(51) International Patent Classification:
G01N 1/30 (2006.01) C12Q 1/68 (2006.01)
G01N 33/58 (2006.01) C12N 15/10 (2006.01)

(21) International Application Number:
PCT/US2016/059195

(22) International Filing Date:
27 October 2016 (27.10.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/247,656 28 October 2015 (28.10.2015) US

(71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; 415 Main Street, Cambridge, MA 02142 (US); MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, MA 02139 (US).

(72) Inventors: GAUBLOMME, Jellert; 36 Oxford Street, Gsa Mail Center, Comant 104, Cambridge, MA 02138 (US); REGEV, Aviv; 15a Ellsworth Ave., Cambridge, MA 02139 (US).

(74) Agent: NIX, F., Brent; Johnson, Marcou & Isaacs, LLC, 317A East Liberty Street, Savannah, GA 31401 (US).

[Continued on next page]

(54) Title: MULTIPLEX ANALYSIS OF SINGLE CELL CONSTITUENTS

(57) Abstract: The present invention relates to methods for high multiplex protein or cellular constituent analysis in single cells or single isolated aggregations of cellular constituents. The methods provide for embedding cells or isolated aggregations of cellular constituents in a hydrogel mesh and labeling of cellular constituents with labeling ligands linked to a nucleic acid tag. Cellular constituents can be determined using sequencing methods.

![FIG 1]
Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
MULTIPLEX ANALYSIS OF SINGLE CELL CONSTITUENTS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 62/247,656, filed October 28, 2015. The entire content of the above-identified priority application is hereby fully incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0002] This invention was made with government support under Grant No. HG006193 awarded by the National Institutes of Health. The government has certain rights in the invention.

TECHNICAL FIELD
[0003] The subject matter disclosed herein is generally directed to methods for high multiplex protein or cellular constituent analysis in single cells or single aggregations of cellular constituents.

BACKGROUND
[0004] Regulatory circuits in cells process signals, make appropriate decisions, and orchestrate physiological responses under diverse signals. Diseases, in turn, arise from circuit malfunctions: one or more components are missing or defective; a key module is over- or under-active. A comprehensive picture of all the cellular components, the circuits in which they function, and how these integrate to form responses is needed to understand disease and develop more effective treatments. Genomic research on dissecting cellular circuitry has had three phases:

- Phase 1: Genomic observations. Early advances in functional genomics made it possible to observe molecular profiles in different cells. Such global analysis has been very powerful in drawing hypotheses that relate regulators to their targets from statistical correlations. However, it is also very limited: the hypotheses were mostly not tested, and because correlation is not causation, many are wrong.

- Phase II: Perturbation of single components. To determine causation, genomic profiles were used to infer a molecular model, and then hundreds of genes were perturbed one at a time to observe their effect on the genomic profile. Applicants
pioneered key experimental and computational tools (1-49); applied them to model two circuits in immune cells and ES cells; discovered hundreds of new functional factors; and built rigorous molecular models that relate these factors to molecular mechanisms and physiological effect (1-49). However, testing genes individually is too limited: because the genes in biological circuits have non-linear interactions, it cannot be predicted how a circuit functions simply by summing up the individual effects.

- Phase III: Combinatorial probing of circuits. What is necessary is a combinatorial approach: perturbing multiple components simultaneously, at a large enough scale that will allow reliable reconstruction of circuits. Such a combinatorial approach has been considered intractable in genomics, because it required: (1) the ability to perturb many genes simultaneously in the same cell; (2) the ability to readout genomic profiles in individual cells, so that the effect of many perturbations can be assessed in parallel in a pool of cells; and (3) the development of mathematics that enables inference of higher-order interactions from a random sampling of this space of possibilities (because even millions of experiments are very few compared to the staggering size of the possible combinatorial space).

[0005] However, three very recent advances now put this approach within reach: (1) large scale multi-gene perturbation with CRISPR; (2) massively-parallel single cell genomic profiling; and (3) new mathematical analysis that posits that under biologically realistic assumptions, most of the meaningful interactions based on random sampling of the space can be recovered.

[0006] Single cell analysis of genomic variation and transcriptome heterogeneity allows for identification of factors influencing disease susceptibility, unraveling of intracellular regulatory networks and discovery of novel cell types. Despite their status as main mediators of biological functions, proteins are currently only read out a handful at a time, either due to spectral overlap of fluorescent tags in flow cytometry (Perfetto et al., 2004) or limit in the number of available isotope tags in mass cytometry (Bendall et al., 2011). Specifically, the current assays (e.g., CyTOF), allow multiplexed, single cell detection of dozens of proteins in millions of cells, but rely on antibodies and cannot yet be combined with DNA readout. Conversely, mass spectrometry (LC-MS/MS) allows quantitative analysis of entire proteomes, but deep analysis requires large amounts of protein/cells. Thus, there is a need for high multiplex analysis of proteins in single cells.
[0007] Citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.

SUMMARY

[0008] It is an object of the present invention to provide a method for the high multiplex analysis of cellular constituents by linking nucleic acids tags to existing ligand binding and/or antibody technologies to enable proteomic or cellular constituent detection and relative quantification by next-generation sequencing (NGS) in single cells or isolated aggregations of cellular constituents.

[0009] It is a further object of the present invention to provide for comparing high multiplex protein data variation between single cells or isolated aggregation of cellular constituents and between different biological conditions (e.g. healthy vs. diseased states; one genetic perturbation vs. another, different genetic backgrounds).

[0010] It is a further object of the present invention to provide massively parallel profiling of all circuit aspects in single cells or isolated aggregations of cellular constituents: from RNA to chromatin organization to protein levels.

[0011] In a first aspect, the present invention provides a method of assaying segregated cellular constituents, comprising: admixing at least one isolated aggregation of cellular constituents with monomers of a polymerizable gel; polymerizing the gel, to embed the cellular constituents in discrete polymer matrices; incubating the cellular constituents embedded in the polymer matrices with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cellular constituents in the polymer matrices, wherein each of the one or more labeling ligand comprises a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the polymer matrix, and the incubation further comprises washing conditions under which unbound labeling ligands will be washed out of the polymer matrix; and sequencing the oligonucleotide label, whereby detecting the UCI by sequencing indicates the presence of the target cellular constituent.

[0012] Cellular constituents may include any molecule within a cell; i.e. proteins, nucleic acids, or post translational modifications (PTM). The cellular constituent may be a protein, RNA transcript, metabolite, or a DNA molecule. Specific cellular constituents may be proteins, modified proteins, hormones, cytokines, cellular metabolites, or carbohydrates. The
isolated aggregation of cellular constituents may be a cell, an extracellular vesicle, an organelle, or an organized subcomponent thereof, including molecular complexes. Isolated aggregations of cellular constituents may include separate organelles of a single cell or separate organelles isolated from a population of cells. Organelles may be for example, mitochondria, nuclei, or cellular vesicles. In one embodiment, a specific type of single cells may be isolated. In one embodiment, immune cells are isolated from a population of cells. Not being bound by a theory, single mitochondria can be purified from a population of cells and the relative amounts of constituents present in each individual mitochondrion may be analyzed. Not being bound by a theory, immune cells may be isolated by a method such as cell sorting and the relative representation of cellular constituents may be determined for each individual cell.

[0013] The step of admixing the isolated aggregation of cellular constituents with monomers may be carried out in an aqueous solution, or in an aqueous aliquot or droplet present in an oil emulsion. The polymer matrix may be a hydrogel. The polymer matrix may be any hydrogel capable of polymerization to create a solid matrix that fixes the cellular constituents and provides a porosity capable of allowing labeling ligands to freely diffuse through the network of pores. The cellular constituents may be further fixed by treating with an aldehyde. The aldehyde may be formaldehyde, paraformaldehyde, or glutaraldehyde. Not being bound by a theory the fixation in a solid matrix prevents the mixing of the cellular constituents between the isolated aggregations of cellular constituents. Not being bound by a theory, capturing cellular constituents in a solid polymer mesh insures that they are physical units that can be ligand and/or antibody stained as a pool and isolated as single cells or isolated aggregates of cellular constituents subsequently. Not being bound by a theory, the fixing of cellular constituents in the polymer matrix allows access to the labeling ligands to intracellular constituents.

[0014] The physical units formed by the polymer matrix may be particles, droplets, or a continuous polymer matrix with discrete regions comprising the isolated aggregates of cellular constituents. Therefore, the polymer matrix may include more than one isolated aggregate of cellular constituents. The polymer matrix may be divided such that isolated aggregates of cellular constituents are separable. The polymer matrix may be separable in that individual particles, droplets, or sections can be isolated. They may be isolated by physical manipulation using a sorting device. The sorting device may use microfluidics. They may be separated by use of dilution or manual manipulation by a user. They may be separated by use
any kind of (micro) dissection. The cellular constituents within the polymer matrix may be stained with a dye, or a dye-conjugated ligand indicating the location of individual cellular constituents or cells. The polymer matrix may be punched to isolate a core, wherein each core from the polymer matrix contains a single isolated aggregate of cellular constituents. Not being bound by a theory, the fixation of isolated aggregates of cellular constituents in a matrix allows each isolated aggregate of cellular constituents to be compartmentalized wherein the separate compartments can be treated in a single experimental vessel or container and separated subsequently.

[0015] The labeling ligands are linked with an oligonucleotide label that can be used to determine the identity of the ligand. Each oligonucleotide label may comprise a unique constituent identifier (UCI) that can be used to determine the presence of a cellular constituent. Not being bound by a theory, the availability of unique sequences allows the labeling and detection of a plurality of ligands each for a specific constituent. Not being bound by a theory, the UCI allows a DNA readout for detection of a cellular constituent. The DNA readout may be by any sequencing method or method of amplification, such as by PCR or next generation sequencing. The oligonucleotide label may additionally include a promoter for amplification by an RNA polymerase, such as T7 polymerase. Not being bound by a theory, amplification by T7 polymerase allows amplification of low represented sequences, whereas such sequences may be diluted out by domination of a higher represented sequence during PCR. Not being bound by a theory, the labeling of each labeling ligand with a unique UCI allows the identification of more than ten, or hundred, or thousands of cellular constituents in an isolated aggregation of cellular constituents.

[0016] The method may further comprise segregating the discrete polymer matrices comprising the labeled constituents before the step of sequencing. Segregating the discrete polymer matrices may be by sorting single discrete matrices into separate reaction vessels. Segregating the discrete polymer matrices may be by forming discrete unique-identifier-transfer compositions, each comprising the cellular constituents embedded in a discrete polymer matrix and a transfer particle, wherein: the ligand oligonucleotide label further comprises a capture sequence, and the UCI and capture sequence are together releasably attached to the labeling ligand; the labelling ligand is bound to the target cellular constituent; and, the transfer particle comprises: a capture-binding-sequence having specific binding affinity for the capture sequence attached to the UCI, and, a unique source identifier (USI) sequence that is unique to each transfer particle. The USI of each transfer particle preferably
comprises 4-15 nucleotides. The method may further comprise releasing the UCI from the labeled ligand, under conditions within the unique-identifier-transfer composition so that the released capture sequence binds to the capture-binding-sequence on the transfer particle, thereby transferring the UCI to the transfer particle. The transfer particle may be a solid bead. The transfer particle may be a hydrogel bead. The transfer particle may also be used to capture nucleic acids present in a discrete polymer matrix. The nucleic acids may be RNA and/or DNA. Not being bound by a theory the transfer particle may be used to capture both the UCI and the nucleic acids, whereby the source of the bound cellular constituents and nucleic acids can be determined after sequencing.

[0017] The method may further comprise, before the sequencing step, generating a USI for each discrete polymer matrix by a split pool ligation method, wherein the oligonucleotide label further comprises a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary over hang on a first index nucleotide sequence, wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence, wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence, wherein the final index sequence has a single overhang complementary to the preceding index sequence, and wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence.

[0018] The split pool ligation method may comprise: splitting the pool of discrete polymer matrices into separate pools of polymer matrices, each containing a unique first index sequence; ligating the first index sequence to the ligation handle; pooling the discrete polymer matrices; optionally, splitting the pool of discrete polymer matrices into separate pools each containing a unique middle index sequence; ligating the middle index sequence to the first index sequence; and pooling the discrete polymer matrices; optionally, repeating the steps with another middle index sequence; splitting the pool of discrete polymer matrices into pools containing a unique final index sequence; and ligating the final index sequence to the preceding index sequence, whereby each discrete polymer matrix comprises a USI. The USI may have no middle index sequence, one middle index sequence, two middle index sequences, preferably the USI has a first, middle, and final index sequence. Not being bound by a theory, the size of the unique sequences in each index determines the amount included.
Not being bound by a theory, the number of indices selected is the amount necessary such that the probability of having identical USI sequences on spate polymer matrices is approaching zero. In an exemplary embodiment, each index includes 192 unique sequences.

[0019] The ligation handle may comprise a restriction site for producing an overhang complementary with a first index sequence overhang, and wherein the method further comprises digestion with a restriction enzyme. The ligation handle may comprise a nucleotide sequence complementary with a ligation primer sequence and wherein the overhang complementary with a first index sequence overhang is produced by hybridization of the ligation primer to the ligation handle. Additionally, the ULH may comprise a dsDNA part that already includes the overhang needed for index ligation.

[0020] The UCI may comprise 4 to 30 nucleotides or 7 to 30 nucleotides, preferably about 21 nucleotides. The oligonucleotide label may further comprise a unique molecular identifier (UMI) sequence. The first, middle, or final index sequence may further comprises a unique molecular identifier (UMI) sequence. The UMI may comprise 4-20 nucleotides. The UMI may comprise 8 to 16 nucleotides.

[0021] The isolated aggregation of cellular constituents may be a cell, an extracellular vesicle, an organelle, or an organized subcomponent thereof.

[0022] The sequencing may comprise combining a primer having a unique source identifier (USI) sequence with UCI, so that the USI and UCI sequences are sequenced together, and the USI preferably comprises 20 to 120 nucleotides.

[0023] The step of admixing the isolated aggregation of cellular constituents with monomers may be carried out in an aqueous aliquot or in a droplet formed by an aqueous solution in oil emulsion. The aqueous aliquot may be a separate reaction vessel such as a well in a plate. The droplet may be formed by a microfluidic device. The polymer matrix may be a hydrogel. The method may be a multiplex assay with a plurality of labeling ligands, each labeling ligand have a distinct UCI. The labeling ligand may be non-covalently bound to the target cellular constituent.

[0024] The method may further comprise pooling the oligonucleotide labels comprising a USI from a plurality of polymer matrices and sequencing the pooled UCI sequences and USI sequences. The method may further comprise pooling the oligonucleotide labels comprising a USI and UMI from a plurality of polymer matrices and sequencing the pooled UCI sequences, USI sequences, and UMI sequences.
[0025] The method may further comprise washing the cellular constituents embedded in the polymer matrices to remove selected cellular components from the polymer matrices before incubating the cellular constituents with the labeling ligand. The washing may comprise treating the cellular constituents embedded in the polymer matrices with a detergent so as to remove lipids from the polymer matrices before incubating the cellular constituents with the labeling ligand. The detergent may be an anionic detergent or nonionic detergent. The detergent may be SDS, NP-40, triton X-100, or any other detergent known in the art capable of removing lipids.

[0026] The method may further comprise quantitating the relative amount of the UCI sequence associated with a first aggregation of cellular constituents to the amount of the same UCI sequence associated with a second aggregation of cellular constituents, whereby the relative differences of a cellular constituent between aggregations of cellular constituents are determined. The relative amount may be compared to a control sample. The control sample may have predetermined amounts of cellular constituents. There may be more than one control sample. There may be at least three control samples. The at least three control samples can be used to generate a standard curve upon which all of the other cellular constituents within discrete polymer matrices are compared. The control sample may comprise isolated aggregations of cellular constituents that were untreated as compared relative to isolated aggregations of cellular constituents that were treated with a different condition. Cells may be treated with drugs, small molecules, pathogens, hormones, cytokines, proteins, nucleic acids, virus particles, or grown in different cellular environments. Cells may be isolated from a diseased tissue. The cells from the diseased tissue may be compared to cells from non-diseased tissue. Cells may be treated with systems that knockout, decrease or increase expression of a gene. Cells may be treated with systems that knockout functional elements of a genome. Functional elements include, but are not limited to promoters, enhancers, repressors, centromeres, or telomeres. CRISPR systems may be used.

[0027] The labeling ligand may be an antibody or an antibody fragment. The antibody fragment may be a nanobody, Fab, Fab', (Fab')2, Fv, ScFv, diabody, triabody, tetrabody, Bis-scFv, minibody, Fab2, or Fab3 fragment. The labeling ligand may be an aptamer. The labeling ligand may be a nucleotide sequence complementary to a target sequence.

[0028] The method may comprise multiplex binding of two or more labeling ligands to each aggregation of cellular constituents. The two or more distinct labeling ligands may comprise complementary oligonucleotide sequences, so that binding of the labeling ligands to
respective target cellular constituents that are in proximity permits the complementary sequences of the distinct ligands to hybridize, forming an amplifiable polynucleotide duplex. The method may further comprise amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity. The complementary oligonucleotide sequences, which serve as a start site for polymerase extension, can either be designed to query proximity of two specific cellular constituents, or it can be designed to be universal, thereby querying interactions between all members of the labeling ligand panel.

[0029] In one embodiment, at least two distinct labeling ligands comprise oligonucleotide sequences configured to be ligated, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the oligonucleotide sequences of the distinct ligands to ligate, forming an amplifiable polynucleotide duplex. The method may further comprise amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity.

[0030] One of the labeling ligands may comprise an oligonucleotide label with a restriction enzyme site between the labeling ligand and the UCI, and wherein the method may further comprise treating with a restriction enzyme, whereby the UCI from the labeling ligand is transferred to the oligonucleotide label of the labeling ligand in proximity.

[0031] The method may further comprise labeling the aggregation of cellular constituents by fluorescent in situ hybridization.

[0032] The aggregation of cellular constituents may be a cell that is a member of a cell population. The cell may be transformed or transduced with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identifier (UPI) sequence unique to that construct. The genomic sequence-perturbation construct may comprise a sequence encoding a guide RNA sequence of a CRISPR-Cas targeting system. The method may further comprise multiplex transformation of the population of cells with a plurality of genomic sequence-perturbation constructs. The UPI sequence may be attached to a perturbation-sequence-capture sequence, and the microbeads may comprise a perturbation-sequence-capture-binding-sequence having specific binding affinity for the perturbation-sequence-capture sequence attached to the UPI sequence. The UPI sequence may be attached to a universal ligation handle sequence, whereby a USI may be generated by split-pool
ligation. The method may further comprise multiplex sequencing of the pooled UCI sequences, USI sequences, and UPI sequences.

[0033] The oligonucleotide label may comprise a regulatory sequence configured for amplification by an RNA polymerase, such as T7 polymerase. The labeling ligands may comprise oligonucleotide sequences configured to hybridize to a transcript specific region. The oligonucleotide label may further comprise attachment chemistry, such as an acrylic phosphorimidate modification, whereby the modification allows for incorporation into the polymer matrices upon polymerization. The acrylic phosphorimidate may be AcryditeTM (Eurofins Scientific, Luxembourg). The method may further comprise amplification of the oligonucleotide label and USI by PCR or T7 amplification before sequencing. T7 amplification may be followed by cDNA generation and optionally amplification by PCR. The oligonucleotide label may further comprise at least one spacer sequence, preferably two spacer sequences. The oligonucleotide label may further comprise a photo-cleavable linker. The oligonucleotide label may further comprise a restriction enzyme site between the labeling ligand and UCI.

[0034] The discrete polymer matrices may be labeled and washed more than once. Discrete polymer matrices may be labeled with a marker specific for a cell type or cell cycle marker or developmental marker, or differentiation marker, or disease marker. The label may be a fluorescent label. The fluorescent label may be used to separate the discrete polymer matrices into distinct groups. The label may be used to identify a certain cell type prior to embedding it into a discrete polymer matrix. The discrete polymer matrices of a distinct group may then be labeled again with labeling ligands that contain an oligonucleotide label of the present invention. After novel information is obtained from the multiplex assay of the present invention, a “banked” population of polymer matrices can be stained for newly identified markers and the population of interest can be sorted (enriched) for, and investigated more deeply.

[0035] In another aspect, the present invention provides a method of determining open chromatin in individual cells comprising: isolating single cells into droplets formed by an aqueous solution in oil emulsions, wherein the droplets further comprise Tn5-transposase loaded with two tagmentation adapters, wherein one adapter is configured for incorporation into a polymer matrix and the second adapter is configured with a ligation handle for generating a USI; incubating the droplets to allow cell lysis and tagmentation of open chromatin; infusing monomers of a polymerizable gel into the droplets; polymerizing the gel,
to embed the cellular constituents in discrete polymer matrices; optionally incubating the polymer matrices with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cellular constituents in the polymer matrices, wherein each of the one or more labeling ligand comprises a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence and a sequence capable of hybridization to the tagmentation adapter configured for incorporation into a polymer matrix, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the polymer matrix and the oligonucleotide label will hybridize to said tagmentation adapter, and wherein the incubation further comprises washing conditions under which unbound labeling ligands will be washed out of the polymer matrix; and extending the genomic DNA and adapter DNA, whereby a continuous DNA strand is generated comprising the adapters, genomic DNA, and DNA overhang; optionally the oligonucleotide label bound to a labeling ligand; generating a USI at the DNA overhang by split-pool ligation; sequencing the continuous DNA strand, whereby open chromatin is determined and optionally the presence of a cellular constituent at a site of open chromatin is determined.

[0036] In another aspect, the present invention provides a method of measuring RNA levels in individual cells comprising: isolating single cells into droplets formed by an aqueous solution in oil emulsions, wherein the droplets comprise at least one labeling ligands specific for binding at one or more target RNA transcripts, wherein the labeling ligands are configured for incorporation into a polymer matrix and comprise a ligation handle for generating a USI; lysing the cells in the droplets under conditions wherein the labeling ligands will bind to the target RNA transcripts; injecting monomers of a polymerizable gel into the droplets; polymerizing the gel, to embed the labeling ligands in discrete polymer matrices; optionally, staining the discrete polymer matrices with at least one additional labeling ligand; generating a USI by split-pool ligation; and sequencing the resulting DNA, whereby RNA levels and optionally protein levels are determined in single cells. The droplets may comprise at least one pair of labeling ligands specific for binding at adjacent sites of one or more target RNA transcripts, wherein each pair of labeling ligands comprises one labeling ligand configured for incorporation into a polymer matrix and one labeling ligand comprising a ligation handle for generating a USI, and wherein the method may further comprise injecting a ligation reaction buffer comprising a ligase that is configured to allow ligation of the pair of labeling ligands if they are hybridized adjacently with single nucleotide resolution.
on the target RNA transcript, such that off target binding of labeling ligand does not get ligated, and will not be amplified in subsequent steps.

[0037] In another aspect, the present invention provides a method of assaying segregated cellular constituents, comprising: fixing and permeablizing at least one cell; incubating the fixed and permeablized cell(s) with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cell(s), wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the cell(s), and the incubation further comprises washing conditions under which unbound labeling ligands will be washed from the cell(s); admixing the cell(s) with monomers of a polymerizable gel; isolating single cells into droplets formed by an aqueous solution in oil emulsions; polymerizing the gel, to embed the labeling ligands and other cellular constituents in discrete polymer matrices; optionally, staining the discrete polymer matrices with at least one additional labeling ligand; generating a USI by split-pool ligation; and sequencing the oligonucleotide label, whereby detecting the UCI by sequencing indicates the presence of the target cellular constituent. The labeling ligands in step (b) may comprise at least one pair of labeling ligands specific for binding at adjacent sites of one or more target RNA transcripts, wherein each pair of labeling ligands comprises one labeling ligand configured for incorporation into a polymer matrix and one labeling ligand comprising a ligation handle for generating a USI, and wherein the method further comprises ligating the pair of labeling ligands if they are within proximity after binding to the target RNA transcripts. Any of the preceding methods may comprise polymer matrices wherein they further comprise magnetic particles. In one embodiment, any hydrogel droplet encapsulated aggregations of cellular constituents may further comprise magnetic particles embedded into the droplets. Not being bound by a theory, magnetic particles enable magnetic separation, aiding in clean up and washing steps in multiple reactions. Not being bound by a theory, the use of magnetic particles greatly enhances automation and therefore throughput.

[0038] In another aspect, the present invention provides a method of assaying segregated cellular constituents, comprising: fixing and permeablizing at least one cell; incubating the fixed and permeablized cell(s) with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cell(s), wherein each of the one or more labeling ligands comprise a bound oligonucleotide label
comprising a unique constituent identifier (UCI) sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the cell(s), and the incubation further comprises washing conditions under which unbound labeling ligands will be washed from the cell(s); and sequencing the oligonucleotide label, whereby detecting the UCI by sequencing indicates the presence of the target cellular constituent. The cellular constituent may comprise a protein, RNA transcript, or a DNA molecule. The method may further comprise segregating the cell(s) before sequencing. The segregating the cell(s) may comprise sorting the single cell(s) into a separate reaction vessel(s). The segregating the cell(s) may comprise forming discrete unique-identifier-transfer compositions, each comprising a cell and a transfer particle, wherein: the oligonucleotide label further comprises a capture sequence, and the UCI and capture sequence are together releasably attached to the labeling ligand; the labelling ligand is bound to the target cellular constituent; and, the transfer particle comprises: a capture-binding-sequence having specific binding affinity for the capture sequence attached to the UCI, and, a unique source identifier (USI) sequence that is unique to each transfer particle, and the USI preferably comprises 4-15 nucleotides. The method may further comprise releasing the UCI from the labeled ligand, under conditions within the unique-identifier-transfer composition so that the released capture sequence binds to the capture-binding-sequence on the transfer particle, thereby transferring the UCI to the transfer particle. The method may further comprise, before sequencing in step, generating a USI for each cell(s) by a split pool ligation method, wherein the oligonucleotide label further comprises a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary over hang on a first index nucleotide sequence, wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence, wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence, wherein the final index sequence has a single overhang complementary to the preceding index sequence, and wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence. The split pool ligation method may comprise: splitting the pool of cell(s) into separate pools of cell(s), each containing a unique first index sequence; ligating the first index sequence to the ligation handle; pooling the cell(s); optionally, splitting the pool of cell(s) into separate pools each
containing a unique middle index sequence; ligating the middle index sequence to the first index sequence; and pooling the cell(s); optionally, repeating with another middle index sequence; splitting the pool of cell(s) into pools containing a unique final index sequence; and ligating the final index sequence to the preceding index sequence, whereby each cell comprises a USI.

[0039] The ligation handle may comprise a restriction site for producing an overhang complementary with a first index sequence overhang, and wherein the method further comprises digestion with a restriction enzyme. The ligation handle may comprise a nucleotide sequence complementary with a ligation primer sequence and wherein the overhang complementary with a first index sequence overhang is produced by hybridization of the ligation primer to the ligation handle.

[0040] The UCI may comprise 4 to 30 nucleotides, or 7 to 30 nucleotides, or about 21 nucleotides. The oligonucleotide label may further comprise a unique molecular identifier (UMI) sequence. The first, middle, or final index sequence may further comprise a unique molecular identifier (UMI) sequence. The UMI may be 4-20 nucleotides. The UMI may be 8 to 16 nucleotides.

[0041] The sequencing may comprise combining a primer having a unique source identifier (USI) sequence with UCI, so that the USI and UCI sequences are sequenced together, and the USI preferably comprises 20 to 120 nucleotides.

[0042] The method may comprise a multiplex assay with a plurality of labeling ligands, each labeling ligand have a distinct UCI. The labeling ligand may be non-covalently bound to the target cellular constituent. The method may further comprise pooling the oligonucleotide labels comprising a USI from a plurality of cells and sequencing the pooled UCI sequences and USI sequences. The method may further comprise pooling the oligonucleotide labels comprising a USI and UMI from a plurality of cells and sequencing the pooled UCI sequences, USI sequences, and UMI sequences. The method may further comprise quantitating the relative amount of the UCI sequence associated with a first cell to the amount of the same UCI sequence associated with a second cell, whereby the relative differences of a cellular constituent between cell(s) are determined.

[0043] The labeling ligand may be an antibody or an antibody fragment. The antibody fragment may be a nanobody, Fab, Fab', (Fab')2, Fv, ScFv, diabody, triabody, tetrabody, Bis-scFv, minibody, Fab2, or Fab3 fragment. The labeling ligand may be an aptamer. The labeling ligand may be a nucleotide sequence complementary to a target sequence.
[0044] The method may comprise multiplex binding of two or more labeling ligands to the cellular constituents. At least two distinct labeling ligands may comprise complementary oligonucleotide sequences, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the complementary sequences of the distinct ligands to hybridize, forming an amplifiable polynucleotide duplex. The method may further comprise amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity. At least two distinct labeling ligands may comprise oligonucleotide sequences configured to be ligated, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the oligonucleotide sequences of the distinct ligands to ligate, forming an amplifiable polynucleotide duplex. The method may further comprise amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity. One of the labeling ligands may comprise a restriction enzyme site between the labeling ligand and the oligonucleotide label, and wherein the method further comprises treating with a restriction enzyme, whereby the UCI from said labeling ligand is transferred to the oligonucleotide label of the labeling ligand in proximity.

[0045] The method may further comprise labeling the cell(s) by fluorescent in situ hybridization.

[0046] The cell(s) may be a member of a cell population, further comprising transforming or transducing the cell population with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identified (UPI) sequence unique to that construct. The genomic sequence-perturbation construct may comprise a sequence encoding a guide RNA sequence of a CRISPR-Cas targeting system. The method may further comprise multiplex transformation of the population of cells with a plurality of genomic sequence-perturbation constructs. The UPI sequence may be attached to a perturbation-sequence-capture sequence, and the transfer particle may comprise a perturbation-sequence-capture-binding-sequence having specific binding affinity for the perturbation-sequence-capture sequence attached to the UPI sequence. The UPI sequence may be attached to a universal ligation handle sequence, whereby a USI may be generated by split-pool ligation. The method may further comprise multiplex sequencing of the pooled UCI sequences, USI sequences, and UPI sequences.
[0047] In another aspect, the present invention provides a method of determining interactions between 2 or more cellular constituents, comprising: admixing at least one isolated aggregation of cellular constituents with monomers of a polymerizable gel; polymerizing the gel, to embed the cellular constituents in discrete polymer matrices; incubating the cellular constituents embedded in the polymer matrices with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cellular constituents in the polymer matrices, wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence and a universal hybridization nucleotide sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the polymer matrix, and the incubation further comprises washing conditions under which unbound labeling ligands will be washed out of the polymer matrix; incubating the polymer matrices with at least one Unique Location Index probe, wherein the probe comprises at least two repeating nucleotide sequences, each repeat comprising a restriction enzyme site, a Unique Location Index (ULI) sequence, and a complementary universal hybridization nucleotide sequence, and wherein the incubation comprises binding conditions under which the universal hybridization sequence will hybridize the complementary universal hybridization sequence; extending the oligonucleotide label hybridized to the probe such that the oligo bound to the affinity ligand incorporates the ULI sequence that is unique to that Unique Location Index probe; digestion with a restriction enzyme specific for the site on the probe, sequencing the oligonucleotide label, whereby detecting the same ULI with two or more UCI’s indicates that the cellular constituents were interacting. The ULI sequence may be randomly generated, such that no two ULI sequences are the same. Methods of generating a barcode sequence described herein may be used to generate a ULI. The ULI will be detected with the UCI, such that when multiple cellular constituents are in proximity oligonucleotide labels comprising each UCI and the ULI from a single probe will be generated. Not being bound by a theory, using a plurality of labeling ligands with specificity for a plurality of cellular constituents will allow novel interactions to be determined. The use of polymer matrices allows a stable platform for washing out the unbound labeling ligands before staining with the ULI probes. The cellular constituent may comprise a protein, RNA transcript, or a DNA molecule. The ULI may be 4-30 nucleotides. The ULI may be 8-20 nucleotides.
[0048] The method may further comprise segregating the discrete polymer matrices comprising the labeled constituents before sequencing. The segregating of the discrete polymer matrices may comprise sorting single discrete matrices into separate reaction vessels.

[0049] The method may further comprise, before sequencing, generating a USI for each discrete polymer matrix by a split pool ligation method, wherein the restriction site on the ULI probe is a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary overhang on a first index nucleotide sequence, wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence, wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence, wherein the final index sequence has a single overhang complementary to the preceding index sequence, and wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence. The split pool ligation method may comprise: splitting the pool of discrete polymer matrices into separate pools of polymer matrices, each containing a unique first index sequence; ligating the first index sequence to the ligation handle; pooling the discrete polymer matrices; optionally, splitting the pool of discrete polymer matrices into separate pools each containing a unique middle index sequence; ligating the middle index sequence to the first index sequence; and pooling the discrete polymer matrices; optionally, repeating step (d) with another middle index sequence; splitting the pool of discrete polymer matrices into pools containing a unique final index sequence; and ligating the final index sequence to the preceding index sequence, whereby each discrete polymer matrix comprises a USI.

[0050] The oligonucleotide label may further comprise a unique molecular identifier (UMI) sequence. The first, middle, or final index sequence may further comprise a unique molecular identifier (UMI) sequence. The method may further comprise pooling the oligonucleotide labels comprising a USI, ULI and UMI from a plurality of polymer matrices and sequencing the pooled UCI sequences, USI sequences, ULI sequences, and UMI sequences.

[0051] The aggregation of cellular constituents may be a cell that is a member of a cell population, further comprising transforming or transducing the cell population with one or
more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells,
wherein each distinct genomic sequence-perturbation construct comprises a unique-
perturbation-identified (UPI) sequence unique to that construct.

[0052] In another aspect, the present invention provides a method of determining
interactions between 2 or more cellular constituents, comprising: fixing and permeablizing at
least one cell; incubating the fixed and permeabllized cell(s) with one or more labeling ligands
with specific binding affinity for one or more target cellular constituents to produce one or
more labeled cell(s), wherein each of the one or more labeling ligands comprise a bound
oligonucleotide label comprising a unique constituent identifier (UCI) sequence and a
universal hybridization nucleotide sequence, and wherein the incubation comprises binding
conditions under which the labeling ligand will bind to the cellular constituent within the
cell(s), and the incubation further comprises washing conditions under which unbound
labeling ligands will be washed from the polymer cell(s); incubating the cell(s) with at least
one Unique Location Index probe, wherein the probe comprises at least two repeating
nucleotide sequences, each repeat comprising a restriction enzyme site, a Unique Location
Index (ULI) sequence, and a complementary universal hybridization nucleotide sequence,
and wherein the incubation comprises binding conditions under which the universal
hybridization sequence will hybridize to the complementary universal hybridization
sequence; extending the oligonucleotide label hybridized to the probe; digesting with a
restriction enzyme specific for the site on the probe; and sequencing the oligonucleotide
label, whereby detecting the same ULI with two or more UCI’s indicates that the cellular
constituents were interacting. The cellular constituent may comprise a protein, RNA
transcript, or a DNA molecule. The ULI may be 4-30 nucleotides. The ULI may be 8-20
nucleotides.

[0053] The method may further comprise segregating the cell(s) comprising the labeled
constituents before sequencing. The segregating of the cell(s) may comprise sorting single
discrete matrices into separate reaction vessels. The method may further comprise, before
sequencing, generating a USI for each cell by a split pool ligation method, wherein the
restriction site on the ULI probe is a universal ligation handle (ULH) sequence configured to
produce a DNA overhang capable of hybridization to a complementary over hang on a first
index nucleotide sequence, wherein the first index nucleotide sequence comprises an
overhang complementary to a final index sequence or optionally a middle index sequence,
wherein the middle index sequence comprises overhangs complementary to the first index
sequence and to the final index sequence or optionally to another middle index sequence and final index sequence, wherein the final index sequence has a single overhang complementary to the preceding index sequence, and wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence. The split pool ligation method may comprise: splitting the pool of cells into separate pools of cells, each containing a unique first index sequence; ligating the first index sequence to the ligation handle; pooling the cells; optionally, splitting the pool of cells into separate pools each containing a unique middle index sequence; ligating the middle index sequence to the first index sequence; and pooling the cells; optionally, repeating with another middle index sequence; splitting the pool of cells into pools containing a unique final index sequence; and ligating the final index sequence to the preceding index sequence, thereby each cell comprises a USI.

[0054] The oligonucleotide label may further comprise a unique molecular identifier (UMI) sequence. The first, middle, or final index sequence may further comprise a unique molecular identifier (UMI) sequence. The method may further comprise pooling the oligonucleotide labels comprising a USI, ULI and UMI from a plurality of polymer matrices and sequencing the pooled UCI sequences, USI sequences, ULI sequences, and UMI sequences.

[0055] The cells may be a member of a cell population, further comprising transforming or transducing the cell population with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identified (UPI) sequence unique to that construct. The perturbation constructs may be any as described herein.

[0056] The oligonucleotide label may comprise a regulatory sequence configured for amplification by T7 polymerase.

[0057] The labeling ligands may comprise oligonucleotide sequences configured to hybridize to a transcript specific region.

[0058] Before sequencing, the method may further comprise: amplification of the oligonucleotide label by PCR; or T7 amplification of the oligonucleotide label followed by subsequent cDNA generation, and optionally amplification by PCR.

[0059] The oligonucleotide label may further comprise at least one spacer sequence. The oligonucleotide label may further comprise a photocleavable linker. The oligonucleotide label may further comprise a restriction enzyme site between the labeling ligand and UCI.
[0060] The oligonucleotide label may comprise one or more iso-dG and/or iso-dC nucleotides. The oligonucleotide labels for hybridization in a proximity assay may comprise one or more iso-dG and/or iso-dC nucleotides. The universal hybridization sequences may comprise one or more iso-dG and/or iso-dC nucleotides. Not being bound by a theory the one or more iso-dG and/or iso-dC nucleotides will increase specificity of hybridization.

[0061] In one embodiment, the oligonucleotide label of any of the methods described herein may comprise one or more iso-dG and/or iso-dC nucleotides. Two complementary sequences may comprise one sequence with iso-dG and the other complementary sequence with iso-dC, whereby the two sequences are capable of hybridizing with each other, but not with sequences containing only dG, dC, dA, and/or dT. The sequence of the oligonucleotide labels for hybridization in a proximity assay may advantageously comprise one or more iso-dG and/or iso-dC nucleotides.

[0062] Any of the methods of the present invention may advantageously be combined for determining any combination of protein detection, RNA detection, open chromatin detection, protein-protein interactions, protein-RNA interactions, or protein-DNA interactions.

[0063] Accordingly, it is an object of the invention to not encompass within the invention any previously known product, process of making the product, or method of using the product such that Applicants reserve the right and hereby disclose a disclaimer of any previously known product, process, or method. It is further noted that the invention does not intend to encompass within the scope of the invention any product, process, or method of using the product, which does not meet the written description and enablement requirements of the USPTO (35 U.S.C. §112, first paragraph) or the EPO (Article 83 of the EPC), such that Applicants reserve the right and hereby disclose a disclaimer of any previously described product, process of making the product, or method of using the product.

[0064] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as “comprises”, “comprised”, “comprising” and the like can have the meaning attributed to it in U.S. Patent law; e.g., they can mean “includes”, “included”, “including”, and the like; and that terms such as “consisting essentially of” and “consists essentially of” have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention. Nothing herein is intended as a promise.
These and other aspects, objects, features, and advantages of the example embodiments will become apparent to those having ordinary skill in the art upon consideration of the following detailed description of illustrated example embodiments.

This patent or patent application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) may be provided by the Office upon request and payment of the necessary fee.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description, given by way of example, but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:

Figure 1 illustrates a schematic overview of embodiments using hydrogel embedding of single cells, followed by lipid clearing and DNA-tagged antibody labeling. Also shown, are low-throughput and high-throughput readouts.

Figure 2A-2C illustrates a proof of principle. A) Overlay of transmission light microscopy image epifluorescent measurement of CD51/Alexa488 (green). Black arrow indicates an example of a hydrogel embedded cell, the white arrow indicates an empty hydrogel droplet, staining negative for CD51. B) same cells, stained for genomic DNA DAPI (blue) and intracellular PCNA/Alexa647 (red). C) Strong Pearson correlation (0.98) measured between fluorescence levels of ‘endogenous’ GFP levels from 293/GFP cells, and a detecting anti-GFP antibody conjugated to Alexa647. Similar staining with the BD cytofix/perm kit yielded a Pearson correlation of 0.36.

Figure 3 illustrates measuring protein levels by staining of aggregations of cellular constituents with affinity reagents (antibodies) linked to an oligonucleotide with the structure [5’ Amino Modifier]-[~6bp spacer]-[PhotoCleavable linker]-[~4bp spacer]-[Illumina PCR primer]-[~8-16bp UMI]-[~21bp UCI]-[~20bp universal ligation handle]. Note: UMI may be omitted in case of incorporation of a UMI in a split and pool index.

Figure 4 illustrates hybridization of a ligation primer that binds to the universal ligation handle on oligonucleotide label, such that the sticky end needed for ligation of index A is produced.

Figure 5 illustrates split-pool ligation using single-cell hydrogel drops as the basic unit and ligation of Index A, B and [C + PCR primer].
[0073] Figure 6 illustrates staining in bulk with adjacent oligo’s that hybridize to an RNA transcript or single guide RNA (sgRNA) at sites adjacent to each other.

[0074] Figure 7 illustrates single probe detection of an RNA transcript or sgRNA using a single DNA probe that specifically binds to the target transcript.

[0075] Figure 8 illustrates dual probe detection of an RNA transcript or sgRNA using adjacently binding probes that are ligated, such that only dually detection events are amplified.

[0076] Figure 9 illustrates staining with the ligation primer and performing split-pool ligation with an Index A containing a UMI.

[0077] Figure 10 illustrates the generation of an Index A + UMI.

[0078] Figure 11 illustrates measuring protein-protein complexes by performing a restriction enzyme digestion to generate an oligonucleotide containing two UCI and a compatible end for ligation to an index A for split-pool ligation.

[0079] Figure 12 illustrates oligonucleotide structures for measuring protein-protein complexes. Oligo 1: [5' Amino Modifier]-[-6bp spacer]-[PhotoCleavable linker]-[-4bp spacer]-[Illumina PCR primer]-[-21bp UCI]-[-11bp Hybridization sequence 1]. Oligo 2: [5' Amino Modifier]-[-6bp spacer] -[RE site for sticky overhang] - [-21bp UCI]-[-11bp Hybridization sequence 1 complement].

[0080] Figure 13 illustrates measuring protein-RNA complexes using proximity hybridization. The final oligonucleotide to sequence contains the UCI protein, UCI RNA and UMI + USI via split-pool ligation protocol.

[0081] Figure 14 illustrates high throughput single-cell ATAC-seq.

[0082] Figure 15 illustrates high throughput single-cell measuring protein-DNA complexes.

[0083] Figure 16 illustrates staining with an antibody bound to an oligonucleotide label and performing split-pool ligation with an Index C containing a UMI.

[0084] Figure 17 illustrates alternative embodiments of measuring RNA levels.

[0085] Figure 18 illustrates the generation of an Index C + UMI.

[0086] Figure 19 illustrates a brightfield microscopy image showing hydrogel droplet encapsulated cells with magnetic particles embedded into the droplets to enable magnetic separation, aiding in clean up and washing steps in multiple reactions. Greatly enhances automation and therefore throughput.
[0087] Figure 20 illustrates a novel probe for detection of complexes consisting of more than 2 cellular constituents at the same time. The probe includes a Unique Location Identifier (ULI). It can be constructed by rolling circle amplification.

[0088] Figure 21 illustrates the overall scheme to measure the proximity of 3 or more proteins, RNA or DNA molecules. The hybridization sequence of the ligand bound oligo binds to the complementary hybridization site on the ULI probe. By extension, each ligand bound oligo incorporates the same ULI. Restriction enzyme digestion generates a 4bp overhang. Sticky end ligation is used to attach a USI + UMI.

DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS

Overview

[0089] The terms “isolated aggregation of cellular constituents” or “single aggregations of cellular constituents” or “aggregations of cellular constituents” or “aggregations of biologically connected cellular constituents” are used interchangeably and refer to any group of cellular constituents that originate from the same source, that are functionally connected biologically, and that can be isolated individually. Examples may be a cell, an extracellular vesicle, an organelle, or an organized subcomponent thereof. Specific examples may be a nucleus or a mitochondria.

[0090] The term “cellular constituent” refers to any cellular molecule, including but not limited to a protein, nucleic acid, RNA molecule, DNA molecule, or carbohydrate.

[0091] The term “unique molecular identifiers” (UMI) refers to a sequencing linker used in a method that uses molecular tags to detect and quantify unique amplified products. A UMI is used to distinguish effects through a single clone from multiple clones. In preferred embodiments, the amplification is by PCR. A sequencer linker with a random sequence of between 4 and 20 basepairs and an index sequence is added to the 5' end of the template, which is amplified and sequenced. Sequencing allows for high resolution reads, enabling accurate detection of true variants. As used herein, a “true variant” will be present in every amplified product originating from the original clone as identified by aligning all products with a UMI. Each clone amplified will have a different random UMI that will indicate that the amplified product originated from that clone. Background caused by the fidelity of the amplification process can be eliminated because true variants will be present in all amplified products and background representing random error will only be present in single amplification products (See e.g., Islam S. et al., 2014. Nature Methods No:11, 163-166). Not
being bound by a theory, the UMI and UCI’s are designed such that assignment to the
original can take place despite up to 4-7 errors during amplification or sequencing.

[0092] The term “unique constituent identifier” (UCI) refers to any unique nucleotide
sequence linked to a labeling ligand, such that the presence of the sequence indicates the
presence of the cellular constituent that the labeling ligand specifically binds. In an
exemplary embodiment, the UCI is linked to an antibody for a specific cellular constituent. If
the cellular constituent is present in a sample, the antibody will bind and the UCI can be
detected. If the cellular constituent is not present in a sample, the antibody will not bind and
the UCI will not be detected above background. In another exemplary embodiment, the
labeling ligand is an oligonucleotide probe and the cellular constituent is an RNA transcript
molecule complementary to the sequence of the oligonucleotide probe. The sequence of the
oligonucleotide probe may be the UCI or may comprise an additional UCI sequence to
identify the RNA transcript.

[0093] The term “unique source identifier” (USI) refers to a unique nucleotide sequence
that is associated with the nucleic acids from a single cell or single isolated aggregation of
cellular constituents (source), such that upon sequencing a pool of nucleic acid sequences
from more than one cell or isolated aggregation of cellular constituents, the presence of a USI
in the sequenced product indicates that a product originated from a single source. USI may be
used interchangeably with the term “barcode.”

[0094] The term “unique-amplification-identifier” (UAI) refers to a nucleotide sequence
that is only formed only when two or more nucleotide sequences are in close proximity to
each other such that they can be ligated. The UAI can be generated using methods described
for the proximity ligation assay (PLA) or proximity extension assay (PEA) (Fredriksson S, et al. (2002) Protein detection using proximity-dependent DNA ligation assays. Nature
proximity ligation. Proceedings of the National Academy of Sciences of the United States of
proximity extension assays provide sensitive and specific detection of low-abundant proteins
in human blood. Nucleic acids research 39(15): e102). PEA is based on pairs of antibodies
that are linked to oligonucleotides having slight affinity to one another (PEA probes). Upon
target binding the probes are brought in proximity, and the two oligonucleotides are extended
by a DNA polymerase forming the UAI that now acts as a unique surrogate marker for the
specific antigen.
[0095] The terms “sticky end,” “overhang” and “DNA overhang” refer to a double stranded DNA having either a 3’ or 5’ single stranded DNA overhang capable of hybridization to another complementary sticky end or DNA overhang.

[0096] The term “hydrogel” refers to any network of polymer chains that are hydrophilic, and sometimes found as a colloidal gel, in which water is the dispersion medium. Hydrogels are highly absorbent (they can contain over 90% water) natural or synthetic polymeric networks. Hydrogels also possess a degree of flexibility very similar to natural tissue, due to their significant water content. Hydrogel may include polyvinyl alcohol, sodium polyacrylate, acrylate polymers, copolymers with an abundance of hydrophilic groups, agarose, methylcellulose, hyaluronic, and other naturally derived polymers.

[0097] The term “tagmentation” refers to a step in the Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq) as described (See, Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., Greenleaf, W. J., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods 2013; 10 (12): 1213-1218). Specifically, a hyperactive Tn5 transposase loaded in vitro with adapters for high-throughput DNA sequencing, can simultaneously fragment and tag a genome with sequencing adapters. In one embodiment the adapters are compatible with the methods described herein.

[0098] The present invention may also include barcoding. Barcoding may be performed based on any of the compositions or methods disclosed in patent publication WO 2014047561 A1, Compositions and methods for labeling of agents, incorporated herein in its entirety. In one embodiment each labeling ligand has a barcode (UCI). In one embodiment, a sgRNA has a barcode. In one embodiment the UCI is captured on a bead that includes a barcode sequence (USI). Not being bound by a theory, amplified sequences from single cells or isolated aggregations of cellular constituents can be sequenced together and resolved based on the barcode associated with each USI. Not being bound by a theory, the presence of a labeling ligand can be determined by sequencing of the UCI.

[0099] The term “barcode” as used herein, refers to any unique, non-naturally occurring, nucleic acid sequence that may be used to identify the originating source of a nucleic acid fragment. Such barcodes may be sequences including but not limited to, TTGAGCCT, AGTGGCTT, CCAGTTAG, ACCACTG, GTATAACA or CAGGAGCC. Although it is not necessary to understand the mechanism of an invention, it is believed that the barcode sequence provides a high-quality individual read of a barcode associated with a viral vector,
labeling ligand, shRNA, sgRNA or cDNA such that multiple species can be sequenced together.

DNA barcoding is also a taxonomic method that uses a short genetic marker in an organism's DNA to identify it as belonging to a particular species. It differs from molecular phylogeny in that the main goal is not to determine classification but to identify an unknown sample in terms of a known classification. Kress et al., “Use of DNA barcodes to identify flowering plants” Proc. Natl. Acad. Sci. U.S.A. 102(23):8369-8374 (2005). Barcodes are sometimes used in an effort to identify unknown species or assess whether species should be combined or separated. Koch H., “Combining morphology and DNA barcoding resolves the taxonomy of Western Malagasy Liotrigona Moure, 1961” African Invertebrates 51(2): 413-421 (2010); and Seberg et al., “How many loci does it take to DNA barcode a crocus?” PLoS One 4(2):e4598 (2009). Barcoding has been used, for example, for identifying plant leaves even when flowers or fruit are not available, identifying the diet of an animal based on stomach contents or feces, and/or identifying products in commerce (for example, herbal supplements or wood). Soininen et al., “Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures” Frontiers in Zoology 6:16 (2009).

It has been suggested that a desirable locus for DNA barcoding should be standardized so that large databases of sequences for that locus can be developed. Most of the taxa of interest have loci that are sequencable without species-specific PCR primers. CBOL Plant Working Group, “A DNA barcode for land plants” PNAS 106(31):12794-12797 (2009). Further, these putative barcode loci are believed short enough to be easily sequenced with current technology. Kress et al., “DNA barcodes: Genes, genomics, and bioinformatics” PNAS 105(8):2761-2762 (2008). Consequently, these loci would provide a large variation between species in combination with a relatively small amount of variation within a species. Lahaye et al., “DNA barcoding the floras of biodiversity hotspots” Proc Natl Acad Sci USA 105(8):2923-2928 (2008).

DNA barcoding is based on a relatively simple concept. For example, most eukaryote cells contain mitochondria, and mitochondrial DNA (mtDNA) has a relatively fast mutation rate, which results in significant variation in mtDNA sequences between species and, in principle, a comparatively small variance within species. A 648-bp region of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene was proposed as a potential ‘barcode’. As of 2009, databases of COI sequences included at least 620,000 specimens from

[0102] Software for DNA barcoding requires integration of a field information management system (FIMS), laboratory information management system (LIMS), sequence analysis tools, workflow tracking to connect field data and laboratory data, database submission tools and pipeline automation for scaling up to eco-system scale projects. Genious Pro can be used for the sequence analysis components, and the two plugins made freely available through the Moorea Biocode Project, the Biocode LIMS and Genbank Submission plugins handle integration with the FIMS, the LIMS, workflow tracking and database submission.

[0104] The invention provides a method for preparing uniquely barcoded particles. Unique barcode sequences may be generated by a split pool method. The split pool method may include sticky end ligation. Sticky end ligation may include a sticky end ligation handle and separate indexes containing unique sequences capable of hybridizing to a sticky end (see examples). The sticky end may comprise a ssDNA overhang. The overhang may be 2, 3, 4, 5, 6, 7, 8, preferably 4 bases. The overhang may be generated by a restriction enzyme. Each index may contain a plurality of unique sequences. Each index may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, preferably 192 sequences. In one embodiment there are 2, 3, 4, preferably 3 indexes. A unique barcode sequence is generated by ligation of the first index to the ligation handle, splitting and pooling of the ligated samples, and then addition of the next index also containing sticky ends. The last index preferably has a sticky end for ligation to the previous index. The last index may advantageously include a primer sequence for priming of PCR. Methods of split pooling have been described. In one embodiment the ligation handle is digested with a restriction enzyme to produce a four base overhang. In another embodiment, a ligation primer is hybridized to the ligation handle to generate an at least 4 base overhang that is complementary to an index in the split pool method.

[0105] In one exemplary embodiment, the hydrogel particles or polymer matrices are split into pools, each pool containing a unique index A and each ligation handle is ligated to a
sequence in index A. All particles are then pooled and re-split into new pools containing a unique index B. After ligation, all of the particles are pooled again and re-split into new pools containing a unique index C. If each index has 100 unique sequences and for each cycle the particles are split into 100 pools each containing a unique sequence, then after 3 cycles of split and pool ligation, the barcode on any given particle possess the same one of $100^3 = 1,000,000$ possible barcodes, but different particles have different sequences.

[0106] In another embodiment, single cell or single isolated aggregation of cellular constituent analysis is performed by digital polymerase chain reactions (PCR), e.g., Fluidigm C. Digital polymerase chain reaction (digital PCR, DigitalPCR, dPCR, or dePCR) is a refinement of conventional polymerase chain reaction methods that can be used to directly quantify and clonally amplify nucleic acids including DNA, cDNA or RNA. The key difference between dPCR and traditional PCR lies in that PCR carries out one reaction per single sample and dPCR carries out a single reaction within samples separated into a large number of partitions wherein the reactions are carried out in each partition individually. A sample is partitioned so that individual nucleic acid molecules within the sample are localized and concentrated within many separate regions. The capture or isolation of individual nucleic acid molecules may be effected in micro well plates, capillaries, the dispersed phase of an emulsion, and arrays of miniaturized chambers, as well as on nucleic acid binding surfaces.

[0107] In a preferred embodiment, single cell or single aggregation of cellular constituent analysis is performed using microfluidics. Microfluidics involves micro-scale devices that handle small volumes of fluids. Because microfluidics may accurately and reproducibly control and dispense small fluid volumes, in particular volumes less than 1 μl, application of microfluidics provides significant cost-savings. The use of microfluidics technology reduces cycle times, shortens time-to-results, and increases throughput. Furthermore, incorporation of microfluidics technology enhances system integration and automation. Microfluidic reactions are generally conducted in microdroplets. The ability to conduct reactions in microdroplets depends on being able to merge different sample fluids and different microdroplets. See, e.g., US Patent Publication No. 20120219947 and PCT publication No.WO2014085802 A1.

[0108] Droplet microfluidics offers significant advantages for performing high-throughput screens and sensitive assays. Droplets allow sample volumes to be significantly reduced, leading to concomitant reductions in cost. Manipulation and measurement at kilohertz speeds enable up to 10^8 samples to be screened in a single day.
Compartmentalization in droplets increases assay sensitivity by increasing the effective concentration of rare species and decreasing the time required to reach detection thresholds. Droplet microfluidics combines these powerful features to enable currently inaccessible high-throughput screening applications, including single-cell and single-molecule assays. See, e.g., Guo et al., Lab Chip, 2012,12, 2146-2155.

[0110] Single cells or isolated aggregations of cellular constituents may be sorted into separate vessels by dilution of the sample and physical movement, such as pipetting. A machine can control the pipetting and separation. The machine may be a computer controlled robot.

[0111] Microfluidics may also be used to separate the single cells and/or isolated aggregations of cellular constituents. Single cells and/or isolated aggregations of cellular constituents can be separated using microfluidic devices. Microfluidics involves micro-scale devices that handle small volumes of fluids. Because microfluidics may accurately and reproducibly control and dispense small fluid volumes, in particular volumes less than 1 µl, application of microfluidics provides significant cost-savings. The use of microfluidics technology reduces cycle times, shortens time-to-results, and increases throughput. The small
volume of microfluidics technology improves amplification and construction of DNA libraries made from single cells and single isolated aggregations of cellular constituents. Furthermore, incorporation of microfluidics technology enhances system integration and automation.

[0112] Single cells and/or single isolated aggregations of cellular constituents of the present invention may be divided into single droplets using a microfluidic device. The single cells and/or single isolated aggregations of cellular constituents in such droplets may be further labeled with a barcode. In this regard reference is made to Macosko et al., 2015, “ Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets” Cell 161, 1202–1214 and Klein et al., 2015, “ Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells” Cell 161, 1187–1201 all the contents and disclosure of each of which are herein incorporated by reference in their entirety. Not being bound by a theory, the volume size of an aliquot within a droplet may be as small as 1 fL.

[0113] Single cells and/or single aggregations of cellular constituents may be diluted into a physical multi-well plate or a plate free environment. The multi-well assay modules (e.g., plates) may have any number of wells and/or chambers of any size or shape, arranged in any pattern or configuration, and be composed of a variety of different materials. Preferred embodiments of the invention are multi-well assay plates that use industry standard multi-well plate formats for the number, size, shape and configuration of the plate and wells. Examples of standard formats include 96-, 384-, 1536- and 9600-well plates, with the wells configured in two-dimensional arrays. Other formats include single well, two well, six well and twenty-four well and 6144 well plates. Plate free environments of the present invention utilize a single polymerizable gel containing compartmentalized cells and/or isolated aggregations of cellular constituents. In one embodiment, extraction of single cells and/or single isolated aggregations of cellular constituents may be by a mechanical punch. Single cells and/or single isolated aggregations of cellular constituents may be visualized in the gel before a punch.

[0114] In one embodiment, a DNA tag including a protein specific barcode (UCI) is conjugated to detection biomolecules or labeling ligands with high target affinity and low unspecific binding, such as antibodies (Janssen et al., 2013) or nanobodies (Pardon et al., 2014; Theile et al., 2013) or aptamers (Janssen et al., 2013).
In one embodiment, to ensure proper staining of intracellular and cell surface proteins with, for instance, DNA-tagged antibodies, single cells are embedded in hydrogel droplets. Not being bound by a theory, the hydrogel mesh provides a physical framework, chemically incorporates biomolecules and is permeable to macromolecules such as antibodies (Chung et al., 2013). In one embodiment, to further improve permeability and staining efficiency, lipids are cleared (Chung et al., 2013). Not being bound by a theory, the clearance of the lipids and the porosity of the hydrogel allow for more efficient washing and removal of unspecific antibodies. This higher accuracy of measurement is important for the high multiplex measurements and computational inference of regulatory mechanisms.

In one embodiment, cells embedded in a hydrogel mesh can be stained with the DNA-tagged antibodies and washed in bulk before isolating the single cells. Once isolated, a cell specific oligonucleotide barcode (USI) can be introduced before subsequent DNA amplification and library preparation steps. Isolating single cells into individual reaction chambers to perform PCR amplification or a proximity ligation/extension assay (Assarsson et al., 2014) can be achieved at modest throughput either by FACS sorting into multi-well plates or microfluidic capture using the Fluidigm C1 (Shalek et al., 2014).

In one embodiment, for more high throughput processing, a microfluidic chip can be used to capture the hydrogel embedded cells or cellular constituents in nanoliter-sized aqueous droplets (Macosko et al., 2015, “Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets” Cell 161, 1202–1214). In one embodiment, the hydrogel embedded cells or cellular constituents are poisson loaded into microwells (Fan et al., 2015). The aqueous droplets or microwells may be simultaneously loaded with barcoded beads, each of which has oligonucleotides including; a “cell barcode” that is the same across all the primers on the surface of any one bead, but different from the cell barcodes on all other beads; a Unique Molecular Identifier (UMI), different on each primer, that enables sequence reads derived from the same original DNA tag (amplification and PCR duplicates) to be identified computationally (Kivioja et al., 2012); and a capture sequence to bind the oligos (either amplified PCR products or original DNA tags released by proteinase K treatment, or enzymatic/photonic oligo cleavage). Once the beads are loaded, they can be pooled for amplification and library preparation, and sequencing. These beads can take multiple forms, the preferred drop-seq beads are polystyrene, oligo functionalized beads, but alternative beads are possible, such as soft beads (polymer gel based beads), that allow for one on one pairing with cells, as to avoid the poisson loading needed in the described drop-
seq scheme. This reduces the amount of cells one needs, and makes it possible to analyze rare cell types or clinical samples only available in low amounts of cells.

[0118] In one embodiment, the present invention provides for the simultaneous detection of proteins and nucleic acids. Nucleic acids can be reverse cross-linked after separation of discrete polymer matrices into separate wells or droplets. The contents of individual wells or droplets may then be sequenced. In one embodiment, crosslinking is reversed by incubating the cross-linked sample in high salt (approximately 200 mM NaCl) at 65°C for at least 4h.

[0119] In one embodiment, Drop-Seq (Macosko et al., 2015) is used to analyze RNA or DNA in single cells in parallel to the detection of cellular constituents. Drop-Seq is a reverse emulsion, early barcoding method for analyzing 10^4-10^6 cells/experiment at very low cost ($0.06/cell). The Drop-seq method may be used to encapsulate discrete hydrogel matrices in a droplet. The RNA and/or DNA can be reverse cross-linked and the oligonucleotide labels can be removed from the labelling ligand. Capture of RNA, DNA, and oligonucleotide labels on barcoded beads, library preparation, and sequencing is performed as described previously.

[0120] In one embodiment, the detection of proteins or post translational modifications (PTM) is determined by sequencing based readouts. In some embodiments, Immuno-Seq is used when antibodies can be washed out (Niemeyer, C. M., et al., Nat Protoc. 2, 1918-1930 (2007)) and proximity extension assays (PEA) is used when antibodies cannot be washed away (Hammond, M., et al. PLoS One. 7, e40405, (2012); and Stahlberg, A. , et al. Clin Chem. 58, 1682-1691 (2012)). These methods use DNA-sequence based encoding, and are compatible with other genomic readouts (e.g., sgRNA barcodes).

[0121] In another embodiment, the detection of proteins embedded in a hydrogel matrix is determined by FACS. Not being bound by a theory, the encapsulation of cellular constituents in a hydrogel matrix and removing lipids provides for improved binding of antibodies to intracellular targets as compared to regular fixation and permeabilization protocols for FACS alone.

[0122] In one embodiment, PEA methods are used for profiling protein-protein or protein-nucleic acid interactions by, respectively, using antibodies against two protein targets (Leuchowius, K. J., et al. Cytometry A. 75, 833-839 (2009)), or replacing one antibody with an oligonucleotide complementary to a sequence of interest (Gustafsdottir, S. M., et al. Proceedings of the National Academy of Sciences of the United States of America. 104, 3067-3072, (2007)).
[0123] In another aspect, the present invention provides screening methods to determine the effect on protein, post translational modifications and cellular constituents of single cells or isolated aggregations of cellular constituents in response to the perturbation of genes or cellular circuits. Perturbation may be knocking down a gene, increasing expression of a gene, mutating a gene, mutating a regulatory sequence, or deleting non-protein-coding DNA.

[0124] In one embodiment, CRISPR/Cas9 may be used to perturb protein-coding genes or non-protein-coding DNA. CRISPR/Cas9 may be used to knockout protein-coding genes by frameshifts, point mutations, inserts, or deletions. An extensive toolbox may be used for efficient and specific CRISPR/Cas9 mediated knockout as described herein, including a double-nicking CRISPR to efficiently modify both alleles of a target gene or multiple target loci and a smaller Cas9 protein for delivery on smaller vectors (Ran, F. A., et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520, 186-191 (2015)). A genome-wide sgRNA mouse library (10 sgRNAs/gene) may also be used in a mouse that expresses a Cas9 protein. The cells of the mouse can then be analyzed using the methods of the present invention.

[0125] In one embodiment, a CRISPR system may be used to activate gene transcription. A nuclease-dead RNA-guided DNA binding domain, dCas9, tethered to transcriptional repressor domains that promote epigenetic silencing (e.g., KRAB) may be used for "CRISPRi" that represses transcription. To use dCas9 as an activator (CRISPRa), a guide RNA is engineered to carry RNA binding motifs (e.g., MS2) that recruit effector domains fused to RNA-motif binding proteins, increasing transcription. A key dendritic cell molecule, p65, may be used as a signal amplifier, but is not required.

[0126] In one embodiment, perturbation is by deletion of regulatory elements. Non-coding elements may be targeted by using pairs of guide RNAs to delete regions of a defined size, and by tiling deletions covering sets of regions in pools.

[0127] In one embodiment, perturbation of genes is by RNAi. The RNAi may be shRNA’s targeting genes. The shRNA’s may be delivered by any methods known in the art. In one embodiment the shRNA’s may be delivered by a viral vector. The viral vector may be a lentivirus.

[0128] In one embodiment, a CRISPR based pooled screen is used. Perturbation may rely on sgRNA expression cassettes that are stably integrated into the genome. The expressed sgRNA may serve as a molecular barcode, reporting the loss of function of the target in a cell. Alternatively, optimized separate barcodes may be co-expressed with the sgRNA,
should sgRNAs not be ideal as barcodes. Transduction of cells at a higher multiplicity of infection (MOI) or delivering vectors by transfection at a higher MOI would result in any given cell receiving multiple sgRNA’s and allow combinatorial perturbations. In one embodiment, 2, or 3, or 4, or 5, or up to 10 genes, preferably 5-7 genes are perturbed in a single cell. In certain example embodiments, a pooled CRISPR screen such as that disclosed in Datlinger et al. bioRxiv (2016) doi:10.1101/083774 may be used in connection with the devices and methods disclosed herein.

[0129] In one embodiment, recombinant Cas9 protein and sgRNA is delivered simultaneously to cells with nanowires or the recently developed 'CellSqueeze' (Sharei, A., et al. Proceedings of the National Academy of Sciences of the United States of America. 110, 2082-2087, (2013)). Applicants have shown that nanowires can deliver functional proteins, RNA and small molecules alone and in combinations into the cell’s cytoplasm, and do not cause toxicity or inappropriate activation and allow the cells to respond normally to signals (Shalek, A. K., et al. Nano Lett. 12, 6498-6504, (2012); Yosef, N., et al. Nature. 496, 461-468, (2013); and Shalek, A. K., et al. Proceedings of the National Academy of Sciences of the United States of America. 107, 1870-1875, (2010)).

[0130] In one embodiment, hybrid measurements or alternative readouts are measured. The alternative readouts may either be stand alone, or hybrid measurements. One alternative readout may be epigenetic measurements. Not being bound by a theory, when biomolecules with functional groups are formaldehyde fixed and bound to the polymer mesh, and membrane and nuclear lipids are cleared, chromosomal DNA is preserved and is accessible for further interrogation. Epigenetic assays that have been applied to single cells may be combined with a perturbation and protein level readout. Not being bound by a theory, the new layers of information aid in understanding of the regulatory mechanisms underpinning cellular behavior. Histone modifications have been measured at specific gene loci at the single cell level (Gomez et al., 2013). This publication uses ISH-PLA (in situ hybridization (ISH), proximity ligation assay (PLA)). They use a biotin modified ISH probe, by binding with streptavidin and an oligo bound anti-streptavidin antibody. As antibodies against multiple histone modifications are readily available, the PLA scheme is applicable to the present invention. Not being bound by a theory, a histone code based on the combination of a plurality of histone modifications determines gene expression at a given locus. Many histone modifications at many genetic loci can be determined simultaneously by replacing the biotin-streptavidin construct by an ISH probe conjugated to a linker (peptide, DNA or
nanoparticles,...), followed by another DNA barcode reporting on the genetic locus, and including a binding sequence to the oligo conjugated to the histone modification antibody.

[0131] In one embodiment, chromatin accessibility is determined using a single cell ATAC-seq assay. ATAC-seq offers genome-wide chromatin accessibility of regulatory elements, transcription factor binding and nucleosome positioning.

[0132] In one embodiment, DNA methylation analysis is determined. Cytosine methylation analysis has been analyzed at the single cell level (Kantlehner et al., 2011), as has adenine methylation (Lorthongpanich et al., 2013).

[0133] In one embodiment, the spatial organization of chromosomes is determined. The spatial organization of chromosomes has been found to have fundamental effects on gene expression and cellular function. Single cell measurements (Hi-C) have revealed extensive cell-to-cell heterogeneity in chromosome structure (Nagano et al., 2013). This method can be incorporated into the present invention.

[0134] In one embodiment, protein-protein interactions are measured. In addition to assessing presence and abundance of individual proteins, assays such as Proximity Extension Assay (PEA) allow for assaying the proximity of two proteins. In particular, the present invention allows for probing protein-protein interactions by designing pairs of antibodies for the interacting proteins of interest, such that the oligos conjugated to these antibodies have a binding region, which only bind when the two proteins are in near proximity, and therefore only PCR amplify in this case.

[0135] In one embodiment, protein-DNA interaction measurements are determined. Similar to the modified ISH-PLA described herein, instead of probing histone modifications, one could probe protein (transcription factor) proximity to many specific genetic loci, in a multiplex fashion.

[0136] In one embodiment, fluorescent in situ hybridization methods are used in the present invention. The present invention allows a combined approach where cells can be fluorescently labeled by methods known in the art, and cells of interest can be selected for downstream profiling of cellular constituents. In addition, the assays of the present invention can be combined with in situ hybridization methods such as RNA and DNA FISH.

[0137] In another embodiment, the gelled and cleared cells offer a platform in which any biological agent that is able to be detected by a high affinity and specific counterpart or ligand that can directly or indirectly be conjugated to a DNA molecule could be detected and quantified using the methods of the present invention.
[0138] Releasing the oligo’s to be sequenced from their antibody can take a multitude of forms; i.e. in one embodiment, oligo’s could be released from their antibodies by digesting all proteins (for instance proteinase K), alternatively, photo-cleavable linkers could be used, or restriction sites could be included in the oligo sequence to allow for enzymatic restriction and release. In another embodiment, the oligo can stay bound to the antibody, and in situ amplified (i.e. either by PCR, rolling circle amplification or T7 polymerase amplification) and the products of this reaction could be captured and sequenced.

[0139] Similarly, capturing the released oligo’s could take a number of forms: in a drop based approach, beads can be loaded with capture oligo’s as described herein. Microwells could either be loaded with beads, or their surface could be functionalized with capture oligos from which further amplification could take place. Alternatively, in the scenario where drops are sorted into multiwell plates, or microfluidic reaction chambers such as the Fluidigm C1 system, oligos can be amplified linearly or exponentially, and cellular barcodes and library adapters can be added on during these amplification steps.

[0140] Many different assays have been developed for oligo-barcode based detection of proteins (Janssen et al., 2013) and may be used in the present invention.

[0141] In one embodiment, cells are fixed and monomer infused before capturing them in a droplet. Alternatively, cells or aggregations of constituents are co-flowed with a lysis/monomer solution into a larger diameter drop. In this embodiment, biomolecules from a single cell or isolated aggregation of constituents are spread over a larger volume, which with similar polymer density could increase accessibility for staining.

[0143] Mention is also made of US application 62/091,455, filed, 12-Dec-14, PROTECTED GUIDE RNAs (PGRNAs); US application 62/096,708, 24-Dec-14, PROTECTED GUIDE RNAs (PGRNAs); US application 62/091,462, 12-Dec-14, DEAD GUIDes FOR CRISPR TRANSCRIPTION FACTORS; US application 62/096,324, 23-Dec-14, DEAD GUIDes FOR CRISPR TRANSCRIPTION FACTORS; US application 62/091,456, 12-Dec-14, ESCORTED AND FUNCTIONALIZED GUIDes FOR CRISPR-CAS SYSTEMS; US application 62/091,461, 12-Dec-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR GENOME EDITING AS TO HEMATOPOETIC STEM CELLS (HSCs); US application 62/094,903, 19-Dec-14, UNBIASED IDENTIFICATION OF DOUBLE-STRAND BREAKS AND GENOMIC REARRANGEMENT BY GENOME-WISE INSERT CAPTURE SEQUENCING; US application 62/096,761, 24-Dec-14, ENGINEERING OF SYSTEMS, METHODS AND OPTIMIZED ENZYME AND GUIDE SCAFFOLDS FOR SEQUENCE MANIPULATION; US application 62/098,059, 30-Dec-14, RNA-TARGETING SYSTEM; US application 62/096,656, 24-Dec-14, CRISPR HAVING OR ASSOCIATED WITH DESTABILIZATION DOMAINS; US application 62/096,697,
24-Dec-14, CRISPR HAVING OR ASSOCIATED WITH AAV; US application 62/098,158, 30-Dec-14, ENGINEERED CRISPR COMPLEX INSERTIONAL TARGETING SYSTEMS; US application 62/151,052, 22-Apr-15, CELLULAR TARGETING FOR EXTRACELLULAR EXOSOMAL REPORTING; US application 62/054,490, 24-Sep-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TARGETING DISORDERS AND DISEASES USING PARTICLE DELIVERY COMPONENTS; US application 62/055,484, 25-Sep-14, SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; US application 62/087,537, 4-Dec-14, SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; US application 62/054,651, 24-Sep-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR MODELING COMPETITION OF MULTIPLE CANCER MUTATIONS IN VIVO; US application 62/067,886, 23-Oct-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR MODELING COMPETITION OF MULTIPLE CANCER MUTATIONS IN VIVO; US application 62/054,675, 24-Sep-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS IN NEURONAL CELLS/TISSUES; US application 62/054,528, 24-Sep-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS IN IMMUNE DISEASES OR DISORDERS; US application 62/055,454, 25-Sep-14, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TARGETING DISORDERS AND DISEASES USING CELL PENETRATION PEPTIDES (CPP); US application 62/055,460, 25-Sep-14, MULTIFUNCTIONAL-CRISPR COMPLEXES AND/OR OPTIMIZED ENZYME LINKED FUNCTIONAL-CRISPR COMPLEXES; US application 62/087,475, 4-Dec-14, FUNCTIONAL SCREENING WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; US application 62/055,487, 25-Sep-14, FUNCTIONAL SCREENING WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; US application 62/087,546, 4-Dec-14, MULTIFUNCTIONAL CRISPR COMPLEXES AND/OR OPTIMIZED ENZYME LINKED FUNCTIONAL-CRISPR COMPLEXES; and US application 62/098,285, 30-Dec-
14. CRISPR MEDIATED IN VIVO MODELING AND GENETIC SCREENING OF TUMOR GROWTH AND METASTASIS.

[0144] Each of these patents, patent publications, and applications, and all documents cited therein or during their prosecution ("appln cited documents") and all documents cited or referenced in the appln cited documents, together with any instructions, descriptions, product specifications, and product sheets for any products mentioned therein or in any document therein and incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. All documents (e.g., these patents, patent publications and applications and the appln cited documents) are incorporated herein by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.

[0145] Also with respect to general information on CRISPR-Cas Systems, mention is made of the following (also hereby incorporated herein by reference):

• Genome engineering using the CRISPR-Cas9 system. Ran, FA., Hsu, PD., Wright, J., Agarwala, V., Scott, DA., Zhang, F. Nature Protocols Nov;8(11):2281-308 (2013-B);
• Crystal structure of cas9 in complex with guide RNA and target DNA. Nishimatsu, H., Ran, FA., Hsu, PD., Konermann, S., Shehata, SI., Dohmae, N., Ishitani, R., Zhang, F., Nureki, O. Cell Feb 27, 156(5):935-49 (2014);

each of which is incorporated herein by reference, may be considered in the practice of the instant invention, and discussed briefly below:

[0146] Cong et al. engineered type II CRISPR-Cas systems for use in eukaryotic cells based on both Streptococcus thermophilus Cas9 and also Streptococcus pyogenes Cas9 and demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage of DNA in human and mouse cells. Their study further showed that Cas9 as converted into a nicking enzyme can be used to facilitate homology-directed repair in eukaryotic cells with minimal mutagenic activity. Additionally, their study demonstrated that multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several at endogenous genomic loci sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology. This ability to use RNA to program sequence specific DNA cleavage in cells defined a new class of genome engineering tools. These studies further showed that other CRISPR loci are likely to be transplantable into mammalian cells and can also mediate mammalian genome cleavage. Importantly, it can be envisaged that several aspects of the CRISPR-Cas system can be further improved to increase its efficiency and versatility.

[0147] Jiang et al. used the clustered, regularly interspaced, short palindromic repeats (CRISPR)–associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli. The approach relied on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems. The study reported reprogramming dual-RNA:Cas9 specificity by changing the sequence of short
CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates. The study showed that simultaneous use of two crRNAs enabled multiplex mutagenesis. Furthermore, when the approach was used in combination with recombinaseering, in *S. pneumoniae*, nearly 100% of cells that were recovered using the described approach contained the desired mutation, and in *E. coli*, 65% that were recovered contained the mutation.

[0148] Wang et al. (2013) used the CRISPR/Cas system for the one-step generation of mice carrying mutations in multiple genes which were traditionally generated in multiple steps by sequential recombination in embryonic stem cells and/or time-consuming intercrossing of mice with a single mutation. The CRISPR/Cas system will greatly accelerate the in vivo study of functionally redundant genes and of epistatic gene interactions.

[0149] Konermann et al. (2013) addressed the need in the art for versatile and robust technologies that enable optical and chemical modulation of DNA-binding domains based CRISPR Cas9 enzyme and also Transcriptional Activator Like Effectors.

[0150] Ran et al. (2013-A) described an approach that combined a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. This addresses the issue of the Cas9 nuclease from the microbial CRISPR-Cas system being targeted to specific genomic loci by a guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. The authors demonstrated that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.

[0151] Hsu et al. (2013) characterized SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. The study evaluated >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. The authors that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. The authors further showed that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. Additionally, to
facilitate mammalian genome engineering applications, the authors reported providing a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

[0152] Ran et al. (2013-B) described a set of tools for Cas9-mediated genome editing via non-homologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, the authors further described a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. The protocol provided by the authors experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. The studies showed that beginning with target design, gene modifications can be achieved within as little as 1–2 weeks, and modified clonal cell lines can be derived within 2–3 weeks.

[0153] Shalem et al. described a new way to interrogate gene function on a genome-wide scale. Their studies showed that delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeted 18,080 genes with 64,751 unique guide sequences enabled both negative and positive selection screening in human cells. First, the authors showed use of the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, the authors screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic that inhibits mutant protein kinase BRAF. Their studies showed that the highest-ranking candidates included previously validated genes NF1 and MED12 as well as novel hits NF2, CUL3, TADA2B, and TADA1. The authors observed a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, and thus demonstrated the promise of genome-scale screening with Cas9.

[0154] Nishimasu et al. reported the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and non-complementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying
functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.

[0155] Wu et al. mapped genome-wide binding sites of a catalytically inactive Cas9 (dCas9) from *Streptococcus pyogenes* loaded with single guide RNAs (sgRNAs) in mouse embryonic stem cells (mESCs). The authors showed that each of the four sgRNAs tested targets dCas9 to between tens and thousands of genomic sites, frequently characterized by a 5-nucleotide seed region in the sgRNA and an NGG protospacer adjacent motif (PAM). Chromatin inaccessibility decreases dCas9 binding to other sites with matching seed sequences; thus 70% of off-target sites are associated with genes. The authors showed that targeted sequencing of 295 dCas9 binding sites in mESCs transfected with catalytically active Cas9 identified only one site mutated above background levels. The authors proposed a two-state model for Cas9 binding and cleavage, in which a seed match triggers binding but extensive pairing with target DNA is required for cleavage.

[0156] Platt et al. established a Cre-dependent Cas9 knockin mouse. The authors demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells.

[0157] Hsu et al. (2014) is a review article that discusses generally CRISPR-Cas9 history from yogurt to genome editing, including genetic screening of cells.

[0158] Wang et al. (2014) relates to a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single guide RNA (sgRNA) library.

[0159] Doench et al. created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. The authors showed that optimization of the PAM improved activity and also provided an on-line tool for designing sgRNAs.

[0160] Swiec et al. demonstrate that AAV-mediated SpCas9 genome editing can enable reverse genetic studies of gene function in the brain.

[0161] Konermann et al. (2015) discusses the ability to attach multiple effector domains, e.g., transcriptional activator, functional and epigenomic regulators at appropriate positions on the guide such as stem or tetraloop with and without linkers.
Zetsche et al. demonstrates that the Cas9 enzyme can be split into two and hence the assembly of Cas9 for activation can be controlled.

Chen et al. relates to multiplex screening by demonstrating that a genome-wide in vivo CRISPR-Cas9 screen in mice reveals genes regulating lung metastasis.

Ran et al. (2015) relates to SaCas9 and its ability to edit genomes and demonstrates that one cannot extrapolate from biochemical assays.

Useful in the practice of the instant invention, reference is made to the article entitled BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P., Luc, S., Kurita, R., Nakamura, Y., Fujiwara, Y., Maeda, T., Yuan, G., Zhang, F., Orkin, S.H., & Bauer, D.E. DOI:10.1038/nature15521, published online September 16, 2015, the article is herein incorporated by reference and discussed briefly below:

- Canver et al. describes novel pooled CRISPR-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse BCL11A erythroid enhancers previously identified as an enhancer associated with fetal hemoglobin (HbF) level and whose mouse ortholog is necessary for erythroid BCL11A expression. This approach revealed critical minimal features and discrete vulnerabilities of these enhancers. Through editing of primary human progenitors and mouse transgenesis, the authors validated the BCL11A erythroid enhancer as a target for HbF reinduction. The authors generated a detailed enhancer map that informs therapeutic genome editing.

The present invention also provides for cell handling before hydrogel polymerization. In one embodiment, cells are fixed and infused with polymer monomers in bulk. Cells may then be segregated and polymerization initiated. Segregation can be by any means described herein. In preferred embodiments, segregation is performed by making single cell drops.
[0168] In another embodiment, biochemical, thermal, or optical treatment on chip of individual cells in reverse emulsion droplets is performed. In this embodiment, polymer monomers may be spiked in microfluidically and optionally fixation reagents. Polymerization of the monomers may then be performed. This allows biochemical, thermal, or optical treatments at the single-cell level. Examples include, but are not limited to: lysis, DNA/RNA fragmentation/tagmentation, dosing with drugs, enzymatic reactions, or any perturbation of the sample before fixation and/or anchoring biomolecules to the polymer mesh upon polymerization.

[0169] In one embodiment, the oligonucleotide label may comprise Iso-deoxyguanosine (iso-dG) and 5-methyl iso-dC (iso-dC). Iso-deoxyguanosine forms a Watson-Crick base pair with 5-methyl iso-dC, but has a different type of hydrogen bonding pattern than those observed for the natural base pairs A:T and C:G. Substitution of a iso-dG: 5-Me-iso-dC base pair for a C:G pair increases the Tm of the resulting duplex by ~2 deg C per base pair substitution (Switzer, C., et al., Enzymatic incorporation of a new base pair into DNA and RNA. J. Am Chem. Soc. (1989), 111: 8322-8323; and Horn, T., et al., Hybridization properties of the 5-methyl-isocytidine/isoguanosine base pair in synthetic oligodeoxynucleotides. Tetrahedron Lett. (1995), 36: 2033-2036). Furthermore, since iso-dG does not pair with dC, iso-dG: 5-Me-iso-dC can function as a stable unnatural base pair that can be used to expand the genetic code. The combination of iso-dG’s high selectivity for 5-Me-iso-dC, and the resulting base pair’s high thermodynamic stability, make this modified base particular attractive in embodiments of the present invention.

[0170] In one embodiment, iso-dG:5-Me-iso-dC base pairing is used for molecular recognition. The 5-Me-iso-dC:iso-dG base pair may be incorporated into hybridization assays to enhance probe-target specificity and reduce spurious hybridization to non-target sequences. For example, Collins and co-workers significantly improved the sensitivity of a branched DNA quantitative hybridization assay for detecting the HIV POL sequence by incorporating ~30% 5-Me-iso-dC and iso-dG into the pre-amplifier, branched DNA (bDNA) amplifier and alkaline phosphate probe sequences used in the assay (Collins, M.L., et al. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Res. (1997), 25: 2979-2984). Use of this strategy resulted in a significant reduction in non-specific hybridization of the above three sequence types to non-target nucleic acid sequences, and thus less amplification of background. The limits of detection of the assay were improved 10-fold, from < 500 HIV molecules/mL to < 50
molecules/mL. In preferred embodiments, the present invention utilizes the 5-Me-iso-dC:iso-dG base pair to ensure the correct sequences base pair during hybridization of ligation handle primers and during hybridization of two oligonucleotide labels in proximity assays.

[0171] In another embodiment, iso-dG:5-Me-iso-dC base pairing is used for qPCR and artificially expanded genetic systems. A number of research groups have been working on optimizing PCR amplification on templates containing 5-Me-iso-dC. Such optimization is necessary to enable the full development of artificially expanded genetic systems utilizing an expanded genetic code, thereby allowing for the site-specific incorporation of novel functional components (such as unnatural amino acids) into proteins. In 2004, Johnson and co-workers observed that, by using the Klenow fragment of Taq polymerase (KF-Taq) in PCR, the fidelity of the 5-Me-iso-dC:iso-dG base pair was about 96% per amplification cycle (Johnson, S.C., et al., A third base pair for the polymerase chain reaction: inserting isoC and isoG. Nucleic Acids Res. (2004), 32: 1937-1941). The limit in fidelity is chiefly due to the ability of iso-dG’s 1,2 tautomer to mis-pair with dT. More recently, Sismour and Benner solved this problem by using 2-thio-dT (dT*) in place of dT. dT* pairs with dA, but not with iso-dG (Sismour, A.M.; Benner, S.A. The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res. (2005), 33: 5640-5646). Using this artificial base pair system (5-Me-iso-dC:iso-dG, dA:dT*, dC:dG) with KF-Taq, the fidelity in PCR was increased to about 98% per amplification cycle.

The present invention also provides methods applicable to the study of bulk cells and is not limited to single cells. Moreover, the assays described herein are also amenable to regularly fixed and permeabilized cells (i.e. not using polymerization). The proximity assays described herein may be performed on cells without generating discrete polymer matrices. Additionally, detection of cellular constituents utilizing labeling ligands and a sequencing readout may be used to detect low abundant cellular constituents. Not being bound by a theory, the oligonucleotide label may be amplified and increase the signal as compared to antibody readouts known in the art. Moreover, determination of proteins in relation to open chromatin need not be performed in a polymer matrix.

The present invention provides advantages over prior assays for detecting proteins and post translation modifications (PTM) in single cells or isolated aggregations of cellular constituents. Standard flow cytometry can be used to detect a few proteins/PTMs in greater than 10^6 single cells; and CyTOF (heavy metal labeling with multiplex barcoding) can be used to detect ~30-50 proteins/PTMs in 10^5-10^6 single cells. The present invention provides highly multiplexed, DNA sequencing-based readouts of protein/PTM levels of greater than 100's of proteins/PTMs in greater than 10^9 cells.

The present invention advantageously provides a Massively Combinatorial Perturbation Profiling (MCP) approach. Applicants can perturb vast numbers of combinations of genes, each targeting many circuit components at once. Applicants can use massively-parallel single cell genomics to measure genomic profiles and single cell proteomics to measure protein profiles after each perturbation. Applicants can infer the individual and combinatorial effects at each order, relying on random matrix theory, compressive sensing and kernel learning.

Biological systems are not linear: the combined effect of multiple factors is not simply the sum of their individual effects. This is a direct outcome of the biochemistry underlying molecular biology, from allosteric protein changes to cooperative binding, and is essential for cells to process complex signals. However, it has remained an insurmountable stumbling block to achieving a quantitative and predictive understanding of circuits on a genomic scale, with far-reaching implications for basic and translational science. Thus, the present invention provides a powerful combination by being able to measure transcriptional chromatin, epigenetic and proteomic changes as a function of genetic perturbation at the single cell level.
Combinatorial perturbation analyses have measured important genetic interactions, mainly from growth phenotypes in yeast. Mammalian studies have used ricin susceptibility and cell count phenotypes, but none combined large-scale, combinatorial genetic manipulation with complex, quantitative phenotypes, such as proteomic profiles. The single cell resolution readout of both response and perturbation, across many cells, serves as an improved starting point to unravel the function and interaction of the perturbed genes.

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined in the appended claims.

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES

Example 1

Embodiments of Single-cell Drop-seq for next generation sequencing multiplex protein quantification

Figure 1 shows in step 1 an embodiment where single cells are isolated in droplets that are monomer infused using an aqueous solution in oil emulsion. Step 2 shows the polymerization of the infused monomers to generate a polymer matrix containing a single cell. Step 3 shows the extraction of lipids from the polymer matrix by treatment with SDS. Step 4 shows the binding of antibodies to cellular constituents and the washing out of unbound antibodies. Each antibody specific for a cellular constituent is bound by an oligo that serves as the UCI. Step 5A shows a low-throughput readout that includes the use of FACS to sort the hydrogel drops into a 384 well plate. The oligos are optionally amplified by a proximity extension assay, PCR, or rolling circle amplification. A NGS library is prepared for each well and the samples are sequenced. Step 5B shows a high-throughput readout that includes a restriction site or photocleavable linker or no cleavage site between the antibody and oligo. A second sequence includes a protein specific barcode (UCI), an UMI, and an universal sequence for bead capture. Step 6 shows one embodiment where a bead functionalized with an oligo barcode (USI) and a capturing universal sequence are encapsulated with the discrete polymer matrix in a second droplet containing an enzyme for
cleaving the oligo from the antibody. Step 7 shows release of the oligo bound to the antibody and subsequent capture on the barcoded bead. Step 8 shows pooling of beads from multiple discrete polymer matrices, library prep, and sequencing.

Example 2

Single cells are microfluidically embedded in hydrogel droplets

[0182] The hydrogel mesh provides a physical framework, chemically incorporates biomolecules and is permeable to macromolecules such as antibodies (Chung et al., 2013). Lipids are cleared as described (Chung et al., 2013). Figure 2 A and B shows hydrogel embedded cells that have been fluorescently stained for genomic DNA, the intracellular protein PCNA, and surface marker CD51. In addition, applicants are able to detect protein levels present in the hydrogel encapsulated cell as shown Figure 2C, where a GFP Ki cell line was stained with an Alexa647 anti-GFP antibody, and a spearman correlation of 0.98 is observed by FACS measurement, whereas a BD Cytofix/perm protocol led to a correlation of 0.36. This shows that clearance of the lipids and the porosity of the hydrogel allow for more efficient washing and removal of unspecific antibodies. This higher accuracy of measurement is especially crucial in a high multiplex measurements and computational inference of regulatory mechanisms.

Example 3

Measuring protein levels

[0183] Figures 3 to 5 and 16 describe embodiments of structures of high affinity binding ligands used in the present invention for measuring protein levels. In these examples, an antibody is bound to an oligonucleotide label through a 5' amino modifier. Any linker chemistry known in the art may be used. An exemplary oligonucleotide structure may be: [5' Amino Modifier]-[~6bp spacer]-[PhotoCleavable linker]-[~4bp spacer]-[Illumina PCR primer]-[~8-16bp UMI]-[~21bp UCI]-[~20bp universal ligation handle]. The UMI may be omitted using alternative UMI schemes described herein.

[0184] The first step in measuring protein levels may be to stain polymer matrices in bulk with oligo conjugated antibodies. In a second step, generation of a USI is performed by hybridization of a ligation primer that binds to the universal ligation handle on the oligo and provides the sticky end needed for ligation of index A. Optionally, extension may be performed to generate a dsDNA oligo tag before performing split-pool ligation. In a third step, split-pool ligation using the single-cell hydrogel drops as the basic unit is performed by
ligation on the ligation handle Index A, B and [C + (UMI) + PCR primer]. The UMI may be on any index, as described herein. In a fourth step, sorting is performed to obtain the desired amount of cells to sequence. The oligo is released from the antibody (photocleave/restriction enzyme digestion) and amplified by Illumina PCR, or T7 amplification followed by a few PCR cycles should complexity of PCR libraries be low. In preferred embodiments, a dsDNA oligo is conjugated to the antibody. Not being bound by a theory, the dsDNA oligo is more stable and there is less chance of nonspecific binding. Not being bound by a theory, including the UMI in C index allows for improved cluster detection, such that the first bases for clustering during sequencing are random. Including a dsDNA oligo obviates the need for ‘hybridization of ligation primer’ step.

Example 4

Measuring RNA levels
[0185] Figures 6 to 9 and 17 describe embodiments of structures of high affinity binding ligands used in the present invention for measuring RNA levels. The first step in measuring RNA levels may be to stain polymer matrices in bulk with oligonucleotide sequences that bind to a sgRNA or RNA transcript adjacent to each other. Alternatively, cells may be lysed, followed by hybridization and ligation in droplets before the initiation of polymerization. The acrylic phosphoramidite modification allows for the oligonucleotide to be incorporated into polymer mesh upon polymerization.

[0186] Two alternative embodiments may be used to measure RNA levels. In one embodiment RNA levels are measured by single probe detection. A single DNA probe that specifically binds to target transcript may be used. Additionally, multiple probes binding to different sites on a single transcript may be used. In preferred embodiments, sgRNA’s are detected using a single probe. Not being bound by a theory, sgRNA only needs to be detected significantly above background and not precisely quantified.

[0187] In another embodiment, RNA levels are measured by dual probe detection. Adjacently binding probes are ligated, such that only dually detection events are amplified. This approach reduces noise and obviates the need to wash, so could be done after cell lysis with subsequent polymerization without the need to wash out unbound probes.

[0188] The second step in measuring RNA levels is to stain with a ligation primer as described herein and perform split-pool as described herein. In an alternative embodiment, Index A or C now contains a UMI. Inclusion of the UMI in an index sequence used for generating a USI is applicable to all of the methods described herein. Not being bound by a
theory, including the UMI in the Index avoids unspecific binding that is outside of one’s control due to the random nature of a UMI sequence. As Index A or C+UMI is dsDNA, unspecific binding during staining is unlikely to occur using this approach. In the Index A or C+UMI scheme, there is no UMI in the oligonucleotide label conjugated to the antibody. Therefore, Applicants can conjugate dsDNA oligos and advantageously provide for more stable storage and the elimination of potential off target binding. Moreover, the oligonucleotide label can already include the ‘universal ligation handle’ with a sticky end, eliminating the hybridization step.

[0189] Figure 17 shows how probe 2 is pre-hybridized with a complementary second strand that also already provides overhang for sticky end ligation. Similarly, when staining with a single probe, this is pre-hybridized as well.

Example 5

Generation of Index + UMI

[0190] Figure 10 and 18 describes an exemplary protocol for generating an Index A or C that includes a UMI. The first step is to synthesize ssDNA with the indicated structure. The second step is to hybridize a primer providing a sticky end at 3’ end. The third step is to use DNA polymerase for second strand synthesis. The final step is restriction enzyme digestion to generate the 5’ sticky end.

Example 6

Measuring Protein-protein complexes

[0191] Figures 11 and 12 describe embodiments of an overall scheme for measuring protein-protein complexes. The basic protocol in Figures 11 and 12 utilizes a restriction enzyme digestion coupled to the split-pool ligation protocol described herein. In order to use the Proximity extension Assay described, for each target in a panel, Applicants split an antibody vial into two sets, and label each set with either oligo 1 or oligo 2, such that for each pair of targets, there are complementary hybridization sequences. In step 1, this results in probes that are incompatible, in the case of monoclonal antibodies, 50% of the time. Exemplary, oligonucleotide labels may be:

Oligo 1: [5' Amino Modifier]-[~6bp spacer]-[PhotoCleavable linker]-[~4bp spacer]-[Illumina PCR primer]-[~21bp UCI]-[~11bp Hybridization sequence 1]
Oligo 2: [5' Amino Modifier]-[~6bp spacer] -[RE site for sticky overhang] -[~21bp UCI]-[~11bp Hybridization sequence 1 complement]
[0192] After restriction enzyme digestion and split-pool USI incorporation, the final oligonucleotide label to sequence contains a pair of UCI’s identifying the two proteins in proximity, a UMI and a cellular barcode (Unique source identifier, USI). In preferred embodiments, hybridization length is 9-13 nt. Compared to PEA in solutions, the present invention provides the advantage of the ability to wash away unbound probes, greatly reducing background. Moreover, staining and washing at ~37°C will melt the hybridization sequence, thus enabling to wash out unbound antibodies, and prevent randomly bound oligo pairs.

[0193] In another embodiment, Applicants use polyclonal antibodies, instead of monoclonal, to capture more complexes as the epitope of a monoclonal antibody might be inaccessible due to complex formation.

[0194] The Criteria for restriction enzymes are that they recognize a specific sequence which is not present in any of the oligo’s conjugated to the antibody panel, they generate a 4-7 bp overhang that serves as a sticky end for ligation of USI indices, they have high fidelity, low star activity (preferably a HF factor >500), and the restriction enzyme works in a buffer that will not denature proteins (NEB Cutsmart). Alternatively, instead of proximity extension assays, Applicants use proximity ligation assays that have no hybridization sequence, but ligates DNA that is in proximity.

Example 7

Measuring Protein-RNA complexes

[0195] Figure 13 describes an embodiment of measuring protein-RNA complexes. In this embodiment, all antibodies have an oligo1 format conjugated to them and all RNA probes have the complementary hybridization sequence (i.e., 100% compatible). The final oligo to sequence contains a UCI protein, a UCI RNA and a UMI + USI via the split-pool protocol, thus reporting on protein-rna proximity.

Example 8

High throughput single-cell ATAC-seq

[0196] Figures 14 and 15 describe embodiments of performing single-cell ATAC-seq. Single-cell ATAC-seq detects open chromatin in individual cells. ATAC-seq (assay for transposase-accessible chromatin) identifies regions of open chromatin using a hyperactive prokaryotic Tn5-transposase, which preferentially inserts into accessible chromatin and tags the sites with sequencing adaptors (Buenrostro JD, Giresi PG, Zaba LC, Chang HY,
Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–128). The protocol is straightforward and robust and has become widely popular. Up to this point, ATAC-seq and other methods for the identification of open chromatin have required large pools of cells (Buenrostro, 2013; Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. 2012;488:75–82), meaning that the data collected reflect cumulative accessibility across all cells in the pool. Independent studies have modified the ATAC-seq protocol for application to single cells (scATAC-seq) (Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523:486–90; and Cusanovich DA, Daza R, Adey A, Pliner HA, Christensen L, Gunderson KL, et al. Epigenetics. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2015;348:910–4). These studies provide data on hundreds (Buenrostro, 2015) or thousands (Cusanovich, 2015) of single cells in parallel. Both methods are limited in either the number of cells analyzed or the per-cell coverage. The present invention can be used to isolate chromatin from individual cells in isolated hydrogel matrices, thus allowing for the first time the advantages of both protocols for sc-ATAC. Thus, large numbers of cells may be analyzed and high per-cell coverage achieved. The overall scheme requires temperature controlled microfluidics with microinjection capabilities. The first step requires lysing cells and tagmentation of genomic DNA using the described adapters in discrete reaction vessels. The reaction vessel is preferably a droplet. The droplet or reaction vessel is then infused with monomers of a polymerizable gel and is polymerized. A sticky end is generated and the DNA is extended. A USI is generated by the split-pool ligation method. The UMI is incorporated during USI generation. Amplification by either PCR or T7 amplification is performed and the products are sequenced together.

Example 9

Measuring Protein-DNA complexes

[0197] Figure 15 describes an embodiment of combining single-cell ATAC-seq and the protein methods described herein to measure protein-DNA complexes. In this embodiment, all antibodies can have an oligo 1 format conjugated to them and all genomic DNA has the complementary hybridization sequence (i.e., 100% compatible). After tagmentation and gel polymerization, the polymer matrices are incubated with antibodies as described herein. The
final oligonucleotide label to sequence contains a UCI protein, a genomic DNA sequence and UMI + USI via the split-pool protocol, thus reporting on protein-DNA proximity.

Example 10

Multi-omics measurements

[0198] Importantly, due to the use of identical final steps of each protocol (extend, restriction, split-pool USI + UMI addition) it is possible to combine proteomics measurements with RNA, protein-protein, protein-RNA and protein-DNA measurements, offering a powerful multi-omic measurement platform.

Example 11

Measuring protein complexes consisting of two or more cellular constituents

[0199] Turning to figure 20, Applicants have developed a novel probe that can be used to detect protein complexes including of 2 or more cellular constituents at the same time. In one embodiment, the probe (ULI, Unique Location Identifier) is constructed by synthesizing ssDNA with a restriction enzyme site, followed by a Unique Location Index, a Universal hybridization site, and a spacer. The ssDNA is circularized and amplified by rolling circle amplification. The resulting probe has multiple repeats of the same elements. The probe may have any number of repeats, preferably 3 to 10 repeats. The restriction enzyme site allows the probe to be cleaved into individual segments, as well as allowing for a sticky end that can be used to generate a USI by the split pool ligation method. The ULI is a unique sequence that can be used to distinguish different protein complexes. All cellular constituents in a complex and bound by a labeling ligand comprising an oligonucleotide label that also includes a universal hybridization sequence will hybridize to the same probe. The resulting oligonucleotide label of all of the cellular constituents bound to the same probe will have the same ULI and thus, after sequencing the complexes can be resolved. Figure 21 illustrates an overall scheme to measure the proximity of 3 or more proteins, RNA or DNA molecules. The first step is binding of the hybridization sequence of ligand bound oligo to the complementary hybridization site on the ULI probe. The second step is extension, such that each ligand bound oligo incorporates the same ULI. The third step is a restriction enzyme digestion to generate a 4bp overhang. The fourth step is to perform sticky end ligation to generate a USI + UMI on the oligonucleotide label. The third index used to generate the USI includes a priming site for sequencing or amplification followed by sequencing. Only the top
strand includes the UCI, and PCR fwd and rev primer sites and will thus be exponentially amplified.

Example 12

Protocols

[0200] This protocol is used to prepare the hydrogelled single cells, and is an adaptation of a protocol described previously (doi:10.103/npot.204.123):

Make HM solution (400 mL)

<table>
<thead>
<tr>
<th>1</th>
<th>Mix</th>
<th>For 4%/0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40% wt/vol acrylamide</td>
<td>40 ml</td>
</tr>
<tr>
<td>2</td>
<td>2% (wt/vol) bisacrylamide</td>
<td>10 mL</td>
</tr>
<tr>
<td></td>
<td>10X PBS</td>
<td>40 mL</td>
</tr>
<tr>
<td>3</td>
<td>16% (wt/vol) PFA</td>
<td>100 mL</td>
</tr>
<tr>
<td></td>
<td>Distilled water</td>
<td>210 mL</td>
</tr>
<tr>
<td></td>
<td>0.1% (w/v) ammonium persulfate</td>
<td>VA-044 thermal initiator</td>
</tr>
<tr>
<td>4</td>
<td>Keep reagents on ice</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Make 10 ml aliquots and freeze at -20°C</td>
<td></td>
</tr>
</tbody>
</table>

Make SBC solution

4	Prepare stock of 20% (wt/vol) SDS in H2O (store at RT for weeks)	
	For 4%/0.05%	
	40% wt/vol acrylamide	40 ml
5	Prepare 1M boric acid buffer (pH adjusted to 8.5). 10 g boric acid, 61.83 g NaOH. Dissolve in 700-800 mL, pH 8.5, and Q.S. to 1L. With a little heat is	
6	Freshly prepare clearing buffer by diluting 4&5 five fold in distilled water and combine them	

Procedure

7	Prepare the HM stock solution by thawing frozen vials on ice or in a refrigerator. Gently mix the thawed monomer solution by inverting. Keep all reagents on ice during the whole procedure. CRITICAL STEP Make sure that there is no precipitation floating in the monomer solution; this is an indicator of spontaneous polymerization of the stored monomer solution
8	Incubate the cell in HM (0.5-1k cells/μL)
9	Put samples in coolrack, open cap, and leave in dessicator vacuum for 10
minutes

10. Disconnect vacuum, keep nitrogen just above atmospheric pressure run microfluidic droplet formation whereby microfluidic channel size is adapted to generate droplets slightly larger than the cell size.
11. Use Biorad oil for droplet generation spiked with 0.4% TMED
12. Incubate at 60°C in thermocycler overnight
13. Wash sample twice with SBC buffer for 1 h at room temperature to dialyzed the remaining PFA, initiator and monomer.
14. Passive clearing of hydrogel-embedded tissue by gentle shaking in SBC buffer at 37/60°C for 2-6 hours
15. Wash with boric acid buffer (0.2M/pH 8.5 with 0.1% (vol/vol) Triton X-100) for 1-3 h at 37°C
16. Resuspend cells in PBST (0.1% Triton X in 1X PBS) for 30 min
17. Incubate in antibody/PST solution for 2-6 hours at 37°C, DAP (1ug/ml), can also be added at this step
18. Wash off the antibodies with PBST at 4°C for 2 hours.
19. Samples can be stored in PBST (with 0.01% (wt/vol) sodium azide) at 4°C for up to a week

Oligos are conjugated to the antibodies using the following kit:

Product Name
Antibody-Oligonucleotide All-in-One Conjugation Kit

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-9202-001</td>
<td>Solulink</td>
</tr>
</tbody>
</table>

For the nanobody pilot, Oligo's will be conjugated to nanobodies using a protocol developed by our collaboration Ploegh Lab:
http://www.nature.com/nprot/journal/v8/n9/abs/nprot.2013.102.html

After cells are hydrogelled and stained with oligo-antibodies or oligo-nanobodies, currently we envision 3 methods of processing:

1. multiwell PCR amplification (low throughput)
2. microfluidic encapsulation and oligo capture using beads (high throughput)
3. microwell loading and oligo capture using beads (high throughput)

Option 1

Here Applicants proceed as follows:

antibodies were conjugated to an oligo with the following components:
[Illumina adaptors]-[4-7bp Unique Molecular Identifier (UMI)]-[21bp UCI]-[illumina adaptor]

illumina adaptors are used as in the Illumina 16s protocol (page3):
Hydrogelled cells that are sorted directly into a PCR mix undergo a first PCR amplification with primers binding to the Illumina adaptors.
In a second PCR reaction, Illumina nextera indices, providing a cellular barcode, are used for amplification.
After this PCR reaction, libraries can be pooled and NGS sequenced.

Alternative amplification scheme: Rolling circle amplification

Option 2

Antibodies were conjugated to an oligo with the following components:
[Illumina adaptors]-[21bp protein barcode]-[binding sequence]

Beads are reconstructed and joined with hydrogelled cells as reported in:

or alternatively in:

As mentioned in 'SC_NGS_proteomics.docx', this approach allows for pooling right after the oligo capture phase and pooled library preparation.

Option 3

Similarly load beads described above, but instead of using droplets, we would use microwells such as described in:

10.1126/science.1258367 http://www.sciencemag.org/content/347/6222/1258367.abstract

This protocol is used after cells are hydrogelled, and is an adaptation of the protocol described in:

specifics of assay type: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095192

Reagents 4C
- Incubation Solution: Contains components needed for the incubation reaction
- A-probes: Contains 96 antibody probes labeled with A oligos
- B-probes: Contains 96 antibody probes labeled with B oligos

Reagents -20C
- PEA Solution: Contains components needed for the extension reaction
- PEA Enzyme: For extension of A and B probes which are bound to their target
For pre-amplification of the extension product created by the PEA enzyme
Detection Solution Contains components needed for the detection reaction
Detection Enzyme For qPCR amplification
96-well plate with ready-to-use primers for amplification of extension product
Primer Plate
Interplate Control For normalization between runs
Negative Control For determination of background levels
Incubation Stabilizer For stabilization of the incubation reaction

PEA PROGRAM

<table>
<thead>
<tr>
<th>Step</th>
<th>T [°C]</th>
<th>time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Hot start</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>PCR Cycle</td>
<td>95</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>

Maintain the reaction at 10 °C indef

PEA PCR after 17 cycles, take out control wells, and for single cell wells perform:

<table>
<thead>
<tr>
<th>Step</th>
<th>T [°C]</th>
<th>time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot start</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>PCR Cycle</td>
<td>95</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>

Maintain the reaction at 10 °C indef

BIOMARK PROGRAM

<table>
<thead>
<tr>
<th>step</th>
<th>T [°C]</th>
<th>time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal mix</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>600</td>
</tr>
<tr>
<td>Hotstart</td>
<td>95</td>
<td>300</td>
</tr>
<tr>
<td>PCR Cycle</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

INCUBATION MIX

<table>
<thead>
<tr>
<th>Reagent</th>
<th>per 96well plate [ul]</th>
<th>1/4th of original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation Solution</td>
<td>70</td>
<td>52.5</td>
</tr>
<tr>
<td>Incubation Stabilizer</td>
<td>10</td>
<td>7.5</td>
</tr>
<tr>
<td>A-probes</td>
<td>10</td>
<td>7.5</td>
</tr>
</tbody>
</table>
EXTENTION MIX

<table>
<thead>
<tr>
<th>Reagent</th>
<th>per 96well plate [ul]</th>
<th>~ 1/3rd of original</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Purity Water</td>
<td>3081.5</td>
<td></td>
</tr>
<tr>
<td>PEA Solution</td>
<td>361.2</td>
<td></td>
</tr>
<tr>
<td>PEA</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Enzyme</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>PCR Polymerase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3468</td>
<td></td>
</tr>
</tbody>
</table>

DETECTION MIX

<table>
<thead>
<tr>
<th>Reagent</th>
<th>per 96well plate [ul]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Solution</td>
<td>550</td>
</tr>
<tr>
<td>High Purity Water</td>
<td>230</td>
</tr>
<tr>
<td>Detection Enzyme</td>
<td>7.8</td>
</tr>
<tr>
<td>PCR Polymerase</td>
<td>3.1</td>
</tr>
<tr>
<td>Total</td>
<td>790.9</td>
</tr>
</tbody>
</table>

Day 1

Incubation

1. Thaw samples, vortex and spin down the content at 150 × g, 1 min at room temperature.
2. Thaw the Incubation Stabilizer from the Proseek Multiplex Detection Kit 96×96 box, vortex and spin briefly.
3. Thaw the Interplate Control and Negative Control from the Proseek Multiplex Controls box, vortex and spin briefly.
4. Prepare the *Incubation mix* in a microcentrifuge tube. Vortex and spin each reagent before transfer to the mix.
5. Vortex the *Incubation mix* briefly and spin down the content.
 Add a multi-channel pipette to transfer 3 μL of the *Incubation mix* from the 8-well strip to the bottom of control wells of a 96-well plate by using reverse pipetting. Do not change pipette tips. Name this plate *Incubation Plate*.
6. add remaining 82 ul of incubation mix to hydrogelled mixture
 Add 1 μL of Negative Control to the bottom of each well in position C12, D12 and E12 according to the plate layout in Figure 2.
 Add 1 μL of Interplate Control to the bottom of each well in position F12, G12 and H12.
7. Seal the *Incubation Plate* with an adhesive plastic film. It is important that all wells are properly sealed, especially around the edges to avoid evaporation of samples.
8. Spin down the content at 150 × g, 1 min at room temperature.
9. Incubate the *Incubation Plate* overnight at +2°C to +8°C.
10. incubate the hydrogelled cell-incubation mix mixture while rotating at 37°C for 6h, followed by heavy dilution and 2x 3h of PBST washes at 4°C.
Day 2

Extension

13. Turn on your thermal cycler and activate the heated lid function. Thaw the PEA Solution, vortex and spin briefly. Prepare the Extension mix in a centrifuge tube. Use a freezing block when removing the PEA Enzyme and the PCR Polymerase from -20°C and spin down the content briefly before pipetting the enzymes into the mix.

15. Vortex the Extension mix. Bring the Incubation Plate to room temperature. Spin down the content at 150 × g, 1 min at room temperature.

17. Pour the Extension mix into a multi-channel pipette reservoir. pipette 24 ul of extension mix into 96 well plate, then sort single (hydrogelled) cells into single wells, keep on ice while sorting after sort, take 96ul extension mix for control wells, mix with content of corresponding wells in incubation plate, and reintroduce into original 96 well
Start a timer set for 5 min and transfer 96 µL of Extension mix to each well of the Incubation Plate by using reverse pipetting. Do not change pipette tips, place the tips against the upper parts of the well wall. Make sure the tips never come in contact with the contents of the wells.

Add a new plastic adhesive film to the Incubation Plate. It is important that all wells are properly sealed, especially around the edges to avoid evaporation of samples.

18. Vortex gently and spin down the content at 150 × g, 1 min at room temperature.

Note: Perform steps 19–21 within 5 minutes. After the 5 min, place the Incubation Plate in the thermal cycler and run the PEA program (see section 5.2 for details). The PEA program takes approximately 1 h 40 min.

25. Take out controls and run PEA PCR SC program for the wells with the single cells
Note: If your thermal cycler requires a silicon cover for plates covered with plastic film, please use one to avoid evaporation. Continue with the Detection step or store the Incubation Plate for up to one week at +4°C.

Detection

28. Prepare and prime a 96 96 Dynamic Array IFC according to the manufacturer’s instructions.

29. Thaw the Primer Plate, vortex and spin at 150 × g, 1 min at room temperature. Thaw the Detection Solution, vortex and spin briefly. Prepare the following Detection mix in a microcentrifuge tube. Use a freezing block for the Detection Enzyme and PCR Polymerase and spin down the content briefly before pipetting the enzymes into the mix.

Vortex the Detection mix and spin briefly. Transfer 95 µL of the Detection mix per well to an 8-well strip. Use a multi-channel pipette to transfer 7.2 µL of Detection mix to each well of a new 96-well plate by reverse pipetting. Name this plate Sample Plate.

Remove the Incubation Plate from the thermal cycler, vortex and spin down the contents. Carefully remove the plastic film and transfer 2.8 µL from each well of the Incubation Plate to the Sample Plate.

Seal the Sample Plate with a new plastic adhesive film, vortex and spin at 150 × g, 1 min at room temperature.

Note: For steps 31 and 32, make sure not to leave any inlets empty on the chip. Transfer 5 µL from each well of the Sample Plate to the primed 96 96 Dynamic Array IFC by using reverse pipetting. Change pipette tips after each sample. Samples are loaded into their respective inlets on the right side of the chip according to Figure 3.
See Appendix 1 for a detailed instruction on sample loading.
Gently remove the Primer Plate aluminum sealing to avoid contamination between wells. Transfer 5 µL from each well of the Primer Plate into the inlets on the left side of the chip according to Figure 3 by reverse pipetting. Change pipette tips after each transfer.

Remove any visible bubbles, e.g. with a pipette tip or syringe needle and change between each well.
Load the chip in the Fluidigm IFC Controller HX according to manufacturer’s instructions.
Run the Olink Protein Expression 96×96 Program in the Fluidigm Biomark Reader according to manufacturer’s instructions.

[0201] All publications, patents, and patent applications mentioned herein are incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

[0202] Various modifications and variations of the described methods, pharmaceutical compositions, and kits of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it will be understood that it is capable of further modifications and that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the art are intended to be within the scope of the invention. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known customary practice within the art to which the invention pertains and may be applied to the essential features herein before set forth.
References

CLAIMS

What is claimed is:

1. A method of assaying segregated cellular constituents, comprising:

 (a) admixing at least one isolated aggregation of cellular constituents with monomers of a polymerizable gel;

 (b) polymerizing the gel, to embed the cellular constituents in discrete polymer matrices;

 (c) incubating the cellular constituents embedded in the polymer matrices with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cellular constituents in the polymer matrices, wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the polymer matrix, and the incubation further comprises washing conditions under which unbound labeling ligands will be washed out of the polymer matrix; and

 (d) sequencing the oligonucleotide label, whereby detecting the UCI by sequencing indicates the presence of the target cellular constituent.

2. The method of claim 1, wherein the cellular constituent comprises a protein, RNA transcript, or a DNA molecule.

3. The method of claim 1 or 2, further comprising segregating the discrete polymer matrices comprising the labeled constituents before sequencing in step (d).

4. The method of claim 3, wherein segregating the discrete polymer matrices comprises sorting single discrete matrices into separate reaction vessels.
5. The method of claim 3, wherein segregating the discrete polymer matrices comprises forming discrete unique-identifier-transfer compositions, each comprising the cellular constituents embedded in a discrete polymer matrix and a transfer particle, wherein:

(a) the oligonucleotide label further comprises a capture sequence, and the UCI and capture sequence are together releasably attached to the labeling ligand;

(b) the labelling ligand is bound to the target cellular constituent; and,

(c) the transfer particle comprises:

(i) a capture-binding-sequence having specific binding affinity for the capture sequence attached to the UCI, and,

(ii) a unique source identifier (USI) sequence that is unique to each transfer particle, and the USI preferably comprises 4-15 nucleotides.

6. The method of claim 5, further comprising releasing the UCI from the labeled ligand, under conditions within the unique-identifier-transfer composition so that the released capture sequence binds to the capture-binding-sequence on the transfer particle, thereby transferring the UCI to the transfer particle.

7. The method of claims 1 or 2, further comprising, before sequencing in step (d), generating a USI for each discrete polymer matrix by a split pool ligation method,

wherein the oligonucleotide label further comprises a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary overhang on a first index nucleotide sequence,

wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence,

wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence,

wherein the final index sequence has a single overhang complementary to the preceding index sequence, and
wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence.

8. The method of claim 7, wherein the split pool ligation method comprises:
(a) splitting the pool of discrete polymer matrices into separate pools of polymer matrices, each containing a unique first index sequence;
(b) ligating the first index sequence to the ligation handle;
(c) pooling the discrete polymer matrices;
(d) optionally,
 (i) splitting the pool of discrete polymer matrices into separate pools each containing a unique middle index sequence;
 (ii) ligating the middle index sequence to the first index sequence;
and
 (iii) pooling the discrete polymer matrices;
(e) optionally, repeating step (d) with another middle index sequence;
(f) splitting the pool of discrete polymer matrices into pools containing a unique final index sequence; and
(g) ligating the final index sequence to the preceding index sequence,

whereby each discrete polymer matrix comprises a USI.

9. The method of claim 7, wherein the ligation handle comprises a restriction site for producing an overhang complementary with a first index sequence overhang, and wherein the method further comprises digestion with a restriction enzyme.

10. The method of claim 7, wherein the ligation handle comprises a nucleotide sequence complementary with a ligation primer sequence and wherein the overhang complementary with a first index sequence overhang is produced by hybridization of the ligation primer to the ligation handle.
11. The method of any one of claims 1 to 10, wherein the UCI comprises 4 to 30 nucleotides, or 7 to 30 nucleotides, or about 21 nucleotides.

12. The method of any one of claims 1 to 11, wherein the oligonucleotide label further comprises a unique molecular identifier (UMI) sequence.

13. The method of any one of claims 7 to 11, wherein either the first, middle, or final index sequence further comprises a unique molecular identifier (UMI) sequence.

14. The method of claims 12 or 13, wherein the UMI comprises 4-20 nucleotides.

15. The method of claim 14, wherein the UMI comprises 8 to 16 nucleotides.

16. The method of any one of claims 1 to 15, wherein the isolated aggregation of cellular constituents is a cell, an extracellular vesicle, an organelle, or an organized subcomponent thereof.

17. The method of any one of claims 1 to 16, wherein the sequencing comprises combining a primer having a unique source identifier (USI) sequence with UCI, so that the USI and UCI sequences are sequenced together, and the USI preferably comprises 20 to 120 nucleotides.

18. The method of any one of claims 1 to 17, wherein the step of admixing the isolated aggregation of cellular constituents with monomers is carried out in an aqueous aliquot or in a droplet formed by an aqueous solution in oil emulsion.

19. The method of any one of claims 1 to 18, wherein the polymer matrix is a hydrogel.

20. The method of any one of claims 1 to 19, comprising a multiplex assay with a plurality of labeling ligands, each labeling ligand have a distinct UCI.

21. The method of any one of claims 1 to 20, wherein the labeling ligand is non-covalently bound to the target cellular constituent.

22. The method of any one of claims 5 to 21, further comprising pooling the oligonucleotide labels comprising a USI from a plurality of polymer matrices and sequencing the pooled UCI sequences and USI sequences.
23. The method of any one of claims 12 to 21, further comprising pooling the oligonucleotide labels comprising a USI and UMI from a plurality of polymer matrices and sequencing the pooled UCI sequences, USI sequences, and UMI sequences.

24. The method of any one of claims 1 to 23, further comprising washing the cellular constituents embedded in the polymer matrices to remove selected cellular components from the polymer matrices before incubating the cellular constituents with the labeling ligand.

25. The method of claim 24, wherein the washing comprises treating the cellular constituents embedded in the polymer matrices with a detergent so as to remove lipids from the polymer matrices before incubating the cellular constituents with the labeling ligand.

26. The method of any one of claims 1 to 25, further comprising quantitating the relative amount of the UCI sequence associated with a first aggregation of cellular constituents to the amount of the same UCI sequence associated with a second aggregation of cellular constituents, whereby the relative differences of a cellular constituent between aggregations of cellular constituents are determined.

27. The method of any one of claims 1 to 26, wherein the labeling ligand is an antibody or an antibody fragment.

28. The method of claim 27, wherein the antibody fragment is a nanobody, Fab, Fab', (Fab')2, Fv, ScFv, diabody, triabody, tetrabody, Bis-scFv, minibody, Fab2, or Fab3 fragment.

29. The method of any one of claims 1 to 26, wherein the labeling ligand is an aptamer.

30. The method of any one of claims 1 to 26, wherein the labeling ligand is a nucleotide sequence complementary to a target sequence.

31. The method of any one of claims 1 to 30, comprising multiplex binding of two or more labeling ligands to each aggregation of cellular constituents.
32. The method of claim 31, wherein at least two distinct labeling ligands comprise complementary oligonucleotide sequences, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the complementary sequences of the distinct ligands to hybridize, forming an amplifiable polynucleotide duplex.

33. The method of claim 32, further comprising amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity.

34. The method of claim 31, wherein at least two distinct labeling ligands comprise oligonucleotide sequences configured to be ligated, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the oligonucleotidesequences of the distinct ligands to ligate, forming an amplifiable polynucleotide duplex.

35. The method of claim 34, further comprising amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity.

36. The method of any of claims 32 to 35, wherein one of the labeling ligands comprises a restriction enzyme site between the labeling ligand and the oligonucleotide label, and wherein the method further comprises treating with a restriction enzyme, whereby the UCI from said labeling ligand is transferred to the oligonucleotide label of the labeling ligand in proximity.

37. The method of any one of claims 1 to 36, further comprising labeling the aggregation of cellular constituents by fluorescent in situ hybridization.

38. The method of any one of claims 1 to 37, wherein the aggregation of cellular constituents is a cell that is a member of a cell population, further comprising transforming or transducing the cell population with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identified (UPI) sequence unique to that construct.
39. The method of claim 38, wherein the genomic sequence-perturbation construct comprises a sequence encoding a guide RNA sequence of a CRISPR-Cas targeting system.

40. The method of claim 38 or 39, further comprising multiplex transformation of the population of cells with a plurality of genomic sequence-perturbation constructs.

41. The method of any one of claims 38 to 40, wherein the UPI sequence is attached to a perturbation-sequence-capture sequence, and the microbeads comprise a perturbation-sequence-capture-binding-sequence having specific binding affinity for the perturbation-sequence-capture sequence attached to the UPI sequence.

42. The method of any one of claims 38 to 40, wherein the UPI sequence is attached to a universal ligation handle sequence, whereby a USI may be generated by split-pool ligation.

43. The method of claims 41 or 42, further comprising multiplex sequencing of the pooled UCI sequences, USI sequences, and UPI sequences.

44. The method of any of claims 1 to 43, wherein the oligonucleotide label comprises a regulatory sequence configured for amplification by T7 polymerase.

45. The method of any of claims 1 to 44, wherein the labeling ligands comprise oligonucleotide sequences configured to hybridize to a transcript specific region.

46. The method of any of claims 1 to 45, wherein the oligonucleotide label further comprises an acrylic phosphoramide modification, whereby the modification allows for incorporation into the polymer matrices upon polymerization.

47. The method of any of the preceding claims, wherein before sequencing the method further comprises:
 (a) amplification of the oligonucleotide label and USI by PCR; or
 (b) T7 amplification of the oligonucleotide label and USI followed by subsequent cDNA generation, and optionally amplification by PCR.
48. The method of any of the preceding claims, wherein the oligonucleotide label further comprises at least one spacer sequence.

49. The method of any of the preceding claims, wherein the oligonucleotide label further comprises a photo-cleavable linker.

50. The method of any of the preceding claims, wherein the oligonucleotide label further comprises a restriction enzyme site between the labeling ligand and UCI.

51. A method of determining open chromatin in individual cells comprising:

 (a) isolating single cells into droplets formed by an aqueous solution in oil emulsions, wherein the droplets further comprise Tn5-transposase loaded with two tagmentation adapters, wherein one adapter is configured for incorporation into a polymer matrix and the second adapter is configured with a ligation handle for generating a USI;

 (b) incubating the droplets to allow cell lysis and tagmentation of open chromatin;

 (c) infusing monomers of a polymerizable gel into the droplets;

 (d) polymerizing the gel, to embed the cellular constituents in discrete polymer matrices;

 (e) optionally incubating the polymer matrices with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cellular constituents in the polymer matrices, wherein each of the one or more labeling ligand comprises a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence and a sequence capable of hybridization to the tagmentation adapter configured for incorporation into a polymer matrix, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the polymer matrix and the oligonucleotide label will hybridize to said tagmentation adapter, and wherein the incubation further comprises washing conditions under which unbound labeling ligands will be washed out of the polymer matrix; and
(f) extending the genomic DNA and adapter DNA, whereby a continuous DNA strand is generated comprising the adapters, genomic DNA, and DNA overhang; optionally the oligonucleotide label bound to a labeling ligand;

(g) generating a USI at the DNA overhang by split-pool ligation;

(h) sequencing the continuous DNA strand, whereby open chromatin is determined and optionally the presence of a cellular constituent at a site of open chromatin is determined.

52. A method of measuring RNA levels in individual cells comprising:

 (a) isolating single cells into droplets formed by an aqueous solution in oil emulsions, wherein the droplets comprise at least one labeling ligands specific for binding at one or more target RNA transcripts, wherein the labeling ligands are configured for incorporation into a polymer matrix and comprise a ligation handle for generating a USI;

 (b) lysing the cells in the droplets under conditions wherein the labeling ligands will bind to the target RNA transcripts;

 (c) injecting monomers of a polymerizable gel into the droplets;

 (d) polymerizing the gel, to embed the labeling ligands in discrete polymer matrices;

 (e) optionally, staining the discrete polymer matrices with at least one additional labeling ligand;

 (f) generating a USI by split-pool ligation; and

 (g) sequencing the resulting DNA, whereby RNA levels and optionally protein levels are determined in single cells.
53. The method of claim 52, wherein the droplets comprise at least one pair of labeling ligands specific for binding at adjacent sites of one or more target RNA transcripts, wherein each pair of labeling ligands comprises one labeling ligand configured for incorporation into a polymer matrix and one labeling ligand comprising a ligation handle for generating a USI, and wherein the method further comprises injecting a ligation reaction buffer comprising a ligase that is configured to allow ligation of the pair of labeling ligands if they are within proximity.

54. A method of assaying segregated cellular constituents, comprising:
 (a) fixing and permeabilizing at least one cell;
 (b) incubating the fixed and permeablized cell(s) with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cell(s), wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the cell(s), and the incubation further comprises washing conditions under which unbound labeling ligands will be washed from the cell(s);
 (c) admixing the cell(s) with monomers of a polymerizable gel;
 (d) isolating single cells into droplets formed by an aqueous solution in oil emulsions;
 (e) polymerizing the gel, to embed the labeling ligands in discrete polymer matrices;
 (f) optionally, staining the discrete polymer matrices with at least one additional labeling ligand;
 (g) generating a USI by split-pool ligation; and
 (h) sequencing the oligonucleotide label, whereby detecting the UCI by sequencing indicates the presence of the target cellular constituent.
55. The method of claim 54, wherein the labeling ligands in step (b) comprise at least one pair of labeling ligands specific for binding at adjacent sites of one or more target RNA transcripts, wherein each pair of labeling ligands comprises one labeling ligand configured for incorporation into a polymer matrix and one labeling ligand comprising a ligation handle for generating a USI, and wherein the method further comprises ligating the pair of labeling ligands if they are within proximity after binding to the target RNA transcripts.

56. The method of any of the preceding claims, wherein the polymer matrices further comprise magnetic particles.

57. A method of assaying segregated cellular constituents, comprising:
 (a) fixing and permeabilizing at least one cell;
 (b) incubating the fixed and permeabilized cell(s) with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cell(s), wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the cell(s), and the incubation further comprises washing conditions under which unbound labeling ligands will be washed from the cell(s); and
 (c) sequencing the oligonucleotide label, whereby detecting the UCI by sequencing indicates the presence of the target cellular constituent.

58. The method of claim 57, wherein the cellular constituent comprises a protein, RNA transcript, or a DNA molecule.

59. The method of claim 57 or 58, further comprising segregating the cell(s) before sequencing in step (c).

60. The method of claim 59, wherein segregating the cell(s) comprises sorting the single cell(s) into a separate reaction vessel(s).
61. The method of claim 59, wherein segregating the cell(s) comprises forming discrete unique-identifier-transfer compositions, each comprising a cell and a transfer particle, wherein:

(a) the oligonucleotide label further comprises a capture sequence, and the UCI and capture sequence are together releasably attached to the labeling ligand;
(b) the labelling ligand is bound to the target cellular constituent; and,
(c) the transfer particle comprises:
 (i) a capture-binding-sequence having specific binding affinity for the capture sequence attached to the UCI, and,
 (ii) a unique source identifier (USI) sequence that is unique to each transfer particle, and the USI preferably comprises 4-15 nucleotides.

62. The method of claim 61, further comprising releasing the UCI from the labeled ligand, under conditions within the unique-identifier-transfer composition so that the released capture sequence binds to the capture-binding-sequence on the transfer particle, thereby transferring the UCI to the transfer particle.

63. The method of claims 57 or 58, further comprising, before sequencing in step (c), generating a USI for each cell(s) by a split pool ligation method,

wherein the oligonucleotide label further comprises a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary overhang on a first index nucleotide sequence,

wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence,

wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence,

wherein the final index sequence has a single overhang complementary to the preceding index sequence, and
wherein the first, middle, and final index sequences are selected from a plurality of
unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of
unique sequence.

64. The method of claim 63, wherein the split pool ligation method comprises:
 (a) splitting the pool of cell(s) into separate pools of cell(s), each
 containing a unique first index sequence;
 (b) ligating the first index sequence to the ligation handle;
 (c) pooling the cell(s);
 (d) optionally,
 (i) splitting the pool of cell(s) into separate pools each containing
 a unique middle index sequence;
 (ii) ligating the middle index sequence to the first index sequence;
 and
 (iii) pooling the cell(s);
 (e) optionally, repeating step (d) with another middle index sequence;
 (f) splitting the pool of cell(s) into pools containing a unique final index
 sequence; and
 (g) ligating the final index sequence to the preceding index sequence,
 whereby each cell comprises a USI.

65. The method of claim 63, wherein the ligation handle comprises a restriction
 site for producing an overhang complementary with a first index sequence overhang, and
 wherein the method further comprises digestion with a restriction enzyme.

66. The method of claim 63, wherein the ligation handle comprises a nucleotide
 sequence complementary with a ligation primer sequence and wherein the overhang
 complementary with a first index sequence overhang is produced by hybridization of the
 ligation primer to the ligation handle.

67. The method of any one of claims 57 to 66, wherein the UCI comprises 4 to 30
 nucleotides, or 7 to 30 nucleotides, or about 21 nucleotides.

68. The method of any one of claims 57 to 67, wherein the oligonucleotide label
 further comprises a unique molecular identifier (UMI) sequence.
69. The method of any one of claims 63 to 66, wherein either the first, middle, or final index sequence further comprises a unique molecular identifier (UMI) sequence.

70. The method of claims 68 or 69, wherein the UMI comprises 4-20 nucleotides.

71. The method of claim 70, wherein the UMI comprises 8 to 16 nucleotides.

72. The method of any one of claims 57 to 71, wherein the sequencing comprises combining a primer having a unique source identifier (USI) sequence with UCI, so that the USI and UCI sequences are sequenced together, and the USI preferably comprises 20 to 120 nucleotides.

73. The method of any one of claims 57 to 72, comprising a multiplex assay with a plurality of labeling ligands, each labeling ligand have a distinct UCI.

74. The method of any one of claims 57 to 73, wherein the labeling ligand is non-covalently bound to the target cellular constituent.

75. The method of any one of claims 61 to 74, further comprising pooling the oligonucleotide labels comprising a USI from a plurality of cells and sequencing the pooled UCI sequences and USI sequences.

76. The method of any one of claims 68 to 74, further comprising pooling the oligonucleotide labels comprising a USI and UMI from a plurality of cells and sequencing the pooled UCI sequences, USI sequences, and UMI sequences.

77. The method of any one of claims 57 to 76, further comprising quantitating the relative amount of the UCI sequence associated with a first cell to the amount of the same UCI sequence associated with a second cell, whereby the relative differences of a cellular constituent between cell(s) are determined.

78. The method of any one of claims 57 to 77, wherein the labeling ligand is an antibody or an antibody fragment.

79. The method of claim 78, wherein the antibody fragment is a nanobody, Fab, Fab', (Fab')2, Fv, ScFv, diabody, triabody, tetrabody, Bis-scFv, minibody, Fab2, or Fab3 fragment.
80. The method of any one of claims 57 to 77, wherein the labeling ligand is an aptamer.

81. The method of any one of claims 57 to 77, wherein the labeling ligand is a nucleotide sequence complementary to a target sequence.

82. The method of any one of claims 57 to 81, comprising multiplex binding of two or more labeling ligands to each aggregation of cellular constituents.

83. The method of claim 82, wherein at least two distinct labeling ligands comprise complementary oligonucleotide sequences, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the complementary sequences of the distinct ligands to hybridize, forming an amplifiable polynucleotide duplex.

84. The method of claim 83, further comprising amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity.

85. The method of claim 82, wherein at least two distinct labeling ligands comprise oligonucleotide sequences configured to be ligated, so that binding of the labeling ligands to respective target cellular constituents that are in proximity permits the oligonucleotide sequences of the distinct ligands to ligate, forming an amplifiable polynucleotide duplex.

86. The method of claim 85, further comprising amplifying the polynucleotide duplex to provide an amplified sequence that is a detectable signal that target cellular constituents are in proximity.

87. The method of any of claims 83 to 86, wherein one of the labeling ligands comprises a restriction enzyme site between the labeling ligand and the oligonucleotide label, and wherein the method further comprises treating with a restriction enzyme, whereby the UCl from said labeling ligand is transferred to the oligonucleotide label of the labeling ligand in proximity.

88. The method of any one of claims 57 to 87, further comprising labeling the cell(s) by fluorescent in situ hybridization.
89. The method of any one of claims 57 to 88, wherein the cell(s) are a member of a cell population, further comprising transforming or transducing the cell population with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identified (UPI) sequence unique to that construct.

90. The method of claim 89, wherein the genomic sequence-perturbation construct comprises a sequence encoding a guide RNA sequence of a CRISPR-Cas targeting system.

91. The method of claim 89 or 90, further comprising multiplex transformation of the population of cells with a plurality of genomic sequence-perturbation constructs.

92. The method of any one of claims 89 to 91, wherein the UPI sequence is attached to a perturbation-sequence-capture sequence, and the transfer particle comprise a perturbation-sequence-capture-binding-sequence having specific binding affinity for the perturbation-sequence-capture sequence attached to the UPI sequence.

93. The method of any one of claims 89 to 91, wherein the UPI sequence is attached to a universal ligation handle sequence, whereby a USI may be generated by split-pool ligation.

94. The method of claims 92 or 93, further comprising multiplex sequencing of the pooled UCI sequences, USI sequences, and UPI sequences.

95. The method of any of claims 57 to 94, wherein the oligonucleotide label comprises a regulatory sequence configured for amplification by T7 polymerase.

96. The method of any of claims 57 to 95, wherein the labeling ligands comprise oligonucleotide sequences configured to hybridize to a transcript specific region.

97. A method of determining interactions between 2 or more cellular constituents, comprising:
 (a) admixing at least one isolated aggregation of cellular constituents with monomers of a polymerizable gel;
 (b) polymerizing the gel, to embed the cellular constituents in discrete polymer matrices;
(c) incubating the cellular constituents embedded in the polymer matrices with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cellular constituents in the polymer matrices, wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence and a universal hybridization nucleotide sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the polymer matrix, and the incubation further comprises washing conditions under which unbound labeling ligands will be washed out of the polymer matrix;

(d) incubating the polymer matrices with at least one Unique Location Index probe, wherein the probe comprises at least two repeating nucleotide sequences, each repeat comprising a restriction enzyme site, a Unique Location Index (ULI) sequence, and a complementary universal hybridization nucleotide sequence, and wherein the incubation comprises binding conditions under which the universal hybridization sequence will hybridize the complementary universal hybridization sequence;

(c) extending the oligonucleotide label hybridized to the probe;

(f) digestion with a restriction enzyme specific for the site on the probe,

(g) sequencing the oligonucleotide label,

whereby detecting the same ULI with two or more UCI’s indicates that the cellular constituents were interacting.

98. The method of claim 97, wherein the cellular constituent comprises a protein, RNA transcript, or a DNA molecule.

99. The method of claim 97 or 98, wherein the ULI is 4-15 nucleotides.

100. The method of claims 97 to 99, further comprising segregating the discrete polymer matrices comprising the labeled constituents before sequencing in step (g).

101. The method of claims 97 to 100, wherein segregating the discrete polymer matrices comprises sorting single discrete matrices into separate reaction vessels.

102. The method of claims 97 to 99, further comprising, before sequencing in step (g), generating a USI for each discrete polymer matrix by a split pool ligation method,
wherein the restriction site on the ULI probe is a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary overhang on a first index nucleotide sequence,

wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence,

wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence,

wherein the final index sequence has a single overhang complementary to the preceding index sequence, and

wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence.

103. The method of claim 102, wherein the split pool ligation method comprises:

(a) splitting the pool of discrete polymer matrices into separate pools of polymer matrices, each containing a unique first index sequence;

(b) ligating the first index sequence to the ligation handle;

(c) pooling the discrete polymer matrices;

(d) optionally,

(i) splitting the pool of discrete polymer matrices into separate pools each containing a unique middle index sequence;

(ii) ligating the middle index sequence to the first index sequence;

and

(iii) pooling the discrete polymer matrices;

(e) optionally, repeating step (d) with another middle index sequence;

(f) splitting the pool of discrete polymer matrices into pools containing a unique final index sequence; and

(g) ligating the final index sequence to the preceding index sequence,

whereby each discrete polymer matrix comprises a USI.
104. The method of any one of claims 97 to 103, wherein the oligonucleotide label further comprises a unique molecular identifier (UMI) sequence.

105. The method of any one of claims 102 to 103, wherein either the first, middle, or final index sequence further comprises a unique molecular identifier (UMI) sequence.

106. The method of any one of claims 104 or 105, further comprising pooling the oligonucleotide labels comprising a USI, ULI and UMI from a plurality of polymer matrices and sequencing the pooled UCI sequences, USI sequences, ULI sequences, and UMI sequences.

107. The method of any one of claims 97 to 106, wherein the aggregation of cellular constituents is a cell that is a member of a cell population, further comprising transforming or transducing the cell population with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identified (UPI) sequence unique to that construct.

108. A method of determining interactions between 2 or more cellular constituents, comprising:
 (a) fixing and permeabilizing at least one cell;
 (b) incubating the fixed and permeabilized cell(s) with one or more labeling ligands with specific binding affinity for one or more target cellular constituents to produce one or more labeled cell(s), wherein each of the one or more labeling ligands comprise a bound oligonucleotide label comprising a unique constituent identifier (UCI) sequence and a universal hybridization nucleotide sequence, and wherein the incubation comprises binding conditions under which the labeling ligand will bind to the cellular constituent within the cell(s), and the incubation further comprises washing conditions under which unbound labeling ligands will be washed from the polymer cell(s);
 (c) incubating the cell(s) with at least one Unique Location Index probe, wherein the probe comprises at least two repeating nucleotide sequences, each repeat comprising a restriction enzyme site, a Unique Location Index (ULI) sequence, and a complementary universal hybridization nucleotide sequence, and wherein the incubation comprises binding conditions under which the universal hybridization sequence will hybridize to the complementary universal hybridization sequence;
(d) extending the oligonucleotide label hybridized to the probe;
(e) digesting with a restriction enzyme specific for the site on the probe;
and
(f) sequencing the oligonucleotide label,
whereby detecting the same ULI with two or more UCI’s indicates that the cellular constituents were interacting.

109. The method of claim 108, wherein the cellular constituent comprises a protein, RNA transcript, or a DNA molecule.

110. The method of claim 108 or 109, wherein the ULI is 4-15 nucleotides.

111. The method of claims 108 to 110, further comprising segregating the cell(s) comprising the labeled constituents before sequencing in step (f).

112. The method of claims 108 to 111, wherein segregating the cell(s) comprises sorting single discrete matrices into separate reaction vessels.

113. The method of claims 108 to 110, further comprising, before sequencing in step (f), generating a USI for each cell by a split pool ligation method,
wherein the restriction site on the ULI probe is a universal ligation handle (ULH) sequence configured to produce a DNA overhang capable of hybridization to a complementary overhang on a first index nucleotide sequence,
wherein the first index nucleotide sequence comprises an overhang complementary to a final index sequence or optionally a middle index sequence,
wherein the middle index sequence comprises overhangs complementary to the first index sequence and to the final index sequence or optionally to another middle index sequence and final index sequence,
wherein the final index sequence has a single overhang complementary to the preceding index sequence, and
wherein the first, middle, and final index sequences are selected from a plurality of unique sequences comprising compatible DNA overhangs and 10 to 30 base pairs of unique sequence.
114. The method of claim 113, wherein the split pool ligation method comprises:

(a) splitting the pool of cells into separate pools of cells, each containing a unique first index sequence;
(b) ligating the first index sequence to the ligation handle;
(c) pooling the cells;
(d) optionally,
 (i) splitting the pool of cells into separate pools each containing a unique middle index sequence;
 (ii) ligating the middle index sequence to the first index sequence; and
 (iii) pooling the cells;
(e) optionally, repeating step (d) with another middle index sequence;
(f) splitting the pool of cells into pools containing a unique final index sequence; and
 (g) ligating the final index sequence to the preceding index sequence, whereby each cell comprises a USI.

115. The method of any one of claims 108 to 114, wherein the oligonucleotide label further comprises a unique molecular identifier (UMI) sequence.

116. The method of any one of claims 113 or 114, wherein either the first, middle, or final index sequence further comprises a unique molecular identifier (UMI) sequence.

117. The method of any one of claims 115 to 117, further comprising pooling the oligonucleotide labels comprising a USI, ULI and UMI from a plurality of polymer matrices and sequencing the pooled UCI sequences, USI sequences, ULI sequences, and UMI sequences.

118. The method of any one of claims 108 to 117, wherein the cells are a member of a cell population, further comprising transforming or transducing the cell population with one or more genomic sequence-perturbation constructs that perturb a genomic sequence in the cells, wherein each distinct genomic sequence-perturbation construct comprises a unique-perturbation-identified (UPI) sequence unique to that construct.
119. The method of any of the preceding claims, wherein before sequencing the method further comprises:

(a) amplification of the oligonucleotide label by PCR; or
(b) T7 amplification of the oligonucleotide label followed by subsequent cDNA generation, and optionally amplification by PCR.

120. The method of any of the preceding claims, wherein the oligonucleotide label further comprises at least one spacer sequence.

121. The method of any of the preceding claims, wherein the oligonucleotide label further comprises a photocleavable linker.

122. The method of any of the preceding claims, wherein the oligonucleotide label further comprises a restriction enzyme site between the labeling ligand and UCI.

123. The method of any of the preceding claims, wherein the oligonucleotide label comprises one or more iso-dG and/or iso-dC nucleotides.

124. The method of claim 101, wherein the sequence of the oligonucleotide labels for hybridization in a proximity assay or universal hybridization sequences comprise one or more iso-dG and/or iso-dC nucleotides.

125. A method of determining any combination of protein detection, RNA detection, open chromatin detection, protein-protein interactions, protein-RNA interactions, or protein-DNA interactions comprising combining any of the preceding methods.
Single-cell Clarity Drop-seq for NGS multiplex protein quantification

1. Make droplets of cells that have been hydrogel monomer infused, @4C

2. Polymerization

3. Passive SDS micelle lipid extraction

4. Conjugate multiplexed oligo-bound antibodies & wash out unbound antibodies. Oligo serves as protein target barcode

Low-throughput readout

5A. FACS sort hydrogel drops containing cells into 384 well plate → Amplification of oligos options:
- Proximity extension assay (Olink)
- PCR
- RCA → NGS library prep & sequencing

High-throughput readout 1

5B. Split the pool of drops in X wells and sticky end ligate index A's to oligo bound to antibodies

6. Wash away unligated index A's and pool all samples

7. Repeat steps 5B=6 for subsequent indices, including final index that includes UMI + PCR primer site

High-throughput readout 2

5B. Restriction site (or PC linker or nothing) → Sequence B protein specific barcode + universal sequence for bead capture

6. Bead functionalized with Cell-ID oligo barcode, UMI and capturing universal sequence in oligo B → Re-encapsulate hydrogel drop in new drop containing Proteinase K and magnetic bead with barcoded oligos

7. In drops, release sequence B by Proteinase K, restriction enzyme digestion, or photocleavage). Released sequence B binds to capture sequence on bead.

8. As in current Drop-seq, combine isolated beads, and batch process into NGS library prep & sequence

FIG. 1

SUBSTITUTE SHEET (RULE 26)
Single-cell NGS proteomics

FIG. 2A

Single-cell NGS proteomics

FIG. 2B

FACS DATA on HEK293/GFP cell line

Spearman correlation = 0.98

FIG. 2C

SUBSTITUTE SHEET (RULE 26)
5 Amino Modifier (or any linker chemistry)
spacer
Photocleavable linker / restriction enzyme site
spacer + universal PCR priming site
UMI
UCI
Universal ligation handle
ligation primer with sticky end specific to index A

FIG. 4
5' Amino Modifier (or any linker chemistry)

spacer

Photocleavable linker/ restriction enzyme site

spacer+ universal PCR priming site

UMI

UCI

Universal ligation handle

ligation primer with sticky end specific to Index A

FIG. 5
FIG. 7

5' Acrydite modification
spacer
Photoactivatable linker/ restriction enzyme site
universal PCR priming site
transcript specific region

Universal ligation handle
RNA transcript
5' Acrydite modification

spacer

Photocleavable linker/ restriction enzyme site

spacer+ universal PCR priming site

transcript specific region 1

transcript specific region 2

Universal ligation handle

Ligase

RNA transcript

FIG. 8
5' Acrydite modification
spacer
Photocleavable linker/ restriction enzyme site
spacer+ universal PCR priming site
transcript specific region 1

transcript specific region 2
Universal ligation handle
ligation primer with sticky
Index A + UMI
Index B

FIG. 9
1. Synthesize ssDNA with the following structure:

- contains RE site to create 4b sticky end
- Index A
- UMI
- Ligation handle

2. Hybridize primer providing sticky end at 3’ end

- Primer including sticky end overhang

3. DNA polymerase for second strand synthesis

4. Restriction enzyme digestion to generate 5’ sticky end

- contains RE site to create 4b sticky end
- Index A
- UMI
- Ligation handle
- Primer including sticky end overhang

FIG. 10

SUBSTITUTE SHEET (RULE 26)
1. proximity hybridization
2. Extend
3. restriction enzyme digestion generates sticky end
4. split-pool UMI + UMI addition
5. Oligo release
6. Amplification + Sequencing
1. Proximity hybridization

2. RNAs

3. Extend

4. Restriction enzyme digestion

5. Split-pool USI + UMI addition

6. Oligo release

7. Amplification + Sequencing

FIG. 13
2. polymerize hydrogel drop, incorporates genomic DNA into mesh.

4. extend

1. fragmentation of genomic DNA (Tn5)

3. anneal ligation primer, generating sticky end

As previously continue to:

5. split-pool UMI + UMI addition

6. Amplification (TT/PCR) + Sequencing
1. Tagmentation of genomic DNA (Tn5) + polymerize in hydrogel drop

2. Hybridize proximity probes and ligation handle primer (——)

3. Extend

4. Split-pool U5 + UMI addition

5. Amplification + Sequencing

As previously continue to:

FIG. 15

SUBSTITUTE SHEET (RULE 26)
FIG. 17

- 5' Acrydite modification
- spacer
- Photocleavable linker/restriction enzyme site
- spacer+ universal PCR priming site
- transcript specific region 1
- transcript specific region 2
- Universal ligation handle with sticky end for index A
- Index A
- Index B
- Index C + UMI + PCR priming site
- Ligase
- Target RNA transcript

staining probe 1

staining probe 2

hybridize adjacently on target transcript + ligate

sticky end ligation of index A, B and C + UMI + PCR primer site
1. Synthesize ssDNA with the following structure:

- contains RE site to create 4b sticky end
- Index C
- UMI
- PCR primer site

2. Hybridize universal primer

- contains RE site to create 4b sticky end
- index C
- UMI
- PCR primer site
- Primer for second strand synthesis

3. DNA polymerase for second strand synthesis

4. Restriction enzyme digest

- contains RE site to create 4b sticky end
- Index C
- UMI
- PCR primer site
- Primer

FIG. 18
SUBSTITUTE SHEET (RULE 26)
1) Synthesize ssDNA containing:
 - RE site to create 4b sticky end
 - Unique Location index (ULI) randomly generated
 - Universal hybridization site
 - Spacer

2) Circularize using CircLigase

3) Perform Rolling circle amplification

4) isolate linear amplicon and use as staining probe

FIG. 20
1) stain with ULI-probe
2) extend

3) Restriction enzyme digest generates 4bp overhang for sticky end ligation of USI + UMI
4) ligate on index A, B and C + UMI + PCR

5) Release oligo's from ligand and PCR or T7 amplify, each sequence to amplify (top strand) has:
 PCR FWD + UCI + universal hybridization site + ULI + USI + UMI + PCR Rev

FIG. 21

SUBSTITUTE SHEET (RULE 26)