

(H) Computational flowchart for MIMOSCA. Raw input data (orange) is processed into intermediate data types that require less (purple) or more intensive (green)

analysis. Output data (blue) is generated and interpreted biologically.

(I) Examination of the extent to which expression effects are consistent across thousands of genes for a given cell. Scatterplots show conceptual (left) and real

(middle and right) examples of the total support (sumof squared error) for genes fit better when including the guide as a covariate (y axis) and the support for genes

fit better without including the guide as a covariate (x axis). Each dot is a cell. Conceptually (left column), cells in a pure population of perturbed cells (top) or in a

well separated population of perturbed and unperturbed cells (middle) should be far from the diagonal line, whereas a poor performing guide (or a nontargeting

control) (bottom) would have many cells close to the diagonal. Indeed, a guide targeting Rela in BMDC (3h post-LPS) (top middle and top right) has a distin-

guishable effect compared to a non-targeting guide (below) in amodel without cell state covariates (middle) and even when considering cell states (right). Bottom

middle and right plots: Themean deviation of cells from the x = y line (i.e., more deviation means stronger andmore consistent effects) for each guide (x axis). Red

line: the non-targeting control.



Figure S3. Analysis of the Role of 24 TFs in BMDCs, Related to Figure 3

(A) Cell states in BMDCs pre-stimulation. Shown are enrichments (-log10(q-value) for GO gene sets (rows) with induced (red) and repressed (blue) genes in each of

four cell states (columns) defined for genetically unperturbed BMDC at 0h (pre-stimulation). Key terms are marked on right.

(B) TFs group by their effects on cell state proportions pre-stimulation. Shown are the q-value for enrichment (red) or depletion (blue) of guides in cells with each of

four states (columns; as in A).

(C) Relationship between effects pre- and post-stimulation. Shown are correlations of regulatory coefficients between guides targeting the same gene within the

3hr LPS stimulated cells (light blue), within unstimulated cells (white), as well as across the two conditions, either without (dark blue) or with (blue) modeling cell

states. Boxplots denote three quartiles, distribution with whiskers, and outliers as dots.

(D) Distribution of number of detected transcripts per cell (x axis) for cells harboring guides targeting each gene (y axis). Boxplots denote three quartiles, dis-

tribution with whiskers, and outliers as dots.

(E) Assessing potential fitness effects. Shown is the distribution of fold changes of sgRNA abundance compared to the input abundance (x axis) for the guides

(dots) targeting each gene (y axis).

(F) Perturb-Seq reliably recovers effects as in individual perturbation experiments followed by bulk RNA-seq. False positive (x axis) and true positive (y axis) rates

based on comparing scRNA-seq profiles of Dad1 perturbations to population RNA-seq of the same perturbation calculated separately for upregulated (black) and

downregulated (blue) genes. True positives are defined as those determined to have a q-value less than 0.05 in the population RNA-seq. False positives are those

considered significant in the scRNA-seq in the opposite direction to what was found in the population RNA-seq.
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Figure S4. Additional Aspects of the Regulatory Circuitry of BMDCs, Related to Figure 4

(A) Relation between cell states and regulatory programs. Shown is the significance (-log10(P-value) of the hypergeometric test) of the overlap between the

expressed genes in each of the programs P1-P5 (as in Figure 4A) and the genes induced in each of the seven cell states of genetically unperturbed DCs at 3h post-

LPS (as in Figure 3C).

(B) TF control of transcriptional programs in BMDCs pre-stimulation (0h). Shown is the regulatory coefficient of each guide (labeled columns) on each gene (rows)

based on a model that does not account for cell states as covariates. Guides and genes are clustered by k-means clustering. Four target programs are marked

(P1-4, distinct from the programs of Figure 4A). Green-white heatmap shows the enrichment of bound targets of each TF (Garber et al., 2012) in each program

(rows) based on either a lenient, genome-wide background (top) or a strict background (bottom) restricted only to the genes in the four programs.

(C) Enrichment in bound targets of each TF in each BMDCpost-LPS (3h) expression program (rows, see Figure 4A) based on a lenient, genome-wide background.

(D) Relation between TFs and transcriptional programs in BMDCs at 3h post-LPS after accounting for cell states. Shown is the regulatory coefficient of each guide

(labeled columns) on each gene (rows) based on a model that accounts for cell states as covariates. Guides and genes are clustered by k-means clustering. Five

target programs (P1-5) are marked (distinct from the programs of Figure 4A).
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Figure S5. A Pooled Cloning Strategy for Perturb-Seq, Related to Figure 6

(A) Overview. Pooled cloning can be performed by oligo nucleotide synthesis of an array of sgRNA (top) followed by a two-stage cloning protocol (bottom) to insert

the library, sequence with next generation sequencing, and to insert the intervening sequence.

(B) Application in K562 cells. Left: Pearson correlation (color bar) between the regulatory coefficients of each pair of guides (rows, columns) in a set targeting

seven chromatin regulators in a model without cell state covariates (leftmost column: on-target effect). Right: Correlation in the effects between guides targeting

the same gene (left, light gray) and different genes (right, dark gray). Boxplots denote three quartiles, distribution with whiskers, and outliers as dots.
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Figure S6. Additional Analysis of the Role TFs and Cell-Cycle Regulators in K562 Cells, Related to Figure 6

(A) Fitness effects of TF perturbations in K562 cells. Shown are the fold changes of sgRNA abundance compared to their input abundance (x axis) for the guides

(dots) targeting each gene (y axis).

(B and C) TF control of transcriptional programs in K562 cells. Shown is the regulatory coefficient of each guide (labeled columns) on each gene (rows) based on a

model that either does not (B) or does (C) account for cell states as covariates. Guides and genes are clustered by k-means clustering. Target programs are

(legend continued on next page)



marked in (C) with key enriched annotations as discussed in the text. Green-white heatmap in C shows the enrichment of bound targets of each TF in each

program (rows), based on either a lenient, genome-wide background (top) or a strict background (bottom) restricted only to the expressed genes in each program.

(D) Cell cycle genes in our screen. Shown is the biological classification of our genes (Figure reproduced from Neumann et al., 2010).

(E) Effects of perturbing cell cycle genes on transcriptional programs in K562 cells. Plot as in (B) but for the cell cycle regulators.

(F) Pearson correlation (color bar) between the regulatory coefficients of each pair of guides for the cell cycle screen (rows, columns) in a model without cell state

covariates (leftmost column: on-target effect).

(G) Cell states in K562. Shown are enrichments (-log10(q-value)) for GO gene sets (rows) in induced (red) and repressed (blue) genes in each of nine cell states

(columns) defined for genetically unperturbed K562. Key terms are marked on right.

(H) Fitness effects of perturbing cell-cycle regulators in K562 cells. Shown are the fold changes of sgRNA abundance compared to their input abundance (x axis)

for the guides (dots) targeting each gene (y axis).
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Figure S7. Saturation Analysis for Differential Expression, Related to Figure 7

(A) Theoretical probability (pk) of having a successful perturbation in every target (y axis), as a function of the number of perturbations k (x axis), assuming in-

dependence at different probability of detection (colors).

(B–H and J–L) Saturation analysis. Shown is the effect of the fraction of cells per perturbation (y axis) and transcripts per cell (x axis) on the sensitivity (color bar) to

recover either the PCA scores (B–D), gene signature effects (E-H) or per-gene transcriptional effects (J–L) based on the BMDC 3h stimulated screen data.

Heatmaps, from left to right, are conditioned on increasing effect sizes. The number of cells per perturbation (1.0) is a mean of 300 and a median of 155 and the

number of transcripts per cell (1.0) is amedian of 5,074. PCA scores were obtained by projecting the expressionmatrix Y onto the top 11 PCs defined by variability

of expression in the unperturbed BMDC at 3hr. Effect size units are arbitrary units (A.U). For gene signatures, effects sizes are in units of average log2(UMI) across

the antiviral, peaked inflammatory, sustained inflammatory, and maturity signatures defined in Shalek et al. (2014). For an individual gene level, effect sizes are in

units of log2(UMI). The false positive rate is controlled to be less than 10% for all estimates of sensitivity.

(I) Sensitivity (blue, y axis) and false positives (1-specificity, green, y axis) compared to population RNA-seq when downsampling cells (x axis). Shaded areas

correspond to 1 s.d. intervals about the mean for 20 repeated subsamples (see also Figure S3F).


	Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens
	Introduction
	Results
	Perturb-Seq: Pooled, Combinatorial CRISPR Screens with scRNA-Seq Readout
	Perturb-Seq Detection of GBCs and On-Target Knockdown
	A Computational Model to Stratify Transcriptional Effects of Single-Cell Perturbations
	The Linear Model Is Robust, Reproducible, and Predictive
	Perturb-Seq Dissects the Transcriptional Program in the BMDC Response to LPS
	Opposing Programs of BMDC Differentiation Controlled by Two Modules Wired by Positive and Negative Feedback Loops
	The Genetic Circuit Is Supported by TF Binding Profiles
	TF-Specific Programs Revealed Once Accounting for Global Effects
	Genetic Interactions Affect Gene Expression and Global Cell States
	Global Transcriptional Modules and Specific TF Effects in K562 Cells
	Perturbations of Cell-Cycle Regulators Reveal Distinct Profiles Associated with Similar Fitness Effects and Mitotic Arrest
	A Guide to the Miserly: Effects on Gene Signatures Are Robust to Downsampling of Cells and Reads

	Discussion
	Future Enhancements of Precision and Facility
	Current and Future Scale of Perturb-Seq
	Challenges and Opportunities for Understanding the Vast Space of Possible Genetic Interactions
	A General Framework to Combine Rich Readout with Cellular Metadata

	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Cas9 transgenic mouse
	Bone marrow derived dendritic cells
	K562 cell cultures

	Method Details
	Construction of lentivirus-vector and transduction
	Cloning of array-synthesized guide pools
	Vector backbone compatible with pooled cloning
	sgRNA library cloning
	Next generation sequencing to create sgRNA/GBC dictionary
	Insertion of EF1α-Puro-T2A-BFP cassette

	Single cell library preparation
	Primer sequences
	P7 Ilumina Reverse Primer


	Quantification and Statistical Analysis
	Read alignment and generation of expression matrix
	Alignment of cell barcode / GBC libraries
	Fit of distribution of guides per cell
	Determination of on-target effect
	Linear model
	Alternating descent fit of perturbation probability
	Significance testing for coefficients of linear model
	Residuals analysis
	Cross validated R2
	Definition of cell states
	Relation of perturbed cells to unperturbed states
	Tests of sgRNA effect on outputs other than gene expression
	Fitness effects of sgRNAs
	Analysis of perturbation effects on individual genes and gene modules
	Comparison to ChIP-seq binding profiles
	Power analysis and experimental design considerations

	Data and Software Availability



