(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(10) International Publication Number WO 2016/138488 A2

- 1 September 2016 (01.09.2016)

 (51) International Patent Classification:
- (21) International Application Number:

PCT/US2016/019949

(22) International Filing Date:

C12Q 1/68 (2006.01)

26 February 2016 (26.02.2016)

(25) Filing Language:

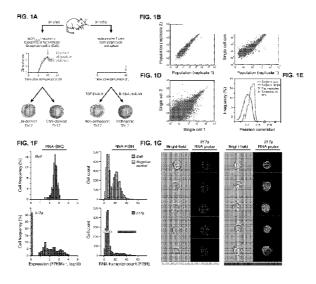
English

(26) Publication Language:

English

(30) Priority Data:

62/176,796 26 February 2015 (26.02.2015) US 62/181,697 18 June 2015 (18.06.2015) US 62/386,073 16 November 2015 (16.11.2015) US


- (71) Applicants: THE BROAD INSTITUTE INC. [US/US]; 415 Main Street, Cambridge, MA 02142 (US). MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; 77 Massachusetts Ave, Cambridge, MA 02142 (US). PRESIDENT AND FELLOWS OF HARVARD COLLEGE [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US). THE BRIGHAM AND WOMEN'S HOSPITAL, INC. [US/US]; 75 Francis Street, Boston, MA 02115 (US). THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 1111 Franklin Street, 12th Floor, Oakland, CA 94607 (US).
- (72) Inventors: REGEV, Aviv; 53 Standish Street #3, Cambridge, MA 02138 (US). KUCHROO, Vijay, K.; 30 Fairhaven Road, Newton, MA 02149 (US). GAUBLOMME, Jellert; Oude Baan 373, 3630 Maasmechelen

(BE). LEE, Youjin; 555 Mission Rock Street, Unit 624, San Francisco, CA 94158 (US). WANG, Chao; c/o The Brigham And Women's Hospital, Inc., 75 Francis Street, Boston, MA 02115 (US). YOSEF, Nir; 1520 Laurel Ave, Richmond, CA 94805 (US). PARK, Hongkun; 17 Hathaway Road, Lexington, MA 02420 (US). KAMINSKI, James; 1919 Curtis Street, Apt 6, Berkeley, CA 94702 (US).

- (74) Agents: KOWALSKI, Thomas J. et al.; Vedder Price P.C., 1633 Broadway, New York, NY 10019 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: T CELL BALANCE GENE EXPRESSION, COMPOSITIONS OF MATTERS AND METHODS OF USE THEREOF

(57) Abstract: This invention relates generally to compositions and methods for identifying the regulatory network that modulates, controls or otherwise influences T cell balance, for example, Th17 cell differentiation, maintenance and/or function, as well compositions and methods for exploiting the regulatory network that modulates, controls or otherwise influences T cell balance in a variety of therapeutic and/or diagnostic indications. This invention also relates generally to identifying and exploiting target genes and/or target gene products that modulate, control or otherwise influence T cell balance in a variety of therapeutic and/or diagnostic indications.

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published: GW, KM, ML, MR, NE, SN, TD, TG).

— without the control of the c

without international search report and to be republished upon receipt of that report (Rule 48.2(g))

T CELL BALANCE GENE EXPRESSION, COMPOSITIONS OF MATTERS AND METHODS OF USE THEREOF

RELATED APPLICATIONS AND INCORPORATION BY REFERENCE

[0001] This application claims priority to US provisional patent application 62/176,796, filed February 26, 2015; US provisional patent application 62/181,697, filed June 18, 2015 and US provisional patent application 62/386,073, filed November 16, 2015.

[0002] Reference is also made to PCT application PCT/US2015/017826, filed February 26, 2015 and published on September 3, 2015 as WO2015130968; WO/2012/048265; WO/2014/145631; WO/2014/134351; and US provisional patent application 61/945,641, filed February 27, 2014; and Wang et al., CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell Volume 163, Issue 6, p1413–1427, 3 December 2015 and Gaublomme et al., Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell Volume 163, Issue 6, p1400–1412, 3 December 2015, incorporated herein by reference.

[0003] The foregoing applications, and all documents cited therein or during prosecution ("appln cited documents") and all documents cited or referenced in the appln cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. Appln cited documents, herein cited documents, all documents herein referenced or cited, and all documents indicated to be incorporated herein by reference, are incorporated by reference to the same extent as if each individual document was specifically and individually set forth herein in full and indicated to be incorporated by reference when or where cited or referenced.

FEDERAL FUNDING LEGEND

[0004] This invention was made with government support under grant numbers OD003958, HG006193, HG005062, OD003893, NS030843, NS045937, AI073748, AI045757 and AI056299 awarded by National Institutes of Health. The government may have certain rights in the invention.

1

FIELD OF THE INVENTION

[0005] This invention relates generally to compositions and methods for identifying the regulatory network that modulates, controls or otherwise influences T cell balance, for example, Th17 cell differentiation, maintenance and/or function, as well compositions and methods for exploiting the regulatory network that modulates, controls or otherwise influences T cell balance in a variety of therapeutic and/or diagnostic indications. This invention also relates generally to identifying and exploiting target genes and/or target gene products that modulate, control or otherwise influence T cell balance in a variety of therapeutic and/or diagnostic indications.

BACKGROUND OF THE INVENTION

[0006] Despite their importance, the molecular circuits that control the balance of T cells, including the differentiation of naïve T cells, remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Accordingly, there exists a need for a better understanding of the dynamic regulatory network that modulates, controls, or otherwise influences T cell balance, including Th17 cell differentiation, maintenance and function, and means for exploiting this network in a variety of therapeutic and diagnostic methods. Citations herein are not intended as an admission that anything cited is pertinent or prior art; nor does it constitute any admission as to the contents or date of anything cited.

SUMMARY OF THE INVENTION

[0007] The invention has many utilities. The invention pertains to and includes methods and compositions therefrom of Drug Discovery, as well as for detecting patients or subjects who may or may not respond or be responding to a particular treatment, therapy, compound, drug or combination of drugs or compounds; and accordingly ascertaining which drug or combination of drugs may provide a particular treatment or therapy as to a condition or disease or infection or infectious state, as well as methods and compositions for selecting patient populations (e.g., by detecting those who may or may not respond or be responding), or methods and compositions involving personalized treatment—a combination of Drug Discovery and detecting patients or subjects who may not respond or be responding to a particular treatment, therapy, compound, drug or combination of drugs or compounds (e.g., by as to individual(s), so detecting response, nor responding, potential to respond or not, and

2

adjusting particular treatment, therapy, compound, drug or combination of drugs or compounds to be administered or administering a treatment, therapy, compound, drug or combination of drugs or compounds indicated from the detecting).

The invention provides a method of diagnosing, prognosing and/or staging an [8000] immune response involving T cell balance, comprising detecting a first level of expression, activity and/or function of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd51 or one or more products of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5land comparing the detected level to a control of level of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l or gene product expression, activity and/or function, wherein a difference in the detected level and the control level indicates that the presence of an immune response in the subject.

The invention also provides a method of monitoring an immune response in a subject comprising detecting a level of expression, activity and/or function of *Toso*, *advantageously Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp or Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* at a first time point, detecting a level of expression, activity and/or function of one or more signature genes or one or more products of *Toso*, *advantageously Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp*, *Toso* or *Cd5l* at a

second time point, and comparing the first detected level of expression, activity and/or function with the second detected level of expression, activity and/or function, wherein a change in the first and second detected levels indicates a change in the immune response in the subject.

The invention also provides a method of identifying a patient population at risk or suffering from an immune response comprising detecting a level of expression, activity and/or function of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l or one or more products of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the patient population and comparing the level of expression, activity and/or function of one or more signature genes or one or more products of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in a patient population not at risk or suffering from an immune response, wherein a difference in the level of expression, activity and/or function of one or more of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l or one or more products of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the patient populations identifies the patient population as at risk or suffering from an immune response.

The invention also provides a method for monitoring subjects undergoing a treatment [0011]or therapy specific for a target gene selected from the group consisting of candidates Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l for an aberrant immune response to determine whether the patient is responsive to the treatment or therapy comprising detecting a level of expression, activity and/or function of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd51 in the absence of the treatment or therapy and comparing the level of expression, activity and/or function of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the presence of the treatment or therapy, wherein a difference in the level of expression, activity and/or function of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l or products of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the presence of the treatment or therapy indicates whether the patient is responsive to the treatment or therapy.

[0012] In these methods the immune response is an autoimmune response or an inflammatory response; or the inflammatory response is associated with an autoimmune response, an infectious disease and/or a pathogen-based disorder; or the signature genes are Th17-associated genes; or the treatment or therapy is an antagonist as to expression of *Toso*,

advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to induce differentiation toward regulatory T cells (Tregs), Th1 cells, or a combination of Tregs and Th1 cells; or the treatment or therapy is an agonist that enhances or increases the expression of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to induce T cell differentiation toward Th17 cells; or the treatment or therapy is an antagonist of a target gene selected from the group consisting of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to switch Th17 cells from a pathogenic to non-pathogenic signature; or the treatment or therapy is an agonist that enhances or increases the expression of a target gene selected from the group consisting of *Toso*, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to switch Th17 cells from a non-pathogenic to a pathogenic signature; or the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent.

[0013] The invention also provides a method of modulating T cell balance, the method comprising contacting a T cell or a population of T cells with a T cell modulating agent in an amount sufficient to modify differentiation, maintenance and/or function of the T cell or population of T cells by altering balance between Th17 cells, regulatory T cells (Tregs) and other T cell subsets as compared to differentiation, maintenance and/or function of the T cell or population of T cells in the absence of the T cell modulating agent; wherein the T cell

modulating agent is an antagonist for or of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to induce differentiation toward regulatory T cells (Tregs), Th1 cells, or a combination of Tregs and Th1 cells, or wherein the T cell modulating agent is an agonist that enhances or increases the expression of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to induce T cell differentiation toward Th17 cells, or wherein the T cell modulating agent is specific for a target gene selected from the group consisting of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l, or wherein the T cell modulating agent is an antagonist of a target gene selected from the group consisting of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to switch Th17 cells from a pathogenic to non-pathogenic signature, or wherein the T cell modulating agent is an agonist that enhances or increases the expression of a target gene selected from the group consisting of Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to switch Th17 cells from a non-pathogenic to a pathogenic signature. In these methods the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent; or the T cells are naïve T

cells, partially differentiated T cells, differentiated T cells, a combination of naïve T cells and partially differentiated T cells, a combination of naïve T cells and differentiated T cells, a combination of partially differentiated T cells and differentiated T cells, or a combination of naïve T cells, partially differentiated T cells and differentiated T cells.

[0014] The invention also provides a method of enhancing Th17 differentiation in a cell population, increasing expression, activity and/or function of one or more Th17-associated cytokines or one or more Th17- associated transcription regulators selected from interleukin 17F (IL-17F), interleukin 17A (IL- 17A), STAT3, interleukin 21 (IL-21) and RAR-related orphan receptor C (RORC), and/or decreasing expression, activity and/or function of one or more non-Th17-associated cytokines or non-Th17-associated transcription regulators selected from FOXP3, interferon gamma (IFN-γ), GATA3, STAT4 and TBX21, comprising contacting a T cell with an agent that enhances expression, activity and/or function of *Toso, advantageously Ctla2b*, *Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65, Plzp* or *Cd51* or any combination thereof *Gpr65, Plzp or Cd51* in any combination of *Gpr65, Plzp, Toso* or *Cd51*.

[0015] In methods herein the agent enhances expression, activity and/or function of at least *Toso*. The agent can be an antibody, a soluble polypeptide, a polypeptide agonist, a peptide agonist, a nucleic acid agonist, a nucleic acid ligand, or a small molecule agonist; advantageously an antibody, such as a monoclonal antibody; or an antibody that is a chimeric, humanized or fully human monoclonal antibody.

[0016] The invention comprehends use of an antagonist for or of *Toso*, *advantageously* Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to induce differentiation toward regulatory T cells (Tregs), Th1 cells, or a combination of Tregs and Th1 cells for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.

[0017] The invention comprehends use of an agonist that enhances or increases the expression of *Toso*, advantageously *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*,

Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd51 or any combination thereof Gpr65, Plzp or Cd51 in any combination of Gpr65, Plzp, Toso or Cd51 in an amount sufficient to induce T cell differentiation toward Th17 cells for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.

[0018] The invention comprehends use of an antagonist of a target gene selected from the group consisting of *Toso*, advantageously *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* in an amount sufficient to switch Th17 cells from a pathogenic to non-pathogenic signature for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.

[0019] The invention comprehends use of an agonist that enhances or increases the expression of a target gene selected from the group consisting of *Toso*, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to switch Th17 cells from a non-pathogenic to a pathogenic signature for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.

[0020] The invention comprehends a treatment method or Drug Discovery method or method of formulating or preparing a treatment comprising any one of the methods or uses herein discussed.

The invention comprehends a method of drug discovery for the treatment of a disease or condition involving an immune response involving T cell balance in a population of cells or tissue which express a target gene selected from the group consisting of *Toso*, advantageously *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or

Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l comprising the steps of (a) providing a compound or plurality of compounds to be screened for their efficacy in the treatment of said disease or condition; (b) contacting said compound or plurality of compounds with said population of cells or tissue; (c) detecting a first level of expression, activity and/or function of a target gene selected from the group consisting of Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination thereof Gpr65, Plzp, Toso or Cd5l or one or more products of a target gene selected from the group consisting of Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l; (d) comparing the detected level to a control of level of a target gene selected from the group consisting of Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination thereof Gpr65, Plzp, Toso or Cd51 or gene product expression, activity and/or function; (e) evaluating the difference between the detected level and the control level to determine the immune response elicited by said compound or plurality of compounds.

[0022] The invention provides compositions and methods for modulating T cell balance. As used herein, the term "modulating" includes up-regulation of, or otherwise increasing, the expression of one or more genes, down-regulation of, or otherwise decreasing, the expression of one or more genes, inhibiting or otherwise decreasing the expression, activity and/or function of one or more gene products, and/or enhancing or otherwise increasing the expression, activity and/or function of one or more gene products.

[0023] As used herein, the term "modulating T cell balance" includes the modulation of any of a variety of T cell-related functions and/or activities, including by way of non-limiting example, controlling or otherwise influencing the networks that regulate T cell differentiation; controlling or otherwise influencing the networks that regulate T cell maintenance, for example, over the lifespan of a T cell; controlling or otherwise influencing the networks that regulate T

cell function; controlling or otherwise influencing the networks that regulate helper T cell (Th cell) differentiation; controlling or otherwise influencing the networks that regulate Th cell maintenance, for example, over the lifespan of a Th cell; controlling or otherwise influencing the networks that regulate Th cell function; controlling or otherwise influencing the networks that regulate Th17 cell differentiation; controlling or otherwise influencing the networks that regulate Th17 cell maintenance, for example, over the lifespan of a Th17 cell; controlling or otherwise influencing the networks that regulate Th17 cell function; controlling or otherwise influencing the networks that regulate regulatory T cell (Treg) differentiation; controlling or otherwise influencing the networks that regulate Treg cell maintenance, for example, over the lifespan of a Treg cell; controlling or otherwise influencing the networks that regulate Treg cell function; controlling or otherwise influencing the networks that regulate other CD4+ T cell differentiation; controlling or otherwise influencing the networks that regulate other CD4+ T cell maintenance; controlling or otherwise influencing the networks that regulate other CD4+ T cell function; manipulating or otherwise influencing the ratio of T cells such as, for example, manipulating or otherwise influencing the ratio of Th17 cells to other T cell types such as Tregs or other CD4+ T cells; manipulating or otherwise influencing the ratio of different types of Th17 cells such as, for example, pathogenic Th17 cells and non-pathogenic Th17 cells; manipulating or otherwise influencing at least one function or biological activity of a T cell; manipulating or otherwise influencing at least one function or biological activity of Th cell; manipulating or otherwise influencing at least one function or biological activity of a Treg cell; manipulating or otherwise influencing at least one function or biological activity of a Th17 cell; and/or manipulating or otherwise influencing at least one function or biological activity of another CD4+ T cell.

The invention provides T cell modulating agents that modulate T cell balance. For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to regulate, influence or otherwise impact the level(s) of and/or balance between T cell types, *e.g.*, between Th17 and other T cell types, for example, regulatory T cells (Tregs), and/or Th17 activity and inflammatory potential. As used herein, terms such as "Th17 cell" and/or "Th17 phenotype" and all grammatical variations thereof refer to a differentiated T helper cell that expresses one or more cytokines selected from the group the consisting of interleukin 17A (IL-17A), interleukin 17F (IL-17F), and interleukin 17A/F heterodimer (IL17-AF). As used herein, terms such as "Th1 cell" and/or "Th1 phenotype" and

all grammatical variations thereof refer to a differentiated T helper cell that expresses interferon gamma (IFN γ). As used herein, terms such as "Th2 cell" and/or "Th2 phenotype" and all grammatical variations thereof refer to a differentiated T helper cell that expresses one or more cytokines selected from the group the consisting of interleukin 4 (IL-4), interleukin 5 (IL-5) and interleukin 13 (IL-13). As used herein, terms such as "Treg cell" and/or "Treg phenotype" and all grammatical variations thereof refer to a differentiated T cell that expresses Foxp3.

[0025] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to regulate, influence or otherwise impact the level of and/or balance between Th17 phenotypes, and/or Th17 activity and inflammatory potential. Suitable T cell modulating agents include an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent.

[0026] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to regulate, influence or otherwise impact the level of and/or balance between Th17 cell types, *e.g.*, between pathogenic and nonpathogenic Th17 cells. For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to regulate, influence or otherwise impact the level of and/or balance between pathogenic and non-pathogenic Th17 activity.

[0027] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to influence or otherwise impact the differentiation of a population of T cells, for example toward Th17 cells, with or without a specific pathogenic distinction, or away from Th17 cells, with or without a specific pathogenic distinction.

[0028] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to influence or otherwise impact the differentiation of a population of T cells, for example toward a non-Th17 T cell subset or away from a non-Th17 cell subset. For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to induce T-cell plasticity, *i.e.*, converting Th17 cells into a different subtype, or into a new state.

[0029] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to induce T cell plasticity, *e.g.*, converting Th17 cells into a different subtype, or into a new state.

[0030] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to achieve any combination of the above.

[0031] In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are differentiated T cells. In some embodiments, the T cells are partially differentiated T cells. In some embodiments, the T cells are a mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells, partially differentiated T cells, and differentiated T cells, and differentiated T cells.

[0032] The T cell modulating agents are used to modulate the expression of one or more target genes or one or more products of one or more target genes that have been identified as genes responsive to Th17-related perturbations. These target genes are identified, for example, by contacting a T cell, *e.g.*, naïve T cells, partially differentiated T cells, differentiated T cells and/or combinations thereof, with a T cell modulating agent and monitoring the effect, if any, on the expression of one or more signature genes or one or more products of one or more signature genes. In some embodiments, the one or more signature genes are selected from those listed in Table 1 or Table 2 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods.

[0033] In some embodiments, the target gene is one or more Th17-associated cytokine(s) or receptor molecule(s) selected from those listed in Table 3 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods. In some embodiments, the target gene is one or more Th17-associated transcription regulator(s) selected from those shown in Table S3 (Gaublomme 2015) or listed in Table 4 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods.

[0034] In some embodiments, the target gene is one or more Th17-associated transcription regulator(s) selected from those shown in Table S3 (Gaublomme 2015) or Table 5 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein

disclosed methods. In some embodiments, the target gene is one or more Th17-associated receptor molecule(s) selected from those listed in Table 6 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods. In some embodiments, the target gene is one or more Th17-associated kinase(s) selected from those listed in Table 7 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods. In some embodiments, the target gene is one or more Th17associated signaling molecule(s) selected from those listed in Table 8 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods. In some embodiments, the target gene is one or more Th17-associated receptor molecule(s) selected from those listed in Table 9 of WO/2014/134351, incorporated herein by reference; alone or with those of other herein disclosed methods. In some embodiments, the target gene is one or more target genes involved in induction of Th17 differentiation such as, for example one or more of the target genes listed in Table 2 herein or Table 5 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more target genes involved in onset of Th17 phenotype and amplification of Th17 T cells such as, for example, one or more of the target genes listed in Table 2 herein or Table 5 of WO/2014/134351, incorporated herein by reference (;alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more target genes involved in stabilization of Th17 cells and/or modulating Th17-associated interleukin 23 (IL-23) signaling such as, for example, one or more of the target genes listed in Table 2 herein or Table 5 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 6 of WO/2014/134351, incorporated herein by reference (;alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation. In some embodiments, the target gene is one or more of the target genes listed in Table 6 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some

embodiments, the target gene is one or more of the target genes listed in Table 6 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 7 herein or Table 7 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 7 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 7 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table S6 (Gaublomme 2015), Table 7 or in Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the target gene is one or more of the target genes listed in Table S6 (Gaublomme 2015), Table

7 or Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function.

[0035] In some embodiments, the target gene is one or more target genes that is a promoter of Th17 cell differentiation. In some embodiments, the target gene is GPR65. In some embodiments, the target gene is also a promoter of pathogenic Th17 cell differentiation and is selected from the group consisting of CD5L, DEC1, PLZP and TCF4.

[0036] In some embodiments, the target gene is one or more target genes that is a promoter of pathogenic Th17 cell differentiation. In some embodiments, the target gene is selected from the group consisting of CD5L, DEC1, PLZP and TCF4.

The desired gene or combination of target genes is selected, and after determining [0037] whether the selected target gene(s) is overexpressed or under-expressed during Th17 differentiation and/or Th17 maintenance, a suitable antagonist or agonist is used depending on the desired differentiation, maintenance and/or function outcome. For example, for target genes that are identified as positive regulators of Th17 differentiation, use of an antagonist that interacts with those target genes will shift differentiation away from the Th17 phenotype, while use of an agonist that interacts with those target genes will shift differentiation toward the Th17 phenotype. For target genes that are identified as negative regulators of Th17 differentiation, use of an antagonist that interacts with those target genes will shift differentiation toward from the Th17 phenotype, while use of an agonist that interacts with those target genes will shift differentiation away the Th17 phenotype. For example, for target genes that are identified as positive regulators of Th17 maintenance, use of an antagonist that interacts with those target genes will reduce the number of cells with the Th17 phenotype, while use of an agonist that interacts with those target genes will increase the number of cells with the Th17 phenotype. For target genes that are identified as negative regulators of Th17 differentiation, use of an antagonist that interacts with those target genes will increase the number of cells with the Th17 phenotype, while use of an agonist that interacts with those target genes will reduce the number of cells with the Th17 phenotype. Suitable T cell modulating agents include an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent.

[0038] In some embodiments, the positive regulator of Th17 differentiation is a target gene selected from MINA, TRPS1, MYC, NKFB1, NOTCH, PML, POU2AF1, PROCR, RBPJ, SMARCA4, ZEB1, BATF, CCR5, CCR6, EGR1, EGR2, ETV6, FAS, IL12RB1, IL17RA, IL21R, IRF4, IRF8, ITGA3, and combinations thereof. In some embodiments, the positive regulator of Th17 differentiation is a target gene selected from MINA, PML, POU2AF1, PROCR, SMARCA4, ZEB1, EGR2, CCR6, FAS and combinations thereof.

[0039] In some embodiments, the negative regulator of Th17 differentiation is a target gene selected from SP4, ETS2, IKZF4, TSC22D3, IRF1 and combinations thereof. In some embodiments, the negative regulator of Th17 differentiation is a target gene selected from SP4, IKZF4, TSC22D3 and combinations thereof.

In some embodiments, the T cell modulating agent is a soluble Fas polypeptide or a [0040] polypeptide derived from FAS. In some embodiments, the T cell modulating agent is an agent that enhances or otherwise increases the expression, activity, and/or function of FAS in Th17 cells. As shown herein, expression of FAS in T cell populations induced or otherwise influenced differentiation toward Th17 cells. In some embodiments, these T cell modulating agents are useful in the treatment of an immune response, for example, an autoimmune response or an inflammatory response. In some embodiments, these T cell modulating agents are useful in the treatment of an infectious disease or other pathogen-based disorders. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide agonist, a peptide agonist, a nucleic acid agonist, a nucleic acid ligand, or a small molecule agonist. In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are differentiated T cells. In some embodiments, the T cells are partially differentiated T cells. In some embodiments, the T cells are a mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells, partially differentiated T cells, and differentiated T cells. In some embodiments, the T cell modulating agent is an agent that inhibits the expression, activity and/or function of FAS. Inhibition of FAS expression, activity and/or function in T cell populations repressed or otherwise influenced differentiation away from Th17 cells and/or induced or otherwise influenced differentiation toward regulatory T cells (Tregs) and towards Th1 cells. In some embodiments, these T cell modulating agents

are useful in the treatment of an immune response, for example, an autoimmune response or an inflammatory response. In some embodiments, these T cell modulating agents are useful in the treatment of autoimmune diseases such as psoriasis, inflammatory bowel disease (IBD), ankylosing spondylitis, multiple sclerosis, Sjögren's syndrome, uveitis, and rheumatoid arthritis, asthma, systemic lupus erythematosus, transplant rejection including allograft rejection, and combinations thereof. In addition, enhancement of Th17 cells is also useful for clearing fungal infections and extracellular pathogens. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are differentiated T cells. In some embodiments, the T cells are partially differentiated T cells that express additional cytokines. In some embodiments, the T cells are a mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells, partially differentiated T cells, and differentiated T cells.

[0041] In some embodiments, the T cell modulating agent is an agent that inhibits the expression, activity and/or function of CCR5. Inhibition of CCR5 expression, activity and/or function in T cell populations repressed or otherwise influenced differentiation away from Th17 cells and/or induced or otherwise influenced differentiation toward regulatory T cells (Tregs) and towards Th1 cells. In some embodiments, these T cell modulating agents are useful in the treatment of an immune response, for example, an autoimmune response or an inflammatory response. In some embodiments, the T cell modulating agent is an inhibitor or neutralizing agent. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are a mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells. In some embodiments, the T cells are mixture of partially

differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells, partially differentiated T cells, and differentiated T cells.

[0042] In some embodiments, the T cell modulating agent is an agent that inhibits the expression, activity and/or function of CCR6. Inhibition of CCR6 expression, activity and/or function in T cell populations repressed or otherwise influenced differentiation away from Th17 cells and/or induced or otherwise influenced differentiation toward regulatory T cells (Tregs) and towards Th1 cells. In some embodiments, these T cell modulating agents are useful in the treatment of an immune response, for example, an autoimmune response or an inflammatory response. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are differentiated T cells. In some embodiments, the T cells are a mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells are mixture of partially differentiated T cells, and differentiated T cells, and differentiated T cells, and differentiated T cells.

[0043] In some embodiments, the T cell modulating agent is an agent that inhibits the expression, activity and/or function of EGR1. Inhibition of EGR1 expression, activity and/or function in T cell populations repressed or otherwise influenced differentiation away from Th17 cells and/or induced or otherwise influenced differentiation toward regulatory T cells (Tregs) and towards Th1 cells. In some embodiments, these T cell modulating agents are useful in the treatment of an immune response, for example, an autoimmune response or an inflammatory response. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells. In some embodiments, the T cells are mixture of partially

differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells, partially differentiated T cells, and differentiated T cells.

[0044] In some embodiments, the T cell modulating agent is an agent that inhibits the expression, activity and/or function of EGR2. Inhibition of EGR2 expression, activity and/or function in T cell populations repressed or otherwise influenced differentiation away from Th17 cells and/or induced or otherwise influenced differentiation toward regulatory T cells (Tregs) and towards Th1 cells. In some embodiments, these T cell modulating agents are useful in the treatment of an immune response, for example, an autoimmune response or an inflammatory response. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the T cells are naïve T cells. In some embodiments, the T cells are mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of partially differentiated T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells and differentiated T cells. In some embodiments, the T cells are mixture of naïve T cells, partially differentiated T cells, and differentiated T cells, and differentiated T cells.

[0045] For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to regulate, influence or otherwise impact the phenotype of a Th17 cell or population of cells, for example, by influencing a naïve T cell or population of cells to differentiate to a pathogenic or non-pathogenic Th17 cell or population of cells, by causing a pathogenic Th17 cell or population of cells to switch to a non-pathogenic Th17 cell or population of T cells (*e.g.*, populations of naïve T cells, partially differentiated T cells, differentiated T cells and combinations thereof), or by causing a non-pathogenic Th17 cell or population of T cells (*e.g.*, populations of naïve T cells, partially differentiated T cells, differentiated T cells and combinations thereof) to switch to a pathogenic Th17 cell or population of cells.

[0046] In some embodiments, the invention comprises a method of drug discovery for the treatment of a disease or condition involving an immune response involving T cell balance in a population of cells or tissue of a target gene comprising the steps of providing a compound or plurality of compounds to be screened for their efficacy in the treatment of said disease or

condition, contacting said compound or plurality of compounds with said population of cells or tissue, detecting a first level of expression, activity and/or function of a target gene, comparing the detected level to a control of level of a target gene, and evaluating the difference between the detected level and the control level to determine the immune response elicited by said compound or plurality of compounds. For example, the method contemplates comparing tissue samples which can be *inter alia* infected tissue, inflamed tissue, healthy tissue, or combinations of tissue samples thereof.

[0047] In one embodiment of the invention, the reductase null animals of the present invention may advantageously be used to modulate T cell balance in a tissue or cell specific manner. Such animals may be used for the applications hereinbefore described, where the role of T cell balance in product/drug metabolism, detoxification, normal homeostasis or in disease etiology is to be studied. It is envisaged that this embodiment will also allow other effects, such as drug transporter-mediated effects, to be studied in those tissues or cells in the absence of metabolism, e.g., carbon metabolism. Accordingly the animals of the present invention, in a further aspect of the invention may be used to modulate the functions and antibodies in any of the above cell types to generate a disease model or a model for product/drug discovery or a model to verify or assess functions of T cell balance.

[0048] In another embodiment, the method contemplates use of animal tissues and/or a population of cells derived therefrom of the present invention as an *in vitro* assay for the study of any one or more of the following events/parameters: (i) role of transporters in product uptake and efflux; (ii) identification of product metabolites produced by T cells; (iii) evaluate whether candidate products are T cells; or (iv) assess drug/drug interactions due to T cell balance.

[0049] The terms "pathogenic" or "non-pathogenic" as used herein are not to be construed as implying that one Th17 cell phenotype is more desirable than the other. As described herein, there are instances in which inhibiting the induction of pathogenic Th17 cells or modulating the Th17 phenotype towards the non-pathogenic Th17 phenotype is desirable. Likewise, there are instances where inhibiting the induction of non-pathogenic Th17 cells or modulating the Th17 phenotype towards the pathogenic Th17 phenotype is desirable.

[0050] As used herein, terms such as "pathogenic Th17 cell" and/or "pathogenic Th17 phenotype" and all grammatical variations thereof refer to Th17 cells that, when induced in the

presence of TGF-β3, express an elevated level of one or more genes selected from Cxcl3, IL22, IL3, Ccl4, Gzmb, Lrmp, Ccl5, Casp1, Csf2, Ccl3, Tbx21, Icos, IL17r, Stat4, Lgals3 and Lag, as compared to the level of expression in a TGF-β3-induced Th17 cells. As used herein, terms such as "non-pathogenic Th17 cell" and/or "non-pathogenic Th17 phenotype" and all grammatical variations thereof refer to Th17 cells that, when induced in the presence of TGF-β3, express a decreased level of one or more genes selected from IL6st, IL1rn, Ikzf3, Maf, Ahr, IL9 and IL10, as compared to the level of expression in a TGF-β3-induced Th17 cells.

[0051] In some embodiments, the T cell modulating agent is an agent that enhances or otherwise increases the expression, activity and/or function of Protein C Receptor (PROCR, also called EPCR or CD201) in Th17 cells. As shown herein, expression of PROCR in Th17 cells reduced the pathogenicity of the Th17 cells, for example, by switching Th17 cells from a pathogenic to non-pathogenic signature. Thus, PROCR and/or these agonists of PROCR are useful in the treatment of a variety of indications, particularly in the treatment of aberrant immune response, for example in autoimmune diseases and/or inflammatory disorders. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide agonist, a peptide agonist, a nucleic acid agonist, a nucleic acid ligand, or a small molecule agonist.

[0052] In some embodiments, the T cell modulating agent is an agent that inhibits the expression, activity and/or function of the Protein C Receptor (PROCR, also called EPCR or CD201). Inhibition of PROCR expression, activity and/or function in Th17 cells switches non-pathogenic Th17 cells to pathogenic Th17 cells. Thus, these PROCR antagonists are useful in the treatment of a variety of indications, for example, infectious disease and/or other pathogen-based disorders. In some embodiments, the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the T cell modulating agent is a soluble Protein C Receptor (PROCR, also called EPCR or CD201) polypeptide or a polypeptide derived from PROCR. In some embodiments, the invention provides a method of inhibiting Th17 differentiation, maintenance and/or function in a cell population and/or increasing expression, activity and/or function of one or more non-Th17-associated cytokines, one or more non-Th17 associated receptor molecules, or non-Th17-associated transcription regulators selected from FOXP3, interferon gamma (IFN-γ), GATA3, STAT4 and TBX21,

comprising contacting a T cell with an agent that inhibits expression, activity and/or function of MINA, MYC, NKFB1, NOTCH, PML, POU2AF1, PROCR, RBPJ, SMARCA4, ZEB1, BATF, CCR5, CCR6, EGR1, EGR2, ETV6, FAS, IL12RB1, IL17RA, IL21R, IRF4, IRF8, ITGA3 or combinations thereof. In some embodiments, the agent inhibits expression, activity and/or function of at least one of MINA, PML, POU2AF1, PROCR, SMARCA4, ZEB1, EGR2, CCR6, FAS or combinations thereof. In some embodiments, the agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric, humanized or fully human monoclonal antibody. In some embodiments, the T cell is a naïve T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the T cell to become and/or produce a desired non-Th17 T cell phenotype, for example, a regulatory T cell (Treg) phenotype or another CD4+ T cell phenotype. In some embodiments, the T cell is a partially differentiated T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the partially differentiated T cell to become and/or produce a desired non-Th17 T cell phenotype, for example, a regulatory T cell (Treg) phenotype or another CD4+ T cell phenotype. In some embodiments, the T cell is a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the Th17 T cell to become and/or produce a CD4+ T cell phenotype other than a Th17 T cell phenotype. In some embodiments, the T cell is a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the Th17 T cell to become and/or produce a shift in the Th17 T cell phenotype, e.g., between pathogenic or non-pathogenic Th17 cell phenotype. In some embodiments, the invention provides a method of inhibiting Th17 [0053] differentiation in a cell population and/or increasing expression, activity and/or function of one or more non-Th17-associated cytokines, one or more non-Th17-associated receptor molecules, or non-Th17-associated transcription factor selected from FOXP3, interferon gamma (IFN-γ), GATA3, STAT4 and TBX21, comprising contacting a T cell with an agent that enhances expression, activity and/or function of SP4, ETS2, IKZF4, TSC22D3, IRF1 or combinations thereof. In some embodiments, the agent enhances expression, activity and/or function of at least one of SP4, IKZF4, TSC22D3 or combinations thereof. In some embodiments, the agent is an antibody, a soluble polypeptide, a polypeptide agonist, a peptide agonist, a nucleic acid agonist, a

nucleic acid ligand, or a small molecule agonist. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the T cell is a naïve T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the T cell to become and/or produce a desired non-Th17 T cell phenotype, for example, a regulatory T cell (Treg) phenotype or another CD4+ T cell phenotype. In some embodiments, the T cell is a partially differentiated T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the partially differentiated T cell to become and/or produce a desired non-Th17 T cell phenotype, for example, a regulatory T cell (Treg) phenotype or another CD4+ T cell phenotype. In some embodiments, the T cell is a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the Th17 T cell phenotype. In some embodiments, the T cell is a Th17 T cell phenotype in an amount that is sufficient to modulate the phenotype of the Th17 T cell phenotype. In some embodiments, the T cell is a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the Th17 T cell to become and/or produce a shift in the Th17 T cell phenotype, e.g., between pathogenic or non-pathogenic Th17 cell phenotype.

In some embodiments, the invention provides a method of enhancing Th17 [0054] differentiation in a cell population increasing expression, activity and/or function of one or more Th17-associated cytokines, one or more Th17-associated receptor molecules, or one or more Th17-associated transcription regulators selected from interleukin 17F (IL-17F), interleukin 17A (IL-17A), STAT3, interleukin 21 (IL-21) and RAR-related orphan receptor C (RORC), and/or decreasing expression, activity and/or function of one or more non-Th17-associated cytokines, one or more Th17-associated receptor molecules, or one or more non-Th17-associated transcription regulators selected from FOXP3, interferon gamma (IFN-y), GATA3, STAT4 and TBX21, comprising contacting a T cell with an agent that inhibits expression, activity and/or function of SP4, ETS2, IKZF4, TSC22D3, IRF1 or combinations thereof. In some embodiments, the agent inhibits expression, activity and/or function of at least one of SP4, IKZF4, TSC22D3 or combinations thereof. In some embodiments, the agent is an antibody, a soluble polypeptide, a polypeptide antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric, humanized or fully human monoclonal antibody. In some embodiments, the T cell is a naïve T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the T cell to become and/or produce a

desired Th17 T cell phenotype. In some embodiments, the T cell is a partially differentiated T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the partially differentiated T cell to become and/or produce a desired Th17 T cell phenotype. In some embodiments, the T cell is a CD4+ T cell other than a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the non-Th17 T cell to become and/or produce a Th17 T cell phenotype. In some embodiments, the T cell is a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the Th17 T cell to become and/or produce a shift in the Th17 T cell phenotype, *e.g.*, between pathogenic or non-pathogenic Th17 cell phenotype.

In some embodiments, the invention provides a method of enhancing Th17 [0055] differentiation in a cell population, increasing expression, activity and/or function of one or more Th17-associated cytokines, one or more Th17-associated receptor molecules, and/or one or more Th17-associated transcription regulators selected from interleukin 17F (IL-17F), interleukin 17A (IL-17A), STAT3, interleukin 21 (IL-21) and RAR-related orphan receptor C (RORC), and/or decreasing expression, activity and/or function of one or more non-Th17-associated cytokines, one or more Th17-associated receptor molecules, or one or more non-Th17-associated transcription regulators selected from FOXP3, interferon gamma (IFN-y), GATA3, STAT4 and TBX21, comprising contacting a T cell with an agent that enhances expression, activity and/or function of MINA, MYC, NKFB1, NOTCH, PML, POU2AF1, PROCR, RBPJ, SMARCA4, ZEB1, BATF, CCR5, CCR6, EGR1, EGR2, ETV6, FAS, IL12RB1, IL17RA, IL21R, IRF4, IRF8, ITGA3 or combinations thereof. In some embodiments, the agent enhances expression, activity and/or function of at least one of MINA, PML, POU2AF1, PROCR, SMARCA4, ZEB1, EGR2, CCR6, FAS or combinations thereof. In some embodiments, the agent is an antibody, a soluble polypeptide, a polypeptide agonist, a peptide agonist, a nucleic acid agonist, a nucleic acid ligand, or a small molecule agonist. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric, humanized or fully human monoclonal antibody. In some embodiments, the agent is administered in an amount sufficient to inhibit Foxp3, IFN-γ, GATA3, STAT4 and/or TBX21 expression, activity and/or function. In some embodiments, the T cell is a naïve T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the T cell to become and/or produce a desired Th17 T cell phenotype. In some embodiments, the T cell is a partially differentiated T

cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the partially differentiated T cell to become and/or produce a desired Th17 T cell phenotype. In some embodiments, the T cell is a CD4+ T cell other than a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the non-Th17 T cell to become and/or produce a Th17 T cell phenotype. In some embodiments, the T cell is a Th17 T cell, and wherein the agent is administered in an amount that is sufficient to modulate the phenotype of the Th17 T cell to become and/or produce a shift in the Th17 T cell phenotype, *e.g.*, between pathogenic or non-pathogenic Th17 cell phenotype.

In some embodiments, the invention provides a method of identifying genes or [0056] genetic elements associated with Th17 differentiation comprising: a) contacting a T cell with an inhibitor of Th17 differentiation or an agent that enhances Th17 differentiation; and b) identifying a gene or genetic element whose expression is modulated by step (a). In some embodiments, the method also comprises c) perturbing expression of the gene or genetic element identified in step b) in a T cell that has been in contact with an inhibitor of Th17 differentiation or an agent that enhances Th17 differentiation; and d) identifying a gene whose expression is modulated by step c). In some embodiments, the inhibitor of Th17 differentiation is an agent that inhibits the expression, activity and/or function of MINA, MYC, NKFB1, NOTCH, PML, POU2AF1, PROCR, RBPJ, SMARCA4, ZEB1, BATF, CCR5, CCR6, EGR1, EGR2, ETV6, FAS, IL12RB1, IL17RA, IL21R, IRF4, IRF8, ITGA3 or combinations thereof. In some embodiments, the agent inhibits expression, activity and/or function of at least one of MINA, PML, POU2AF1, PROCR, SMARCA4, ZEB1, EGR2, CCR6, FAS or combinations thereof. In some embodiments, the inhibitor of Th17 differentiation is an agent that enhances expression, activity and/or function of SP4, ETS2, IKZF4, TSC22D3, IRF1 or combinations thereof. In some embodiments, the agent enhances expression, activity and/or function of at least one of SP4, IKZF4 or TSC22D3. In some embodiments, the agent that enhances Th17 differentiation is an agent that inhibits expression, activity and/or function of SP4, ETS2, IKZF4, TSC22D3, IRF1 or combinations thereof. In some embodiments, wherein the agent that enhances Th17 differentiation is an agent that enhances expression, activity and/or function of MINA, MYC, NKFB1, NOTCH, PML, POU2AF1, PROCR, RBPJ, SMARCA4, ZEB1, BATF, CCR5, CCR6, EGR1, EGR2, ETV6, FAS, IL12RB1, IL17RA, IL21R, IRF4, IRF8, ITGA3 or combinations thereof. In some embodiments, the agent is an antibody, a soluble polypeptide, a polypeptide

antagonist, a peptide antagonist, a nucleic acid antagonist, a nucleic acid ligand, or a small molecule antagonist.

[0057] In some embodiments, the invention provides a method of modulating induction of Th17 differentiation comprising contacting a T cell with an agent that modulates expression, activity and/or function of one or more target genes or one or more products of one or more target genes selected from IRF1, IRF8, IRF9, STAT2, STAT3, IRF7, STAT1, ZFP281, IFI35, REL, TBX21, FLI1, BATF, IRF4, one or more of the target genes listed in Table 2 herein or Table 5 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function, *e.g.*, AES, AHR, ARID5A, BATF, BCL11B, BCL3, CBFB, CBX4, CHD7, CITED2, CREB1, E2F4, EGR1, EGR2, ELL2, ETS1, ETS2, ETV6, EZH1, FLI1, FOX01, GATA3, GATAD2B, HIF1A, ID2, IFI35, IKZF4, IRF1, IRF2, IRF3, IRF4, IRF7, IRF9, JMJD1C, JUN, LEF1, LRRFIP1, MAX, NCOA3, NFE2L2, NFIL3, NFKB1, NMI, NOTCH1, NR3C1, PHF21A, PML, PRDM1, REL, RELA, RUNX1, SAP18, SATB1, SMAD2, SMARCA4, SP100, SP4, STAT1, STAT2, STAT3, STAT4, STAT5B, STAT6, TFEB, TP53, TRIM24, and/or ZFP161, or any combination thereof.

In some embodiments, the invention provides a method of modulating onset of Th17 phenotype and amplification of Th17 T cells comprising contacting a T cell with an agent that modulates expression, activity and/or function of one or more target genes or one or more products of one or more target genes selected from one or more of the target genes listed in Table 2 herein or Table 5 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating stabilization of Th17 cells and/or modulating Th17-associated interleukin 23 (IL-23) signaling comprising contacting a T cell with an agent that modulates expression, activity and/or function of one or more target genes or one or more products of one or more target genes selected from one or more of the target genes listed in Table 2 herein or Table 5 of WO/2014/134351 (alone or with those of other herein disclosed methods), incorporated herein by reference, as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 6 of

WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table S6 (Gaublomme 2015), Table 7 herein or Table 6 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table S6 (Gaublomme 2015), Table 7 hereinor Table 6 of WO/2014/134351 (alone or with those of other herein disclosed methods), incorporated herein by reference, as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 7 of WO/2014/134351 (alone or with those of other herein disclosed methods), incorporated herein by reference, as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 7 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), asc being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 7 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating is one or more of the target genes listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated

with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the early stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the intermediate stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of modulating one or more of the target genes listed in Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), as being associated with the late stage of Th17 differentiation, maintenance and/or function. In some embodiments, the invention provides a method of inhibiting tumor growth in a subject in need thereof by administering to the subject a therapeutically effective amount of an inhibitor of Protein C Receptor (PROCR). In some embodiments, the inhibitor of PROCR is an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent. In some embodiments, the inhibitor of PROCR is one or more agents selected from the group consisting of lipopolysaccharide; cisplatin; fibrinogen; 1, 10-phenanthroline; 5-Nethylcarboxamido adenosine; cystathionine; hirudin; phospholipid; Drotrecogin alfa; VEGF; Phosphatidylethanolamine; serine; gammacarboxyglutamic acid; calcium; warfarin; endotoxin; curcumin; lipid; and nitric oxide.

[0059] In some embodiments, the invention provides a method of diagnosing an immune response in a subject, comprising detecting a level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes selected from those listed in Table 1 or 2 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), and comparing the detected level to a control of level of signature gene or gene product expression, activity and/or function, wherein a difference between the detected level and the control level indicates that the presence of an immune response in the subject. In some embodiments, the immune response is an autoimmune response, including

inflammatory response(s) associated with an autoimmune response and/or inflammatory response(s) associated with an infectious disease or other pathogen-based disorder.

[0060] In some embodiments, the invention provides a method of monitoring an immune response in a subject, comprising detecting a level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes, *e.g.*, one or more signature genes selected from those listed in Table 1 or 2 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), at a first time point, detecting a level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes, *e.g.*, one or more signature genes selected from those listed in Table 1 or 2 of WO/2014/134351 (alone or with those of other herein disclosed methods), incorporated herein by reference, at a second time point, and comparing the first detected level of expression, activity and/or function with the second detected level of expression, activity and/or function, wherein a change between the first and second detected levels indicates a change in the immune response in the subject. In some embodiments, the immune response is an inflammatory response.

[0061] In some embodiments, the invention provides a method of monitoring an immune response in a subject, comprising isolating a population of T cells from the subject at a first time point, determining a first ratio of T cell subtypes within the T cell population at a first time point, isolating a population of T cells from the subject at a second time point, determining a second ratio of T cell subtypes within the T cell population at a second time point, and comparing the first and second ratio of T cell subtypes, wherein a change in the first and second detected ratios indicates a change in the immune response in the subject. In some embodiments, the immune response is an autoimmune response. In some embodiments, the immune response is an inflammatory response.

[0062] In some embodiments, the invention provides a method of activating therapeutic immunity by exploiting the blockade of immune checkpoints. The progression of a productive immune response requires that a number of immunological checkpoints be passed. Immunity response is regulated by the counterbalancing of stimulatory and inhibitory signal. The immunoglobulin superfamily occupies a central importance in this coordination of immune responses, and the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA-4):B7.1/B7.2 receptor/ligand

grouping represents the archetypal example of these immune regulators (see e.g., Korman AJ, Peggs KS, Allison JP, "Checkpoint blockade in cancer immunotherapy." Adv Immunol. 2006; 90:297-339). In part the role of these checkpoints is to guard against the possibility of unwanted and harmful self-directed activities. While this is a necessary function, aiding in the prevention of autoimmunity, it may act as a barrier to successful immunotherapies aimed at targeting malignant self-cells that largely display the same array of surface molecules as the cells from which they derive. The expression of immune-checkpoint proteins can be dysregulated in a disease or disorder and can be an important immune resistance mechanism. Therapies aimed at overcoming these mechanisms of peripheral tolerance, in particular by blocking the inhibitory checkpoints, offer the potential to generate therapeutic activity, either as monotherapies or in synergism with other therapies.

[0063] Thus, the present invention relates to a method of engineering T-cells, especially for immunotherapy, comprising modulating T cell balance to inactivate or otherwise inhibit at least one gene or gene product involved in the immune check-point.

[0064] Suitable T cell modulating agent(s) for use in any of the compositions and methods provided herein include an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent. By way of non-limiting example, suitable T cell modulating agents or agents for use in combination with one or more T cell modulating agents are shown in Table 10 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods), of the specification.

[0065] One skilled in the art will appreciate that the T cell modulating agents have a variety of uses. For example, the T cell modulating agents are used as therapeutic agents as described herein. The T cell modulating agents can be used as reagents in screening assays, diagnostic kits or as diagnostic tools, or these T cell modulating agents can be used in competition assays to generate therapeutic reagents.

[0066] In some embodiments, the invention provides a method of diagnosing, prognosing and/or staging an immune response involving Th17 T cell balance, comprising detecting a first level of expression of one or more of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in Th17 cells, and comparing the detected level to a control level of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA), wherein a change in the first level of expression and the control level detected indicates a change in the immune response in the

subject. In one embodiment, a shift torwards polyunsaturated fatty acids (PUFA) and away from saturated fatty acids (SFA) indicates a non-pathogenic Th17 response.

[0067] In some embodiments, the invention provides a method for monitoring subjects undergoing a treatment or therapy involving T cell balance comprising, detecting a first level of expression of one or more of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in Th17 cells in the absence of the treatment or therapy and comparing the detected level to a level of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in the presence of the treatment or therapy, wherein a difference in the level of expression in the presence of the treatment or therapy indicates whether the subject is responsive to the treatment or therapy.

[0068] In another embodiment, the invention provides a method for monitoring subjects undergoing a treatment or therapy involving T cell balance comprising detecting a first level of expression of one or more of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) in Th17 cells in the absence of the treatment or therapy and comparing the ratio of detected level to a ratio of detected level of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) in the presence of the treatment or therapy, wherein a shift in the ratio in the presence of the treatment or therapy indicates whether the subject is responsive to the treatment or therapy. Not being bound by a theory, a shift in the ratio torwards polyunsaturated fatty acids (PUFA) and away from saturated fatty acids (SFA) indicates a non-pathogenic Th17 response.

[0069] In another embodiment, the therapy may be a lipid, preferably a mixture of lipids of the present invention. The lipids may be synthetic. Not being bound by a theory, a treatment comprising lipids may shift T cell balance.

[0070] In another embodiment, the treatment or therapy involving T cell balance is for a subject undergoing treatment or therapy for cancer. Not being bound by a theory, shifting Th17 balance torwards a pathogenic phenotype would allow a stronger immune response against a tumor.

[0071] In some embodiments, the invention provides a method of drug discovery for the treatment of a disease or condition involving an immune response involving Th17 T cell balance in a population of cells or tissue comprising: (a) providing a compound or plurality of compounds to be screened for their efficacy in the treatment of said disease or condition; (b) contacting said compound or plurality of compounds with said population of cells or tissue; (c)

detecting a first level of expression of one or more of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in Th17 cells, optionally calculating a ratio; (d) comparing the detected level to a control level of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA), optionally comparing the shift in ratio; and, (e) evaluating the difference between the detected level and the control level to determine the immune response elicited by said compound or plurality of compounds.

[0072] In some embodiments, a panel of lipids is detected. The panel may include saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) whose expression is changed at least 1.5 fold when comparing wild type Th17 cells to CD5L^{-/-} Th17 cells after treatment with non-pathogenic inducing cytokines. The non-pathogenic inducing cytokines may be TGF-β1+IL-6. The panel may include lipids whose expression is changed upon differentiation into a pathogenic or non-pathogenic Th17 cell. In another embodiment single saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) representative of lipids whose expression is changed in response to CD5L loss or differentiation are detected. In a preferred embodiment, the SFA is a cholesterol ester or palmitic acid and the PUFA is a PUFA-containing triacylglyceride or arachidonic acid. In one embodiment only a single SFA or PUFA is detected.

[0073] In some embodiments, the treatment or therapy is a formulation comprising at least one lipid. The at least one lipid may be a synthetic lipid. Not being bound by a theory an autoimmune disease may be treated with polyunsaturated fatty acids (PUFA) and a disease requiring an enhanced immune response may be treated with saturated fatty acids (SFA).

[0074] Accordingly, it is an object of the invention to not encompass within the invention any previously known product, process of making the product, or method of using the product such that Applicants reserve the right and hereby disclose a disclaimer of any previously known product, process, or method. It is further noted that the invention does not intend to encompass within the scope of the invention any product, process, or making of the product or method of using the product, which does not meet the written description and enablement requirements of the USPTO (35 U.S.C. §112, first paragraph) or the EPO (Article 83 of the EPC), such that Applicants reserve the right and hereby disclose a disclaimer of any such subject matter.

[0075] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as "comprises", "comprised", "comprising" and the like can have the meaning

attributed to it in U.S. Patent law; e.g., they can mean "includes", "included", "including", and the like; and that terms such as "consisting essentially of" and "consists essentially of" have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention. Nothing herein is to be construed as a promise.

[0076] These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0077] The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0078] Figure 1A-1G. Single-cell RNA-seq of Th17 cells in vivo and in vitro. (A) Experimental setup; left: Procedure to isolate Th17 cells from in vivo tissues. EAE was induced by MOG immunization of IL-17A reporter mice, and CD3⁺CD4⁺IL-17A/GFP⁺ cells were harvested at the peak of disease (inset cartoon graph: Y axis: disease score; X axis – days; Red arrow: the peak at clinical score 2.5-3) from the draining LNs and CNS and analyzed by single-cell RNA-Seq. Right: Procedure to differentiate Th17 cells in vitro. Naïve CD4⁺CD62L⁺CD44⁻ T cells were isolated from the LN and the spleen of nonimmunized mice and subsequently differentiated by CD3/CD28 activation and either TGFβ1+IL-6 to derive non-pathogenic Th17 cells, or IL-1β+IL-6+IL-23 to derive more pathogenic cells. Single-cell RNA-seq was performed at 48h into differentiation. (B-E) Quality of single-cell RNA-seq. Scatter plots (B-D) compare transcript expression (FPKM+1, log₁₀) from the *in vitro* TGF-β1+IL-6 48hr condition, between two bulk population replicates (B), the 'average' of single-cell profile and a matched bulk population control (C), or two single cells (D). Histograms (E) depict the distributions of Pearson correlation coefficients (X axis) between single cells and their matched population control (red) and between pairs of single cells (blue). The Pearson correlation coefficient between the two replicates or between the single cell average and the matched population profile are

marked by a blue cross and red triangle, respectively. (**F,G**) Agreement between single-cell RNA-Seq and RNA Flow-FISH. (**F**) Comparison between expression distributions measured by RNA-seq (left) and transcript count distributions measured by RNA Flow-FISH (right) for the unimodally expressed gene *Batf* (top) and the bi-modally expressed *Il17a* (bottom). As a negative control, expression of the bacterial *DapB* gene was measured (light green). (**G**) Bright-field images of RNA Flow-FISH samples (n=5,000 cells) with the corresponding fluorescence channel for cells negative for *Il17a transcripts* (yellow) and positive for *Il17a* transcript (brown). Scale bar in the bright-field images is 7 μm. See also Figure 6, **Table S1**, related Figure 1.

[0079]Figure 2A-2F. Th17 cells span a progressive trajectory of states from the LN to the CNS. (A) Principal component analysis (PCA) separates CNS-derived cells (purple diamonds) from LN-derived cells (orange crosses). Shown are 302 cells in the space of the first two PCs. Numbered circles are selected features (signatures) that significantly correlate with PC1 or PC2 (p < 10⁻⁶, **Table S2** (Gaublomme 2015) positioned based on the values of their Pearson correlation coefficient with each PC (axis values; to facilitate this view, the plotted PC values were normalized to be in the range between -1 and 1). Features were identified by the analysis depicted in (B) as either significantly diverse within a condition (with GSEA; FDR < 0.05); or between conditions (with a KS test comparing CNS and LN, FDR < 10⁻⁴). (B) Functional annotation scheme. From top to bottom: Gene signatures are defined from literature (e.g., by comparing CD4⁺ memory and naïve T cells, top) distinguishing 'plus' and 'minus' genes (e.g., genes that are, respectively, high and low in CD4⁺ memory vs. naïve cells; bar plot). A signature score is calculated for each signature in each single cell, as the difference in weighted z scores between the 'plus' and 'minus' genes in the signature (Experimental Procedures). Finally (bottom), for each signature and PC Applicants compute the Pearson correlation coefficient between the signature score for each cell, and the loading on the PC for each cell. Applicants plot these Pearson correlation coefficients on the PCA plot (circled numbers in (A)). (C) Five progressive Th17-cell states from the LN to the CNS. Shown is the PCA plot as in A, but where Voronoi cells (defined by the signatures characterizing the cells populating the extremities of PCA space; Experimental Procedures (colored circles, Table S2 (Gaublomme 2015)) define five feature-specific subpopulations: Th17 self-renewing (green, defined by a LCMV-specific

CD4 signature comparing naïve cells to cells isolated 8 days post acute LCMV infection, GSE30431), Th17/pre-Th1 effector (pink, defined by a signature using TRP1 CD4⁺ T cells comparing 5 day ex vivo Th17-polarized and stimulated cells to day 0 Th17 in vitro cells, GSE26030), Th17/Th1-like effector (yellow, LCMV-specific CD4 signature comparing cells isolated 8 days vs. 30 days post chronic LCMV infection, GSE30431), Th17/Th1-like memory (light blue, LCMV-specific CD4 signature comparing cells isolated 30 days post chronic infection to naïve cells, GSE30431), and Th17 dysfunctional/senescent (moss grey, inverse of a LCMV-specific CD4 signature comparing cells isolated 30 days post acute vs. chronic infection, GSE30431). The self-renewing state was observed in two technical replicates of one of the two in vivo biological replicates, potentially due to differences in disease induction or progression. (D) Example genes that distinguish each sub-population. For each of the five subpopulations in (C) (color coded rows) shown are cumulative distribution function (CDF) plots of expression for key selected genes. In each case, the gene's CDF is shown for cells from each sub-population. For the subpopulations that have a substantial mixture of LN and CNS cells, the dotted curve corresponds to cells from the CNS, and the solid line for cells from the LN of that subpopulation (E,F) Transcription factors (nodes) whose targets are significantly enriched in PC2 (E) or PC1 (F). Nodes are sized proportionally to fold enrichment (Table S3 Gaublomme 2015) and colored according to the loading of the encoding gene in the respective PC (red and green: high and low PC loading, respectively; loadings were normalized to have zero mean and standard deviation of 1).

See also **Figure 7 and 13-14**, **Table S2-5** (Gaublomme 2015), Table 2 and 6, related to **Figure 2**.

[0080] Figure 3A-3E. A spectrum of pathogenicity states in vitro (A) PCA plot of Th17 cells differentiated in vitro. PC1 separates cells from most (left) to least (right) pathogenic, as indicated both by the differentiation condition (color code), and by the correlated signatures (numbered circles). PC2 separates IL-17a+ sorted Th17 cells differentiated under pathogenic conditions (red triangles) from non-pathogenic cells (Light blue squares) and non-pathogenic cells not sorted to be IL-17A positive (Black circles) at 48h. Presented are features that correlate with PC1 or PC2 (p<0.05); and that were identified as significantly diverse within a condition (using GSEA; with an FDR cutoff of 0.05); or

between conditions (using KS-test to compare CNS and LN, with an FDR cutoff of 1e-4). **(B-D)** Key signatures related to pathogenicity. CDFs of the single-cell scores for key signatures for the three *in vitro* populations (colored as in A): **(B)** a signature distinguishing the *in vivo* Th17/Th1-like memory sub-population (blue in **Figure 2C**); **(C)** a signature distinguishing the *in vivo* Th17 self-renewing sub-population (green in **Figure 2C**); and **(D)** a signature of pathogenic Th17 cells (Lee et al., 2012). **(E)** CDFs of expression level (FPKM+1, log₁₀) of *Il10* for the three *in vitro* populations.

See also **Table S2** (Gaublomme 2015) related to **Figure 3**.

Figure 4A-4E. Modules of genes that co-vary with pro-inflammatory and [0081] regulatory genes across single cells. (A) Single-cell expression distribution of genes. The heat map shows for each gene (row) its expression distribution across single cells differentiated under the TGF-\beta1+IL-6 condition for 48h (without further IL-17A-based sorting). Color scale: proportion of cells expressing in each of the 17 expression bins (columns). Genes are sorted from more unimodal (top) to bimodal (bottom). (B) Modules co-varying with pro-inflammatory and regulatory genes. Heat map of the Spearman correlation coefficients between the single-cell expression levels of signature genes of pathogenic T cells (Lee et al., 2012) or of other CD4⁺ lineages (columns) and the single-cell expression of any other bimodally expressed gene (rows) in cells differentiated under the TGF-\beta1+IL-6 condition at 48h. Genes are clustered by similarity of these correlations, revealing two diametrically opposed modules of co-varying genes: a pro-inflammatory module (orange; e.g., Il17a, Il21, Ccl20) and a regulatory module (green, e.g., Il10, Il24, Il27ra). (C) The modules co-varying with pro-inflammatory and regulatory genes distinguish key variation. Each cell (TGF-β1+IL-6, 48h) is colored by a signature score comparing the two co-variation modules. Shown is a PCA plot (first two PCs) with the cells differentiated under the TGF-\beta1+IL-6 condition at 48h, where each cell is colored by a signature score (by the method of Figure 2B) comparing the two modules from Figure 4B (color code). Other signatures correlated to the PCs are marked by numbered circles. (D) Expression of key module genes. Each panel shows the PCA plot of (C) where cells are colored by an expression ranking score of a key gene, denoted on top. (from top left corner clockwise: III0, Toso, III7a, and Plzp. (E) A ranking of the top 100 candidate genes covarying with pro-inflammatory or regulatory genes (out of 184; Table 2 herein), sorting

from high (left) to lower (right) ranking scores (bar chart). Bar chart (top) indicates ranking score deduced from single-cell data (**Experimental Procedures**). Genes are ordered from high (left) to low (right) scores. Purple-white heat map (middle) shows ranking scores for (top to bottom row): pathogenicity, pro-inflammatory *vs.* regulatory co-variation module and *in vitro* and *in vivo* PC's. Bottom matrix indicates 'known' (black, top row) genes previously associated with Th17 function; 'novel validated' (black, middle) genes that were tested and validated by follow-up experiments, and assignment to the 'pro-inflammatory/regulatory module' (orange & green, bottom) determined in this study.

See also Figure 10 and 15, Table S2 (Gaublomme 2015) &S8 related to Figure 4.

Figure 5A-5J. GPR65, TOSO and PLZP are validated as T-cell [0082] pathogenicity regulators. (A,B) Reduction in IL17A-producing cells in GPR65^{-/-} T-cells differentiated in vitro. (A) Intracellular cytokine staining for IFN-y (Y axis) and IL-17a (X axis) of CD4⁺ T cells from respective WT (top) or GPR65^{-/-} (bottom) cells activated in vitro for 96h with anti-CD3 and anti-CD28, either without (Th0; left) or with Th17-polarizing cytokines (TGF-\beta1+IL-6, middle; or IL-1\beta+IL-6+IL-23, right). (B) Quantification of secreted IL-17A and Il-17F (Y axis) by cytometric bead assays (CBA) in corresponding samples (X axis). * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Reduced IL-17A and IFN- γ production by GPR65^{-/-} memory (CD62L⁻CD44⁺CD4⁺) T cells in a recall assay. Rag1^{-/-} mice were reconstituted with 2x10⁶ naïve CD4 T cells from WT or GPR65^{-/-} mice, and, immunized with MOG₃₅₋₅₅/CFA one week post transfer. Draining LN and spleen cells were isolated 8 days after immunization and cultured ex vivo for 4 days with MOG₃₅₋₅₅ for recall assay (Experimental Procedures). These cells were subsequently analyzed for production of IFN-γ (Y axis) and IL-17A (X axis). (D) Loss of GPR65 reduces tissue inflammation and autoimmune disease in vivo. Rag-1^{-/-} mice (n = 10 per category) reconstituted with $2x10^6$ naïve CD4 T-cells from WT or GPR65^{-/-} mice, then induced with EAE one week post transfer. Shown is the mean clinical score (Y axis) at days post immunization (X axis) for WT (black circles) or GPR65^{-/-} (open circles) mice. Error bars indicate the standard deviation of the mean clinical score. (E) Transcriptional impact of a loss of GPR65, TOSO and PLZP. Shown is the significance of enrichment (-log₁₀ (P-value); hypergeometric test, Y axis) of genes that are dysregulated compared to WT during the TGF-\(\beta\)1+IL-6 differentiation of GPR65^{-/-} (96h), PLZP^{-/-} (48h) and TOSO^{-/-} (96h) cells. Red (blue) bars represent genes

characterizing PC1 of Figure 4C negatively (positively). Dashed red line: p = 0.01. (F,G) Reduction in IL17A-producing cells in TOSO^{-/-} T cells differentiated in vitro. (F) Intracellular cytokine staining as in (A) but for WT or TOSO^{-/-} CD4⁺ T-cells, activated in vitro for 96h. (G) Quantification of secreted IL-17A and Il-17F for CD4⁺ T cells from respective WT (dark green) or $TOSO^{-/-}$ (light green) mice as in (B) but at 48h. * p < 0.05, ** p < 0.01, *** p < 0.001. (H) Reduced IL-17A production by $TOSO^{-/-}$ LN memory T cells in a recall assay as in (C). (I) Hampered IL-17A production by PLZP^{-/-} CD4+ T cells in an in vitro recall assay. PLZP^{-/-} (bottom row) and littermate controls (top row) were immunized with 100 µg of MOG₃₅₋₅₅/CFA. Cells were harvested from the draining LNs and spleen 8 days post immunization and cultured ex vivo for 4 days with progressive concentrations of MOG₃₅₋₅₅ (left column: 0 μg, middle: 5 μg and right: 20 μg) and 20ng/ml of IL-23. CD4⁺ T cells were analyzed for IFN-y (Y axis) and IL-17A (X axis) production by intracellular cytokine staining. (J) Quantification of secreted IL-17A and IL-17F of a MOG₃₅₋₅₅ recall assay for littermate controls (dark green) and PLZP^{-/-} mice (light green) at 96h post ex vivo. All experiments are a representative of at least three independent experiments with at least three experimental replicates per group.

[0083] Figure 6A-6I. related to Figure 1. Single-cell RNA-seq quality control. (A,B) Correlation between the first three PCs (X axis), and different RNA-seq quality measures (colored bars). (A) Before filtering and normalization, the main PCs highly correlate with various library quality scores (Legend below panel A & B), indicating that the dominant signal in the pre-normalization data may reflect experimental artifacts. (B) Normalization strongly reduces these correlations. Applicants find that before filtering and normalization (panel A) the main PCs highly correlate with the various library quality scores, as opposed to post-normalization (panel B). These results indicate that the dominant signal in the prenormalization data might reflect experimental artifacts. (C) An example of a cell-specific false-negative curve (FNC). The false-negative rate (Y axis, percentage of genes in an expression bin that are detected in this cell (non zero estimated abundance)) is depicted as a function of transcript abundance in the bulk population (X axis, average expression level of genes within each bin). Each blue circle corresponds to a set of housekeeping genes (stratified according to their bulk-population expression levels). The false-negative curve (black solid line) is derived using a logistic function fit. (D) Correlations between single-cell

and bulk population profiles. Bar chart depicts the Spearman correlations coefficients (X axis) for each experimental batch (Y axis), where cells from each batch originate from a single mouse. A unique batch identifier is indicated in parentheses. Shown are Spearman correlations of gene expression profiles between pairs of single cells (blue bars, mean and standard deviation); between each single cell and a matched bulk population (orange bars, mean and standard deviation); between an average over all single cells and a matched bulk population (red bars); and between two bulk population replicates (green bars). (E) RNA-FlowFISH validation of expression distribution obtained by RNA-seq. Shown are the singlecell expression distributions for a set of select genes (rows) by RNA-seq (left column) and RNA-FlowFISH (right column). For RNA-seq distributions, the frequency of cells (Y axis) is shown as a function of expression (X axis, FPKM+1, log₁₀), whereas RNA-FlowFISH is plotted as number of cells (Y axis) as a function of transcript (spot) count (X axis). Applicants find agreement for a variety of distributions, ranging from non-expressing (Csf2, Itgax, Sdc1) to unimodal distributions (Irf4, Batf, Actb) and bimodal distributions (Il17a, 112).(F) Constitutively expressed genes are enriched for housekeeping functions. Shown is the fold enrichment of housekeeping genes among all the non-bimodally expressed genes (X axis) for each condition (Y axis) (G) As in (A), corresponding p-values (hypergeometric test). (H, I) Applicants find greater variation in expression levels for key immune genes. (H) Standard deviation (Yaxis) of all the detectably expressed genes in the non-pathogenic (TGF-β1+IL-6) condition is plotted vs. their single-cell average expression (X axis). Shown are housekeeping genes (green crosses), immune-response-related genes (red crosses, based on Gene Ontology) and other genes (blue dots). Selected outliers are highlighted by black squares. (I) As in (G), but where the standard deviation (Yaxis) and mean (X axis) of every gene are computed only for cells that express it (defined as those cells that are associated with the Gaussian distribution in our mixture model).

Figure 7A-7E. **Population controls compared to single cell profiles. (A)** Gene expression levels of selected genes for *in vivo* derived cells projected on PCs. Cells (CNS cells: diamonds, LN cells: crosses) are shown in a PCA plot as in **Figure 2C** and each cell is colored proportionally to the ranked expression of the denoted gene in this cell relative to the other cells (blue – low expression; red – high expression). Top: *Gpr65* is predominantly expressed in the CNS, and particularly high in the Th17/Th1-like memory subpopulation

(light blue). Bottom: *Ccr8*, previously associated with Th2 cells but not Th1/Th17 cells, is also highly expressed in most CNS derived cells. **(B)** Gene expression levels of selected genes for *in vitro* derived cells projected on PCs. Similar analysis as in (A) but for the different differentiation conditions *in vitro* and plotted on a PCA plot as in **Figure 3A**; (Left column) regulatory genes (IL-9, IL-16, Podoplanin and Foxp1) show high expression in the non-pathogenic condition (TGF-β1+IL-6), whereas inflammatory genes such as IL-22, IL-23r, Cxcr3 and Gm-csf are more highly expressed in the pathogenic differentiation condition (IL-1β+IL-6+IL-23). Figure 7 is sometimes also referred to as Supplementary Figure 2.**(C, D, E)** Shown are PCA plots based on single cell profiles (small circles, triangles, squares and crosses) along with projected matching population controls (large circles) and single cell averages (large squares) for **(C)** *In vitro* Th17 single cells only from the non-pathogenic conditions (TGF-β1+IL-6); **(D)** *In vivo* Th17 cells (CNS: purple, LN: orange); and **(E)** *In vitro* Th17 cells from all conditions: pathogenic (IL-1β+IL-6+IL-23; red icons); and non-pathogenic conditions (TGF-β1+IL-6. Black icons: cells not sorted for IL-17A/GFP+; light blue icons: IL-17A/GFP+ cells).

Figure 8A-8D. (A) GPR65^{-/-} memory cells express less IL-17A upon IL-23 [0085]reactivation. Sorted memory (CD62L⁻CD44⁺CD4⁺) T cells from wild type (WT, top row) and GPR65^{-/-} (bottom row) mice were reactivated with IL-23 (20 ng/ml) for 96 h. Intracellular cytokine (ICC) analysis shows a reduction of ~45% IL-17A-positive cells (X axis) for GPR65-/- cells when compared to WT (B) IL-17A and IFN-y production is hampered in vivo for GPR65^{-/-} cells. A reduced frequency of IL-17A (X axis) and IFN- γ (Y axis) positive cells from the draining LNs and spleen of MOG₃₅₋₅₅/CFA-immunized RAG-1^{-/-} mice reconstituted with WT (top row) or GPR65^{-/-} (bottom row) naïve CD4⁺ T-cells 30 days post EAE induction (C) GPR65^{-/-} CD4⁺ T-cells express less IL-17A and more IL-10. Quantification of secreted cytokines (Y axis) by cytometric bead assays (CBAs) for differentiation conditions (X axis) either without (Th0; left) or with Th17 polarizing cytokines (TGF-\beta1+IL-6, middle; or IL-1\beta+IL-6+IL-23, right) for GPR65-/- cells (light green) and littermate control cells (dark green). * p<0.05, ** p<0.01, *** p<0.001. All data presented here are a representative of three independent experiments, with at least 3 replicates per experiment. (D) Linear regression analysis of EAE disease progression for GPR65 KO vs. WT mice. Mean clinical score (Y axis) is shown as a function of days post

immunization (X axis) for WT (solid line) and GPR65^{-/-} mice (dotted line). *** p<0.001. Data presented here is a representative of at least three independent experiments.

[0086] Figure 9A-9C. (A) TOSO^{-/-} cells express less IL-17A but more IFN-γ upon IL-23 reactivation. Sorted memory (CD62L'CD44⁺CD4⁺) T cells from WT and TOSO^{-/-} mice were reactivated (anti-CD3/CD28) with IL-23 (20 ng/ml) for 96 h. The ICC analysis shows hardly any IL-17A (X axis) positive cells amongst TOSO^{-/-} cells (bottom row) whereas WT does show a small IL-17A positive population (top row). On the other hand, IFN-γ (Y axis) gets induced to a larger extend in the TOSO^{-/-} cells. **(B)** TOSO^{-/-} cells exhibit lower FOXP3 levels during Treg differentiation. Naïve CD4⁺ T-cells from WT (top row) and TOSO^{-/-} mice (bottom row) were differentiated *in vitro* with TGF-β1 (2 ng/ml) for 96h, and subsequently stained and analyzed by ICC for intracellular FOXP3 expression (Y axis) and CD4 expression (X axis). **(C)** TOSO^{-/-} cells secrete less IL-17A, less IL-10, but more IFN- γ. Quantification of secreted cytokines (Y axis) by CBA for a 96h differentiation in conditions (X axis) without (Th0; left) or with Th17 polarizing cytokines (TGF-β1+IL-6, middle; or IL-1β+IL-6+IL-23, right) for TOSO^{-/-} cells (light green) and WT cells (dark green). * p<0.05, ** p<0.01, *** p<0.001. All data presented here are a representative of three independent experiments, with at least three replicates per experiment.

[0087] Figure 10A-10C. **(A)** PLZP^{-/-} T cells show comparable IL-17A and IFN-γ production to littermate controls (PLZP HET). ICC staining for IFN-γ (Y axis) and IL-17A (X axis) of CD4⁺ T cells from respective littermate controls (top) or PLZP^{-/-} (bottom) cells activated *in vitro* for 48h with anti-CD3 and anti-CD28 either without (Th0; left) or with Th17 polarizing cytokines (TGF-β1+IL-6, middle; or IL-1β+IL-6+IL-23, right). **(B)** PLZP -/- cells produce less IL-17A cells upon IL-23 stimulation. PLZP-/- mice and littermate controls were immunized with 100 μg of MOG₃₅₋₅₅/CFA. Cells harvested 8 days after immunization from the draining LNs and spleen were cultured *ex vivo* for 4 days with (right column) or without (left) IL-23 (20 ng/ml). CD4⁺ T cells were analyzed for IFN-γ and IL-17A production by ICC staining. **(C)** PLZP-/- cells express significantly less pro-inflammatory cytokines in a MOG recall assay. Quantification of secreted cytokines (Y axis) by CBA in a MOG recall assay with different MOG₃₅₋₅₅ concentrations (X axis) for PLZP-/- mice (light green) and littermate controls (dark green). * p<0.05, ** p<0.01, *** p<0.001, showing significant reduction of cytokine expression under MOG reactivation conditions. All data

presented here are a representative of three independent experiments, with at least 3 replicates per experiment.

Figure 11A-11M. CD5L shifts Th17 cell lipidome balance from saturated to [0088] unsaturated lipid, modulating Roryt ligand availability and function. Figure 11A, B show Lipidome analysis of Th17 cells. (A) WT and CD5L^{-/-} naïve T cells were differentiated. Cells and supernatant were harvested at 96 hours and subjected to MS/LC. Three independent mouse experiments were performed. Data shown are median expression of each metabolite identified that have at least 1.5 fold differences between WT and CD5L^{-/-} under the TGFβ1+IL-6 condition. (B₁C) Expression of representative metabolites including a cholesterol ester and a PUFA-containing TAG species. (D) Microscopy of wt and CD5L^{-/-} cells stained for free cholesterol. (E,F) Roryt ChIP from Th17 cells differentiated as described in A. under various conditions as indicated. (G-J) Dual luciferase reporter assays. (G,H) Dual luciferase reporter assays were performed in EL4 cells stably transfected with a control vector or Roryt vector. CD5L retroviral vector was cotransfected in G. (H).CD5L retroviral vector was cotransfected at 0, 25, 50 and 100ng / well. (I-J) 10µM of either arachidonic acid (PUFA) or 20µM of palmitic acid (SFA) were used whenever a single dose was indicated.. All ChIP and luciferase assay are representative of at least 3 independent experiments. Representative metabolites were used, including a cholesterol ester and a PUFA-containing TAG species. (K) Lipids from the two clusters in (A) are partitioned based on the length and saturation of their fatty acyl (FA) side chains. Those carrying more than one FA are further grouped by their FAs with the least saturation or longest carbon chain (in that order). Complete FA profile is shown in (L) Ratio of specific lipids in WT vs. CD5L^{-/-} Th17 cells carrying various PUFA side chains. Phospholipids included in this analysis: phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and their respective lyso-metabolites. Neutral lipid included in this analysis: Triacylglyceride, diacylglyceride and monoacylglyceride. Asterisk (*) denotes to p < 0.05 in Student's t-test. (M) Expression of cyp51 and sc4mol mRNA in WT or CD5L^{-/-} Th17 cells (TGF-β1+IL-6, left panels) or WT Th17 cells (TGF-β1+IL-6 with control or IL-23, right panels). SFA (palmitic acid, 25uM) or PUFA (arachidonic acid, 25uM) was added at 48h and cells analyzed at 96h.

[0089] Figure 12A-12F. Characterization of WT and CD5L-/- mice with EAE. Mice were immunized (A) 15 days post immunization, lymphocytes from CNS were isolated and

directly stained and analyzed with flow cytometry for the expression of FoxP3. (B) Cells from CNS as in A were restimulated with PMA/ionomycin with Brefeldin A for 4 hours and profiled for cytokine production by flow cytometry. (C) Cells were isolated from Inguinal LN of mice 10 days after immunization. 3H Thymidine incorporation assays was used to determine T cell proliferation in response to MOG35-55 peptide; (D) Supernatant from C were harvested and the amount of IL-17 was determined by ELISA. (E, F) Summary data for Fig 17 G, H respectively.

[0090] Figure 13, related to Figure 2. Differential gene expression of Th17 cells derived from LPL, LN and CNS. Shown are the expression levels of immune response related genes (rows; Z normalized per row) that are differentially expressed between bulk population samples from CNS, LN and LPL derived Th17 cells (columns).

[0091] Figure 14A-14D, related to Figures 2 and 3. Temporal asynchrony between individual cells *in vivo* and *in vitro*. (A, B) Weighted Pearson correlation coefficient (red: positive; blue: negative) of each single cell's profile (row) with bulk profiles at each of 18 time points (columns) along a 72h time course of Th17 cell differentiation, previously collected with microarrays (Yosef et al., 2013). The weighted Pearson correlation weighs down the effect of false negatives, as done in the weighted PCA, and z-normalized per row. Cells collected *in vitro* (A) show more synchrony than those from in vivo samples (B). (C, D) Some of the cell-to-cell variation likely reflects time of differentiation. Shown are the PCA plots for *in vitro* cells (C, as in Figure 3; IL-1 β +IL-6+IL-23, triangles, TGF- β 1+IL-6, squares and circles) and *in vivo* cells (D, as in Figure 2; CNS cells: diamonds, LN cells: crosses). Each cell (point) is colored proportionally to the ranked associated time point of this cell's maximal correlation from the analysis in (A, B) (blue: early time points; red: late time points).

[0092] Figure 15A-15B, related to Figure 4. Population based studies do not prioritize genes that have top ranks for Th17 pathogenicity by single cell data Shown are the 184 genes from our co-variation matrix (rows, Figure 4B), ordered according to population based ranking (X-axis) along with their rank (log10 (#genes that are ranked equal to or better); Y-axis) based on either (A) a compendium of 41 studies of Th17 cells, or (B) a literature based ranking (Ciofani et al., 2012). Red crosses: our top ranking candidates that we followed up on. While the 184 genes from our covariation matrix are more highly ranked than the other 7,000 genes from the single cells *in vitro* (p<10⁻¹⁰ and ~0.015 for A and B, respectively; Wilcoxon Ranksum test), they do not necessarily stand out.

Figure 16A-16I. CD5L is a candidate regulator of Th17 cell functional states. (A-[0093] C) Single-cell RNA-seq analysis. (A) Cd51 expression of single-cells from in-vitro generated and in-vivo sorted Th17 cells (IL-17.GFP+) from mice at the peak of EAE. (B,C) Correlation of Cd5l expression in non-pathogenic Th17 cells (TGF-\beta1+IL-6) with (B) the cell pathogenicity score (based on the pathogenic signature of (Lee et al., 2012)). $p = 2.63 \times 10^{-5}$ (Wilcoxon ranksum test, comparing signature scores of Cd51 expressing vs. non-expressing cells); (C) the founding signature genes of the single-cell based proinflammatory (red) and regulatory (green) modules (Solid bars, significant correlation (p < 0.05); striked bars, none significant correlation). (D-F) Validation of CD5L expression in vitro. Naïve T cells (CD4+CD62L+CD44-CD25-) were sorted and differentiated as indicated and analyzed by qPCR for CD5L expression at 48h (D) and 72h (E) and by flow cytometry at 48h (F); (E) IL-23 or control was added at 48h in fresh media. (G-I) Validation of Cd51 expression in vivo. (G,H) IL-17A.GFP reporter mice were immunized to induce EAE. Cells were sorted from spleen (G) and CNS (H) at the peak of disease. Cd5l and Il17a expression are measured by qPCR. Figure shown is representative data of three technical replicates from two independent experiments. (I) Cells were sorted from the gut of naïve mice and the number of RNA transcripts measured by nanostring nCounter platform.

[0094] Figure 17A-17H. CD5L represses effector functions without affecting Th17 cell differentiation. (A) EAE was induced by MOG/CFA (40μg) immunization. Left panel is pooled results from 3 independent experiments. Right panel: cytokine profile of CD4 T cells isolated from CNS at day15 post immunization. (**B-D**) Naïve splenic T cells were sorted and differentiated with TGF-β1+IL-6 for 48h. Th17 cell signature genes were measured by flow cytometry (**B**), ELISA (**C**) and qPCR (**D**). (**E-F**) Effector Th17 cells were differentiated as in **B** and resuspended in fresh media with no cytokines for 72h followed by restimulation. Gene profile was measured by flow cytometry (**E**) and qPCR (**F**). (**G-H**) Effector memory T cells (CD4+CD62L-CD44+) (**G**) or Effector memory Th17 cells (CD4+CD62L-CD44+RorytGFP+) (**H**) were sorted from spleen of naïve mice and activated with TCR stimulation.

[0095] Figure 18A-18F. CD5L and PUFA/SFA profile regulate Rorγt function in a ligand-dependent manner. (A, B) Rorγt ChIP-PCR analyses in WT and CD5L-/- Th17 cells. WT, CD5L-/- and Rorγt-/- Th17 cells were differentiated with TGF-β1+IL-6 for 96h. Enrichment of Rorγt binding to genomic regions of Il17 (A) and Il10 (B) is measured using qPCR. For fatty

acid experiments, 10 µM of either SFA (palmitic acid) or PUFA (arachidonic acid or docosahexaenoic acid showed similar results) was added to WT Th17 cell culture at day 0. Three independent experiments were performed. (C, D) Roryt transcriptional activity was measured by luciferase reporter of Il17 promoter in EL4 cells transfected with CD5L-RV at 0, 25, 50, 100ng (C) or 100ng with 7, 27 dihydroxycholsterol (5, 0.5 or 0.05uM) (D). (E) Naïve WT T cells were activated without polarizing cytokines (Th0) and infected with retrovirus expressing Roryt in the presence of control-RV or CD5L-RV with or without FF-MAS (5uM) as a source of Roryt ligand. Each dot represents an independent infection. (F) WT or CD5L-/- naïve cells were differentiated with TGF-β1+IL-6. At 48h, cells were replated in fresh media with either control or FF-MAS (5uM) as a source of Roryt ligand. Cells were harvested for FACS analysis 72h later. [0096] Figure 19A-19E. Single cell RNA-seq identifies Cd5l as a gene in covariance with the pathogenic module within non-pathogenic Th17 cells. (A) Histogram of Cd5l expression in single cell from unsorted in-vitro derived Th17 cells differentiated under the TGF-β1+IL-6 condition. (B) The expression of Cd51 within single cell is shown in covariance with the first PC of *in-vitro* derived cells as in (A) where it correlates with the pro-inflammatory module. (C) Within the same PC space as in (B), score of pathogenic signature is shown to also correlate with PC1 as defined in the text. (D, E) Regulation of CD5L expression. (D) Naïve CD4 T cells were sorted from WT, Stat3cD4Cre-/-, RorgtcD4Cre-/- and CD5L-/- and differentiated under Th0 or Th17 (TGFb1+IL-6) condition as in Figure 17D. CD5L expression was measured intracellularly at 48 hour post differentiation. Upper panel: representative FACS plot; Lower panel: summary results from three independent experiments. (E) Naïve CD4 T cells were differentiated under Th0 condition and transfected with retrovirus carrying Stat3 construct to overexpress STAT3. CD5L expression was measured as in **D**.

[0097] Figure 20A-20F. CD5L antagonizes pathogenicity of Th17 cells. (A,B) (A) Summary data for Cytokine profile of WT and CD5L-/- 2D2 cells isolated from CNS at day 27 post transfer. Cells were gated on Va3.2+CD4+. (B) Summary data for Cytokine profile of CD45.1 WT recipients that received 100,000 naïve WT or CD5L-/- 2D2 T cells and were immunized the following day with MOG/CFA without pertussis toxin. Cytokine profile of 2D2 T cells was examined on day 10 in draining LN (C-F) Passive EAE is induced. Briefly, naïve 2D2 cells were sorted from WT mice and differentiated under the pathogenic Th17 differentiation

conditions with IL-1β+IL-6+IL-23. At 24h, either CD5L-RV or control-RV retrovirus was used to infect the activated cells. The expression of CD5L was analyzed at day 3 post-infection. 50% of cells expressed GFP in both groups. (C) Representative flow cytometry analysis of cytokine profile prior to transfer; (D) Weight loss curve after transfer; (E) EAE score; Dotted green and red lines are linear regression analysis performed as in **Fig. 17A**. (F) Representative flow cytometry data of cytokine profile of CD4+T cells from CNS at day 30 post transfer.

[0098] Figure 21A-21E. CD5L regulates lipid metabolism in Th17 cells and modulate Roryt ligand. (A) Lipidomics analysis. Entire set of 39 lipids (rows) resolved from cell lysates (columns) that have significantly different levels among any Th17 cell conditions and are with a fold difference of at least 1.5. (B) The ratio of specific lipids (from all those resolved) between WT and CD5L-/- Th17 cells (both in TGF-β1+IL-6 conditions) (Y-axis) partitioned by their PUFA content (X axis). (C) Left panel: The ratio of a particular lipid with specific SFA or MUFA content in WT vs CD5L-/- Th17 cells (TGF-β1+IL-6) is shown. Right panel, same data as left panel, segregating phospholipid from neutral lipids (**D**) MEVA analysis of all lipid species resolved (rows) comparing cell lysates or media in different Th17 cell conditions (1-6, legend). cholesterolester; LPC, lysophosphatidylcholine; PC, CE, phosphatidylcholine; SM, sphingomyelin; TAG, triacylglyceride. B623: IL-1β+IL-6+IL-23 condition; T16: TGF-β1+IL-6 condition. (E) Expression of free cholesterol in Th17 cells. WT and CD5L-/- Th17 cells were differentiated with TGF-β1+IL-6 for 48 hours and harvested for confocal microscopy. Cells were fixed using paraformaldehyde and stained with Filipin for 30 minutes, washed and sealed with DAPI-coatedcover slides and analyzed by confocal microscopy.

DETAILED DESCRIPTION

[0099] This invention relates generally to compositions and methods for identifying the regulatory networks that control T cell balance, T cell differentiation, T cell maintenance and/or T cell function, as well compositions and methods for exploiting the regulatory networks that control T cell balance, T cell differentiation, T cell maintenance and/or T cell function in a variety of therapeutic and/or diagnostic indications.

[00100] The invention provides compositions and methods for modulating T cell balance. The invention provides T cell modulating agents that modulate T cell balance. For example, in some embodiments, the invention provides T cell modulating agents and methods of using these

T cell modulating agents to regulate, influence or otherwise impact the level of and/or balance between T cell types, *e.g.*, between Th17 and other T cell types, for example, regulatory T cells (Tregs). For example, in some embodiments, the invention provides T cell modulating agents and methods of using these T cell modulating agents to regulate, influence or otherwise impact the level of and/or balance between Th17 activity and inflammatory potential. As used herein, terms such as "Th17 cell" and/or "Th17 phenotype" and all grammatical variations thereof refer to a differentiated T helper cell that expresses one or more cytokines selected from the group the consisting of interleukin 17A (IL-17A), interleukin 17F (IL-17F), and interleukin 17A/F heterodimer (IL17-AF). As used herein, terms such as "Th1 cell" and/or "Th1 phenotype" and all grammatical variations thereof refer to a differentiated T helper cell that expresses interferon gamma (IFNγ). As used herein, terms such as "Th2 cell" and/or "Th2 phenotype" and all grammatical variations thereof refer to a differentiated T helper cell that expresses one or more cytokines selected from the group the consisting of interleukin 4 (IL-4), interleukin 5 (IL-5) and interleukin 13 (IL-13). As used herein, terms such as "Treg cell" and/or "Treg phenotype" and all grammatical variations thereof refer to a differentiated T cell that expresses Foxp3.

[00101] These compositions and methods use T cell modulating agents to regulate, influence or otherwise impact the level and/or balance between T cell types, *e.g.*, between Th17 and other T cell types, for example, regulatory T cells (Tregs).

[00102] The invention provides methods and compositions for modulating T cell differentiation, for example, helper T cell (Th cell) differentiation. The invention provides methods and compositions for modulating T cell maintenance, for example, helper T cell (Th cell) maintenance. The invention provides methods and compositions for modulating T cell function, for example, helper T cell (Th cell) function. These compositions and methods use T cell modulating agents to regulate, influence or otherwise impact the level and/or balance between Th17 cell types, *e.g.*, between pathogenic and non-pathogenic Th17 cells. These compositions and methods use T cell modulating agents to influence or otherwise impact the differentiation of a population of T cells, for example toward the Th17 cell phenotype, with or without a specific pathogenic distinction, or away from the Th17 cell phenotype, with or without a specific pathogenic distinction. These compositions and methods use T cell modulating agents to influence or otherwise impact the maintenance of a population of T cells, for example toward the Th17 cell phenotype, with or without a specific pathogenic distinction, or away from the

Th17 cell phenotype, with or without a specific pathogenic distinction. These compositions and methods use T cell modulating agents to influence or otherwise impact the differentiation of a population of Th17 cells, for example toward the pathogenic Th17 cell phenotype or away from the pathogenic Th17 cell phenotype, or toward the non-pathogenic Th17 cell phenotype or away from the non-pathogenic Th17 cell phenotype. These compositions and methods use T cell modulating agents to influence or otherwise impact the maintenance of a population of Th17 cells, for example toward the pathogenic Th17 cell phenotype or away from the pathogenic Th17 cell phenotype, or toward the non-pathogenic Th17 cell phenotype or away from the non-pathogenic Th17 cell phenotype. These compositions and methods use T cell modulating agents to influence or otherwise impact the differentiation of a population of T cells, for example toward a non-Th17 cell subset or away from a non-Th17 cell subset. These compositions and methods use T cell modulating agents to influence or otherwise impact the maintenance of a population of T cells, for example toward a non-Th17 T cell subset or away from a non-Th17 cell subset.

[00103] As used herein, terms such as "pathogenic Th17 cell" and/or "pathogenic Th17 phenotype" and all grammatical variations thereof refer to Th17 cells that, when induced in the presence of TGF-β3, express an elevated level of one or more genes selected from Cxcl3, IL22, IL3, Ccl4, Gzmb, Lrmp, Ccl5, Casp1, Csf2, Ccl3, Tbx21, Icos, IL17r, Stat4, Lgals3 and Lag, as compared to the level of expression in a TGF-β3-induced Th17 cells. As used herein, terms such as "non-pathogenic Th17 cell" and/or "non-pathogenic Th17 phenotype" and all grammatical variations thereof refer to Th17 cells that, when induced in the presence of TGF-β3, express a decreased level of one or more genes selected from IL6st, IL1rn, Ikzf3, Maf, Ahr, IL9 and IL10, as compared to the level of expression in a TGF-β3-induced Th17 cells.

[00104] These compositions and methods use T cell modulating agents to influence or otherwise impact the function and/or biological activity of a T cell or T cell population. These compositions and methods use T cell modulating agents to influence or otherwise impact the function and/or biological activity of a helper T cell or helper T cell population. These compositions and methods use T cell modulating agents to influence or otherwise impact the function and/or biological activity of a Th17 cell or Th17 cell population. These compositions and methods use T cell modulating agents to influence or otherwise impact the function and/or biological activity of a non-Th17 T cell or non-Th17 T cell population, such as, for

example, a Treg cell or Treg cell population, or another CD4+ T cell or CD4+ T cell population. These compositions and methods use T cell modulating agents to influence or otherwise impact the plasticity of a T cell or T cell population, *e.g.*, by converting Th17 cells into a different subtype, or into a new state.

[00105] The methods provided herein combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based tools for performing perturbations in primary T cells to systematically derive and experimentally validate a model of the dynamic regulatory network that controls Th17 differentiation. *See e.g.*, Yosef et al., "Dynamic regulatory network controlling Th17 cell differentiation, Nature, vol. 496: 461-468 (2013)/doi: 10.1038/nature11981, the contents of which are hereby incorporated by reference in their entirety. The network consists of two self-reinforcing, but mutually antagonistic, modules, with novel regulators, whose coupled action may be essential for maintaining the level and/or balance between Th17 and other CD4+ T cell subsets. Overall, 9,159 interactions between 71 regulators and 1,266 genes were active in at least one network; 46 of the 71 are novel. The examples provided herein identify and validate 39 regulatory factors, embedding them within a comprehensive temporal network and reveals its organizational principles, and highlights novel drug targets for controlling Th17 differentiation.

[00106] A "Th17-negative" module includes regulators such as SP4, ETS2, IKZF4, TSC22D3 and/or, IRF1. It was found that the transcription factor Tsc22d3, which acts as a negative regulator of a defined subtype of Th17 cells, co-localizes on the genome with key Th17 regulators. The "Th17 positive" module includes regulators such as MINA, PML, POU2AF1, PROCR, SMARCA4, ZEB1, EGR2, CCR6, and/or FAS. Perturbation of the chromatin regulator Mina was found to up-regulate Foxp3 expression, perturbation of the co-activator Pou2af1 was found to up-regulate IFN-γ production in stimulated naïve cells, and perturbation of the TNF receptor Fas was found to up-regulate IL-2 production in stimulated naïve cells. All three factors also control IL-17 production in Th17 cells.

[00107] The immune system must strike a balance between mounting proper responses to pathogens and avoiding uncontrolled, autoimmune reaction. Pro-inflammatory IL-17-producing Th17 cells are a prime case in point: as a part of the adaptive immune system, Th17 cells mediate clearance of fungal infections, but they are also strongly implicated in the

pathogenesis of autoimmunity (Korn et al., 2009). In mice, although Th17 cells are present at sites of tissue inflammation and autoimmunity (Korn et al., 2009), they are also normally present at mucosal barrier sites, where they maintain barrier functions without inducing tissue inflammation (Blaschitz and Raffatellu, 2010). In humans, functionally distinct Th17 cells have been described; for instance, Th17 cells play a protective role in clearing different types of pathogens like *Candida albicans* (Hernandez-Santos and Gaffen, 2012) or *Staphylococcus aureus* (Lin et al., 2009), and promote barrier functions at the mucosal surfaces (Symons et al., 2012), despite their pro-inflammatory role in autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, psoriasis systemic lupus erythematous and asthma (Waite and Skokos, 2012). Thus, there is considerable diversity in the biological function of Th17 cells and in their ability to induce tissue inflammation or provide tissue protection.

[00108] Mirroring this functional diversity, depending on the cytokines used for differentiation, *in vitro* polarized Th17 cells can either cause severe autoimmune responses upon adoptive transfer ('pathogenic Th17 cells') or have little or no effect in inducing autoimmune disease ('non-pathogenic cells') (Ghoreschi et al., 2010; Lee et al., 2012). *In vitro* differentiation of naïve CD4 T cells in the presence of TGF- β 1+IL-6 induces an IL-17A and IL-10 producing population of Th17 cells, that are generally nonpathogenic, whereas activation of naïve T cells in the presence IL-1 β +IL-6+IL-23 induces a T cell population that produces IL-17A and IFN- γ , and are potent inducers of autoimmune disease induction (Ghoreschi et al., 2010).

[00109] Charting this functional heterogeneity of Th17 cells to understand the molecular circuits that control it is thus of both fundamental and clinical importance. Previous transcriptional profiling studies have identified sets of genes, dubbed 'pathogenicity signatures', that consist of genes differentially expressed between 'pathogenic' vs. 'non-pathogenic' in vitro differentiated Th17 cells (Ghoreschi et al., 2010; Lee et al., 2012). However, such studies relied either on genomic profiling of cell populations, which are limited in their ability to detect distinct cellular states within a cell mixture, or on tracking a handful of pre-selected markers by fluorescence-based flow cytometry (Perfetto et al., 2004), which cannot discover novel molecular factors that regulate Th17 cell function. Emerging technological and computational approaches for single-cell RNA-seq (Shalek et al., 2013; Shalek et al., 2014; Trapnell et al., 2014) have opened up the exciting possibility of a more

unbiased and principled interrogation into the regulatory circuits underlying different cell states. Single-cell RNA-seq also facilitates the genomic study of samples with limited cell availability, such as *in vivo* derived Th17 cells from the sites of tissue inflammation during an autoimmune reaction.

[00110] Here, single-cell RNA-seq was performed of 806 mouse Th17 cells from in vivo and in vitro models and computationally analyzed the data to dissect the molecular basis of different functional Th17 cell states. It was found that Th17 cells isolated from the draining LNs and CNS at the peak of EAE span a spectrum of states ranging from self renewing cells in the LN to Th1-like effector/memory cells and a dysfunctional, senescent-like cell phenotype in the CNS. *In vitro* polarized Th17 cells also spanned a pathogenicity spectrum from potentially pathogenic to more regulatory cells. Genes associated with these opposing states include not only canonical regulators that were identified at a population level, but also novel candidates that have not been previously detected by population-level expression approaches (Ciofani et al., 2012; Yosef et al., 2013), which were prioritized for functional analysis. Testing four highranking candidates – Gpr65, Plzp, Toso and Cd51 – with knockout mice, substantial effects were found both on in vitro Th17-cell differentiation and on the development of EAE in vivo. This work provides novel insights into Th17 cellular and functional states in vivo leading to the discovery of novel regulators for targeted manipulation of pathogenic functions of Th17 cells in autoimmune disease.

[00111] The T cell modulating agents are used to modulate the expression of one or more target genes or one or more products of one or more target genes that have been identified as genes responsive to Th17-related perturbations. These target genes are identified, for example, by contacting a T cell, *e.g.*, naïve T cells, partially differentiated T cells, differentiated T cells and/or combinations thereof, with a T cell modulating agent and monitoring the effect, if any, on the expression of one or more signature genes or one or more products of one or more signature genes. In some embodiments, the one or more signature genes are selected from those listed in Table 1 or 2 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods).

[00112] In some embodiments, the target gene is one or more Th17-associated cytokine(s) or receptor molecule(s) selected from those listed in Table 3 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods). In some

embodiments, the target gene is one or more Th17-associated transcription regulator(s) selected from those shown in Table S3 (Gaublomme 2015) or Table 4 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods).

[00113] In some embodiments, the target gene is one or more Th17-associated transcription regulator(s) selected from those shown in Table S3 (Gaublomme 2015) or Table 5 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods). In some embodiments, the target gene is one or more Th17-associated receptor molecule(s) selected from those listed in Table 6 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods). In some embodiments, the target gene is one or more Th17-associated kinase(s) selected from those listed in Table 7 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods). In some embodiments, the target gene is one or more Th17-associated signaling molecule(s) selected from those listed in Table 8 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods). In some embodiments, the target gene is one or more Th17-associated receptor molecule(s) selected from those listed in Table 9 of WO/2014/134351, incorporated herein by reference (alone or with those of other herein disclosed methods).

Automated Procedure for Selection of Signature Genes

[00114] The invention also provides methods of determining gene signatures that are useful in various therapeutic and/or diagnostic indications. The goal of these methods is to select a small signature of genes that will be informative with respect to a process of interest. The basic concept is that different types of information can entail different partitions of the "space" of the entire genome (>20k genes) into subsets of associated genes. This strategy is designed to have the best coverage of these partitions, given the constraint on the signature size. For instance, in some embodiments of this strategy, there are two types of information: (i) temporal expression profiles; and (ii) functional annotations. The first information source partitions the genes into sets of co-expressed genes. The information source partitions the genes into sets of co-functional genes. A small set of genes is then selected such that there are a desired number of representatives from each set, for example, at least 10 representatives from each co-expression set and at least 10 representatives from each co-functional set. The problem of working with multiple sources of information (and thus aiming to "cover" multiple partitions) is known in the

theory of computer science as Set-Cover. While this problem cannot be solved to optimality (due to its NP-hardness) it can be approximated to within a small factor. In some embodiments, the desired number of representatives from each set is one or more, at least 2, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, 35 or more, 40 or more, 50 or more, 60 or more, 70 or more, 80 or more, 90 or more, or 100 or more.

[00115] An important feature of this approach is that it can be given either the size of the signature (and then find the best coverage it can under this constraint); or the desired level of coverage (and then select the minimal signature size that can satisfy the coverage demand).

An exemplary embodiment of this procedure is the selection of the 275-gene [00116] signature (Table 1 of WO/2014/134351, incorporated herein by reference), which combined several criteria to reflect as many aspect of the differentiation program as was possible. The following requirements were defined: (1) the signature must include all of the TFs that belong to a Th17 microarray signature (comparing to other CD4+ T cells, see e.g., Wei et al., in Immunity vol. 30 155-167 (2009)), see Methods in WO/2014/134351, incorporated herein by reference); that are included as regulators in the network and are at least slightly differentially expressed; or that are strongly differentially expressed; (2) it must include at least 10 representatives from each cluster of genes that have similar expression profiles; (3) it must contain at least 5 representatives from the predicted targets of each TF in the different networks; (4) it must include a minimal number of representatives from each enriched Gene Ontology (GO) category (computed over differentially expressed genes); and, (5) it must include a manually assembled list of ~100 genes that are related to the differentiation process, including the differentially expressed cytokines, receptor molecules and other cell surface molecules. Since these different criteria might generate substantial overlaps, a set-cover algorithm was used to find the smallest subset of genes that satisfies all of five conditions. 18 genes whose expression showed no change (in time or between treatments) in the microarray data were added to this list.

Use of Signature Genes

[00117] The invention provides T cell related gene signatures for use in a variety of diagnostic and/or therapeutic indications. For example, the invention provides Th17 related signatures that are useful in a variety of diagnostic and/or therapeutic indications. "Signatures" in the context of the present invention encompasses, without limitation nucleic acids, together

with their polymorphisms, mutations, variants, modifications, subunits, fragments, and other analytes or sample-derived measures.

[00118] Exemplary signatures are shown in Tables 1 and 2 of WO/2014/134351, incorporated herein by reference, and are collectively referred to herein as, *inter alia*, "Th17-associated genes," "Th17-associated nucleic acids," "signature genes," or "signature nucleic acids." These signatures are useful in methods of diagnosing, prognosing and/or staging an immune response in a subject by detecting a first level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes selected from those listed in Table 1 or 2 of WO/2014/134351, incorporated herein by reference, and comparing the detected level to a control of level of signature gene or gene product expression, activity and/or function, wherein a difference in the detected level and the control level indicates that the presence of an immune response in the subject.

[00119] These signatures are useful in methods of monitoring an immune response in a subject by detecting a level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes selected from those listed in Table 1 or 2 of WO/2014/134351, incorporated herein by reference, at a first time point, detecting a level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes selected from those listed in Table 1 or 2 of WO/2014/134351, incorporated herein by reference, at a second time point, and comparing the first detected level of expression, activity and/or function with the second detected level of expression, activity and/or function with the first and second detected levels indicates a change in the immune response in the subject.

[00120] These signatures are useful in methods of identifying patient populations at risk or suffering from an immune response based on a detected level of expression, activity and/or function of one or more signature genes or one or more products of one or more signature genes selected from those listed in Table 1 or Table 2 of WO/2014/134351, incorporated herein by reference,. These signatures are also useful in monitoring subjects undergoing treatments and therapies for aberrant immune response(s) to determine efficaciousness of the treatment or therapy. These signatures are also useful in monitoring subjects undergoing treatments and therapies for aberrant immune response(s) to determine whether the patient is responsive to the treatment or therapy. These signatures are also useful for selecting or modifying therapies and

treatments that would be efficacious in treating, delaying the progression of or otherwise ameliorating a symptom of an aberrant immune response. The signatures provided herein are useful for selecting a group of patients at a specific state of a disease with accuracy that facilitates selection of treatments.

[00121] The present invention also comprises a kit with a detection reagent that binds to one or more signature nucleic acids. Also provided by the invention is an array of detection reagents, e.g., oligonucleotides that can bind to one or more signature nucleic acids. Suitable detection reagents include nucleic acids that specifically identify one or more signature nucleic acids by having homologous nucleic acid sequences, such as oligonucleotide sequences, complementary to a portion of the signature nucleic acids packaged together in the form of a kit. The oligonucleotides can be fragments of the signature genes. For example the oligonucleotides can be 200, 150, 100, 50, 25, 10 or fewer nucleotides in length. The kit may contain in separate container or packaged separately with reagents for binding them to the matrix), control formulations (positive and/or negative), and/or a detectable label such as fluorescein, green fluorescent protein, rhodamine, cyanine dyes, Alexa dyes, luciferase, radiolabels, among others. Instructions (e.g., written, tape, VCR, CD-ROM, etc.) for carrying out the assay may be included in the kit. The assay may for example be in the form of a Northern hybridization or DNA chips or a sandwich ELISA or any other method as known in the art. Alternatively, the kit contains a nucleic acid substrate array comprising one or more nucleic acid sequences.

Use of T Cell Modulating Agents

[00122] Suitable T cell modulating agent(s) for use in any of the compositions and methods provided herein include an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent. By way of non-limiting example, suitable T cell modulating agents or agents for use in combination with one or more T cell modulating agents are shown in Table 10 of WO/2014/134351, incorporated herein by reference.

[00123] It will be appreciated that administration of therapeutic entities in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences (15th ed, Mack Publishing

Company, Easton, PA (1975)), particularly Chapter 87 by Blaug, Seymour, therein. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LipofectinTM), DNA conjugates, anhydrous absorption pastes, oil-in- water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present invention, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration. See also Baldrick P. "Pharmaceutical excipient development: the need for preclinical guidance." Regul. Toxicol Pharmacol. 32(2):210-8 (2000), Wang W. "Lyophilization and development of solid protein pharmaceuticals." Int. J. Pharm. 203(1-2):1-60 (2000), Charman WN "Lipids, lipophilic drugs, and oral drug deliverysome emerging concepts." J Pharm Sci. 89(8):967-78 (2000), Powell et al. "Compendium of excipients for parenteral formulations" PDA J Pharm Sci Technol. 52:238-311 (1998) and the citations therein for additional information related to formulations, excipients and carriers well known to pharmaceutical chemists.

Therapeutic formulations of the invention, which include a T cell modulating agent, [00124] are used to treat or alleviate a symptom associated with an immune-related disorder or an aberrant immune response. The present invention also provides methods of treating or alleviating a symptom associated with an immune-related disorder or an aberrant immune response. A therapeutic regimen is carried out by identifying a subject, e.g., a human patient suffering from (or at risk of developing) an immune-related disorder or aberrant immune response, using standard methods. For example, T cell modulating agents are useful therapeutic tools in the treatment of autoimmune diseases and/or inflammatory disorders. In certain embodiments, the use of T cell modulating agents that modulate, e.g., inhibit, neutralize, or interfere with, Th17 T cell differentiation is contemplated for treating autoimmune diseases and/or inflammatory disorders. In certain embodiments, the use of T cell modulating agents that modulate, e.g., enhance or promote, Th17 T cell differentiation is contemplated for augmenting Th17 responses, for example, against certain pathogens and other infectious diseases. The T cell modulating agents are also useful therapeutic tools in various transplant indications, for example, to prevent, delay or otherwise mitigate transplant rejection and/or

prolong survival of a transplant, as it has also been shown that in some cases of transplant rejection, Th17 cells might also play an important role. (*See e.g.*, Abadja F, Sarraj B, Ansari MJ., "Significance of T helper 17 immunity in transplantation." Curr Opin Organ Transplant. 2012 Feb;17(1):8-14. doi: 10.1097/MOT.0b013e32834ef4e4). The T cell modulating agents are also useful therapeutic tools in cancers and/or anti-tumor immunity, as Th17/Treg balance has also been implicated in these indications. For example, some studies have suggested that IL-23 and Th17 cells play a role in some cancers, such as, by way of non-limiting example, colorectal cancers. (*See e.g.*, Ye J, Livergood RS, Peng G. "The role and regulation of human Th17 cells in tumor immunity." Am J Pathol. 2013 Jan;182(1):10-20. doi: 10.1016/j.ajpath.2012.08.041. Epub 2012 Nov 14). The T cell modulating agents are also useful in patients who have genetic defects that exhibit aberrant Th17 cell production, for example, patients that do not produce Th17 cells naturally.

[00125] The T cell modulating agents are also useful in vaccines and/or as vaccine adjuvants against autoimmune disorders, inflammatory diseases, etc. The combination of adjuvants for treatment of these types of disorders are suitable for use in combination with a wide variety of antigens from targeted self-antigens, *i.e.*, autoantigens, involved in autoimmunity, *e.g.*, myelin basic protein; inflammatory self-antigens, *e.g.*, amyloid peptide protein, or transplant antigens, *e.g.*, alloantigens. The antigen may comprise peptides or polypeptides derived from proteins, as well as fragments of any of the following: saccharides, proteins, polynucleotides or oligonucleotides, autoantigens, amyloid peptide protein, transplant antigens, allergens, or other macromolecular components. In some instances, more than one antigen is included in the antigenic composition.

[00126] Autoimmune diseases include, for example, Acquired Immunodeficiency Syndrome (AIDS, which is a viral disease with an autoimmune component), alopecia areata, ankylosing spondylitis, antiphospholipid syndrome, autoimmune Addison's disease, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune inner ear disease (AIED), autoimmune lymphoproliferative syndrome (ALPS), autoimmune thrombocytopenic purpura (ATP), Behcet's disease, cardiomyopathy, celiac sprue-dermatitis hepetiformis; chronic fatigue immune dysfunction syndrome (CFIDS), chronic inflammatory demyelinating polyneuropathy (CIPD), cicatricial pemphigold, cold agglutinin disease, crest syndrome, Crohn's disease, Degos' disease, dermatomyositis-juvenile, discoid lupus, essential mixed cryoglobulinemia, fibromyalgia-

fibromyositis, Graves' disease, Guillain-Barré syndrome, Hashimoto's thyroiditis, idiopathic pulmonary fibrosis, idiopathic thrombocytopenia purpura (ITP), IgA nephropathy, insulindependent diabetes mellitus, juvenile chronic arthritis (Still's disease), juvenile rheumatoid arthritis, Ménière's disease, mixed connective tissue disease, multiple sclerosis, myasthenia gravis, pernacious anemia, polyarteritis nodosa, polychondritis, polyglandular syndromes, polymyalgia rheumatica, polymyositis and dermatomyositis, primary agammaglobulinemia, primary biliary cirrhosis, psoriasis, psoriatic arthritis, Raynaud's phenomena, Reiter's syndrome, rheumatic fever, rheumatoid arthritis, sarcoidosis, scleroderma (progressive systemic sclerosis (PSS), also known as systemic sclerosis (SS)), Sjögren's syndrome, stiff-man syndrome, systemic lupus erythematosus, Takayasu arteritis, temporal arteritis/giant cell arteritis, ulcerative colitis, uveitis, vitiligo and Wegener's granulomatosis.

[00127] In some embodiments, T cell modulating agents are useful in treating, delaying the progression of, or otherwise ameliorating a symptom of an autoimmune disease having an inflammatory component such as an aberrant inflammatory response in a subject. In some embodiments, T cell modulating agents are useful in treating an autoimmune disease that is known to be associated with an aberrant Th17 response, *e.g.*, aberrant IL-17 production, such as, for example, multiple sclerosis (MS), psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, uveitis, lupus, ankylosing spondylitis, and rheumatoid arthritis.

[00128] Inflammatory disorders include, for example, chronic and acute inflammatory disorders. Examples of inflammatory disorders include Alzheimer's disease, asthma, atopic allergy, allergy, atherosclerosis, bronchial asthma, eczema, glomerulonephritis, graft vs. host disease, hemolytic anemias, osteoarthritis, sepsis, stroke, transplantation of tissue and organs, vasculitis, diabetic retinopathy and ventilator induced lung injury.

[00129] Symptoms associated with these immune-related disorders include, for example, inflammation, fever, general malaise, fever, pain, often localized to the inflamed area, rapid pulse rate, joint pain or aches (arthralgia), rapid breathing or other abnormal breathing patterns, chills, confusion, disorientation, agitation, dizziness, cough, dyspnea, pulmonary infections, cardiac failure, respiratory failure, edema, weight gain, mucopurulent relapses, cachexia, wheezing, headache, and abdominal symptoms such as, for example, abdominal pain, diarrhea or constipation.

[00130] Efficaciousness of treatment is determined in association with any known method for diagnosing or treating the particular immune-related disorder. Alleviation of one or more symptoms of the immune-related disorder indicates that the T cell modulating agent confers a clinical benefit.

[00131] Administration of a T cell modulating agent to a patient suffering from an immune-related disorder or aberrant immune response is considered successful if any of a variety of laboratory or clinical objectives is achieved. For example, administration of a T cell modulating agent to a patient is considered successful if one or more of the symptoms associated with the immune-related disorder or aberrant immune response is alleviated, reduced, inhibited or does not progress to a further, *i.e.*, worse, state. Administration of T cell modulating agent to a patient is considered successful if the immune-related disorder or aberrant immune response enters remission or does not progress to a further, *i.e.*, worse, state.

[00132] A therapeutically effective amount of a T cell modulating agent relates generally to the amount needed to achieve a therapeutic objective. The amount required to be administered will furthermore depend on the specificity of the T cell modulating agent for its specific target, and will also depend on the rate at which an administered T cell modulating agent is depleted from the free volume other subject to which it is administered.

[00133] T cell modulating agents can be administered for the treatment of a variety of diseases and disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.

[00134] Where polypeptide-based T cell modulating agents are used, the smallest fragment that specifically binds to the target and retains therapeutic function is preferred. Such fragments can be synthesized chemically and/or produced by recombinant DNA technology. (See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993)). The formulation can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.

Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

[00135] The invention comprehends a treatment method or Drug Discovery method or method of formulating or preparing a treatment comprising any one of the methods or uses herein discussed.

[00136] The present invention also relates to identifying molecules, advantageously small molecules or biologics, that may be involved in inhibiting one or more of the mutations in one or more genes selected from the group consisting of *Toso, advantageously Ctla2b*, *Gatm, Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination contemplates screening libraries of small molecules or biologics to identify compounds involved in suppressing or inhibiting expression of somatic mutations or alter the cells phenotypically so that the cells with mutations behave more normally in one or more of *Toso, advantageously Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51*.

[00137] High-throughput screening (HTS) is contemplated for identifying small molecules or biologics involved in suppressing or inhibiting expression of somatic mutations in one or more of *Toso, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65, Plzp* or *Cd5l* or any combination thereof *Gpr65, Plzp* or *Cd5l* in any combination of *Gpr65, Plzp, Toso* or *Cd5l*. The flexibility of the process has allowed numerous and disparate areas of biology to engage with an equally diverse palate of chemistry (see, e.g., Inglese et al., Nature Chemical Biology 3, 438 - 441 (2007)). Diverse sets of chemical libraries, containing more than 200,000 unique small molecules, as well as natural product libraries, can be screened. This includes, for example, the

Prestwick library (1,120 chemicals) of off-patent compounds selected for structural diversity, collective coverage of multiple therapeutic areas, and known safety and bioavailability in humans, as well as the NINDS Custom Collection 2 consisting of a 1,040 compound-library of mostly FDA-approved drugs (see, e.g., US Patent No. 8,557,746) are also contemplated.

[00138] The NIH's Molecular Libraries Probe Production Centers Network (MLPCN) offers access to thousands of small molecules – chemical compounds that can be used as tools to probe basic biology and advance our understanding of disease. Small molecules can help researchers understand the intricacies of a biological pathway or be starting points for novel therapeutics. The Broad Institute's Probe Development Center (BIPDeC) is part of the MLPCN and offers access to a growing library of over 330,000 compounds for large scale screening and medicinal chemistry. Any of these compounds may be utilized for screening compounds involved in suppressing or inhibiting expression of somatic mutations in one or more of *Toso*, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd51 or any combination thereof Gpr65, Plzp or Cd51 in any combination of Gpr65, Plzp, Toso or Cd51.

[00139] The phrase "therapeutically effective amount" as used herein refers to a nontoxic but sufficient amount of a drug, agent, or compound to provide a desired therapeutic effect.

[00140] As used herein "patient" refers to any human being receiving or who may receive medical treatment.

[00141] A "polymorphic site" refers to a polynucleotide that differs from another polynucleotide by one or more single nucleotide changes.

[00142] A "somatic mutation" refers to a change in the genetic structure that is not inherited from a parent, and also not passed to offspring.

[00143] Therapy or treatment according to the invention may be performed alone or in conjunction with another therapy, and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment generally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed. The duration of the therapy depends on the age and condition of the patient, the stage of the a cardiovascular disease, and how the patient responds to the treatment. Additionally, a person

having a greater risk of developing a cardiovascular disease (e.g., a person who is genetically predisposed) may receive prophylactic treatment to inhibit or delay symptoms of the disease.

[00144] The medicaments of the invention are prepared in a manner known to those skilled in the art, for example, by means of conventional dissolving, lyophilizing, mixing, granulating or confectioning processes. Methods well known in the art for making formulations are found, for example, in Remington: The Science and Practice of Pharmacy, 20th ed., ed. A. R. Gennaro, 2000, Lippincott Williams & Wilkins, Philadelphia, and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York.

[00145] Administration of medicaments of the invention may be by any suitable means that results in a compound concentration that is effective for treating or inhibiting (e.g., by delaying) the development of a cardiovascular disease. The compound is admixed with a suitable carrier substance, e.g., a pharmaceutically acceptable excipient that preserves the therapeutic properties of the compound with which it is administered. One exemplary pharmaceutically acceptable excipient is physiological saline. The suitable carrier substance is generally present in an amount of 1-95% by weight of the total weight of the medicament. The medicament may be provided in a dosage form that is suitable for oral, rectal, intravenous, intramuscular, subcutaneous, inhalation, nasal, topical or transdermal, vaginal, or ophthalmic administration. Thus, the medicament may be in form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, delivery devices, suppositories, enemas, injectables, implants, sprays, or aerosols.

[00146] In order to determine the genotype of a patient according to the methods of the present invention, it may be necessary to obtain a sample of genomic DNA from that patient. That sample of genomic DNA may be obtained from a sample of tissue or cells taken from that patient.

[00147] The tissue sample may comprise but is not limited to hair (including roots), skin, buccal swabs, blood, or saliva. The tissue sample may be marked with an identifying number or other indicia that relates the sample to the individual patient from which the sample was taken. The identity of the sample advantageously remains constant throughout the methods of the invention thereby guaranteeing the integrity and continuity of the sample during extraction and analysis. Alternatively, the indicia may be changed in a regular fashion that ensures that the data,

and any other associated data, can be related back to the patient from whom the data was obtained. The amount/size of sample required is known to those skilled in the art.

[00148] Generally, the tissue sample may be placed in a container that is labeled using a numbering system bearing a code corresponding to the patient. Accordingly, the genotype of a particular patient is easily traceable.

[00149] In one embodiment of the invention, a sampling device and/or container may be supplied to the physician. The sampling device advantageously takes a consistent and reproducible sample from individual patients while simultaneously avoiding any cross-contamination of tissue. Accordingly, the size and volume of sample tissues derived from individual patients would be consistent.

[00150] According to the present invention, a sample of DNA is obtained from the tissue sample of the patient of interest. Whatever source of cells or tissue is used, a sufficient amount of cells must be obtained to provide a sufficient amount of DNA for analysis. This amount will be known or readily determinable by those skilled in the art.

[00151] DNA is isolated from the tissue/cells by techniques known to those skilled in the art (see, e.g., U.S. Pat. Nos. 6,548,256 and 5,989,431, Hirota et al., Jinrui Idengaku Zasshi. September 1989; 34(3):217-23 and John et al., Nucleic Acids Res. Jan. 25. 1991;19(2):408; the disclosures of which are incorporated by reference in their entireties). For example, high molecular weight DNA may be purified from cells or tissue using proteinase K extraction and ethanol precipitation. DNA may be extracted from a patient specimen using any other suitable methods known in the art.

[00152] It is an object of the present invention to determine the genotype of a given patient of interest by analyzing the DNA from the patent, in order to identify a patient carrying specific somatic mutations of the invention that are associated with developing a cardiovascular disease. In particular, the kit may have primers or other DNA markers for identifying particular mutations such as, but not limited to, one or more genes selected from the group consisting of *Toso*, advantageously Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd51 or any combination thereof Gpr65, Plzp or Cd51 in any combination of Gpr65, Plzp, Toso or Cd51.

[00153] There are many methods known in the art for determining the genotype of a patient and for identifying or analyzing whether a given DNA sample contains a particular somatic mutation. Any method for determining genotype can be used for determining genotypes in the present invention. Such methods include, but are not limited to, amplimer sequencing, DNA sequencing, fluorescence spectroscopy, fluorescence resonance energy transfer (or "FRET")-based hybridization analysis, high throughput screening, mass spectroscopy, nucleic acid hybridization, polymerase chain reaction (PCR), RFLP analysis and size chromatography (e.g., capillary or gel chromatography), all of which are well known to one of skill in the art.

[00154] The methods of the present invention, such as whole exome sequencing and targeted amplicon sequencing, have commercial applications in diagnostic kits for the detection of the somatic mutations in patients. A test kit according to the invention may comprise any of the materials necessary for whole exome sequencing and targeted amplicon sequencing, for example, according to the invention. In a particular advantageous embodiment, a diagnostic for the present invention may comprise testing for any of the genes in disclosed herein. The kit further comprises additional means, such as reagents, for detecting or measuring the sequences of the present invention, and also ideally a positive and negative control.

[00155] The present invention further encompasses probes according to the present invention that are immobilized on a solid or flexible support, such as paper, nylon or other type of membrane, filter, chip, glass slide, microchips, microbeads, or any other such matrix, all of which are within the scope of this invention. The probe of this form is now called a "DNA chip". These DNA chips can be used for analyzing the somatic mutations of the present invention. The present invention further encompasses arrays or microarrays of nucleic acid molecules that are based on one or more of the sequences described herein. As used herein "arrays" or "microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a solid or flexible support, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods and devices described in U.S. Pat. Nos. 5,446,603; 5,545,531; 5,807,522; 5,837,832; 5,874,219; 6,114,122; 6,238,910; 6,365,418; 6,410,229; 6,420,114; 6,432,696; 6,475,808 and 6,489,159 and PCT Publication No. WO 01/45843 A2, the disclosures of which are incorporated by reference in their entireties.

[00156] The present invention further encompasses the analysis of lipids. Lipid profiling is a targeted metabolomics platform that provides a comprehensive analysis of lipid species within a cell or tissue. Profiling based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) is capable of providing quantitative data and is adaptable to high throughput analyses. Additionally, Liquid chromatography—mass spectrometry (LC-MS, or alternatively HPLC-MS) may be used.

EXAMPLES & TECHNOLOGIES AS TO THE INSTANT INVENTION

[00157] The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.

In this regard, mention is made that mutations in cells and also mutated mice for use in or as to the invention can be by way of the CRISPR-Cas system or a Cas9-expressing eukaryotic cell or Cas-9 expressing eukaryote, such as a mouse. The Cas9-expressing eukaryotic cell or eukaryote, e.g., mouse, can have guide RNA delivered or administered thereto, whereby the RNA targets a loci and induces a desired mutation for use in or as to the invention. With respect to general information on CRISPR-Cas Systems, components thereof, and delivery of such components, including methods, materials, delivery vehicles, vectors, particles, and making and using thereof, including as to amounts and formulations, as well as Cas9-expressing eukaryotic cells, Cas-9 expressing eukaryotes, such as a mouse, all useful in or as to the instant invention, reference is made to: US Patents Nos. 8,697,359, 8,771,945, 8,795,965, 8,865,406, 8,871,445, 8,889,356, 8,889,418, 8,895,308, 8,932,814, 8,945,839, 8,906,616; US Patent Publications US 2014-0310830 (US APP. Ser. No. 14/105,031), US 2014-0287938 A1 (U.S. App. Ser. No. 14/213,991), US 2014-0273234 A1 (U.S. App. Ser. No. 14/293,674), US2014-0273232 A1 (U.S. App. Ser. No. 14/290,575), US 2014-0273231 (U.S. App. Ser. No. 14/259,420), US 2014-0256046 A1 (U.S. App. Ser. No. 14/226,274), US 2014-0248702 A1 (U.S. App. Ser. No. 14/258,458), US 2014-0242700 A1 (U.S. App. Ser. No. 14/222,930), US 2014-0242699 A1 (U.S. App. Ser. No. 14/183,512), US 2014-0242664 A1 (U.S. App. Ser. No. 14/104,990), US 2014-0234972 A1 (U.S. App. Ser. No. 14/183,471), US 2014-0227787 A1

(U.S. App. Ser. No. 14/256,912), US 2014-0189896 A1 (U.S. App. Ser. No. 14/105,035), US 2014-0186958 (U.S. App. Ser. No. 14/105,017), US 2014-0186919 A1 (U.S. App. Ser. No. 14/104,977), US 2014-0186843 A1 (U.S. App. Ser. No. 14/104,900), US 2014-0179770 A1 (U.S. App. Ser. No. 14/104,837) and US 2014-0179006 A1 (U.S. App. Ser. No. 14/183,486), US 2014-0170753 (US App Ser No 14/183,429); European Patents / Patent Applications: EP 2 771 468 (EP13818570.7), EP 2 764 103 (EP13824232.6), and EP 2 784 162 (EP14170383.5); and PCT Patent Publications WO 2014/093661 (PCT/US2013/074743), WO 2014/093694 (PCT/US2013/074611), WO (PCT/US2013/074790), 2014/093595 WO 2014/093718 (PCT/US2013/074825), WO (PCT/US2013/074812), 2014/093709 WO 2014/093622 (PCT/US2013/074667), WO 2014/093635 (PCT/US2013/074691), WO 2014/093655 (PCT/US2013/074736), WO (PCT/US2013/074819), 2014/093712 WO2014/093701 (PCT/US2013/074800), WO2014/018423 (PCT/US2013/051418), WO 2014/204723 (PCT/US2014/041790), 2014/204724 (PCT/US2014/041800), WO WO 2014/204725 (PCT/US2014/041803), WO 2014/204726 (PCT/US2014/041804), WO 2014/204727 (PCT/US2014/041806), (PCT/US2014/041808), WO 2014/204728 WO 2014/204729 (PCT/US2014/041809), and:

- Multiplex genome engineering using CRISPR/Cas systems. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., & Zhang, F. Science Feb 15;339(6121):819-23 (2013);
- RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Jiang W., Bikard D., Cox D., Zhang F, Marraffini LA. Nat Biotechnol Mar;31(3):233-9 (2013);
- ➤ One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Wang H., Yang H., Shivalila CS., Dawlaty MM., Cheng AW., Zhang F., Jaenisch R. Cell May 9;153(4):910-8 (2013);
- ➤ Optical control of mammalian endogenous transcription and epigenetic states. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. Nature. 2013 Aug 22;500(7463):472-6. doi: 10.1038/Nature12466. Epub 2013 Aug 23;
- ➤ Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Ran, FA., Hsu, PD., Lin, CY., Gootenberg, JS., Konermann, S., Trevino, AE., Scott, DA., Inoue, A., Matoba, S., Zhang, Y., & Zhang, F. Cell Aug 28. pii: S0092-8674(13)01015-5. (2013);

➤ DNA targeting specificity of RNA-guided Cas9 nucleases. Hsu, P., Scott, D., Weinstein, J., Ran, FA., Konermann, S., Agarwala, V., Li, Y., Fine, E., Wu, X., Shalem, O., Cradick, TJ., Marraffini, LA., Bao, G., & Zhang, F. Nat Biotechnol doi:10.1038/nbt.2647 (2013);

- Genome engineering using the CRISPR-Cas9 system. Ran, FA., Hsu, PD., Wright, J., Agarwala, V., Scott, DA., Zhang, F. Nature Protocols Nov;8(11):2281-308. (2013);
- ➤ Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Shalem, O., Sanjana, NE., Hartenian, E., Shi, X., Scott, DA., Mikkelson, T., Heckl, D., Ebert, BL., Root, DE., Doench, JG., Zhang, F. Science Dec 12. (2013). [Epub ahead of print];
- Crystal structure of cas9 in complex with guide RNA and target DNA. Nishimasu, H., Ran, FA., Hsu, PD., Konermann, S., Shehata, SI., Dohmae, N., Ishitani, R., Zhang, F., Nureki, O. Cell Feb 27. (2014). 156(5):935-49;
- ➤ Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Wu X., Scott DA., Kriz AJ., Chiu AC., Hsu PD., Dadon DB., Cheng AW., Trevino AE., Konermann S., Chen S., Jaenisch R., Zhang F., Sharp PA. Nat Biotechnol. (2014) Apr 20. doi: 10.1038/nbt.2889,
- CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling, Platt et al., Cell 159(2): 440-455 (2014) DOI: 10.1016/j.cell.2014.09.014,
- ➤ Development and Applications of CRISPR-Cas9 for Genome Engineering, Hsu et al, Cell 157, 1262-1278 (June 5, 2014) (Hsu 2014),
- Figure 3: 343(6166): 80–84. doi:10.1126/science.1246981,
- Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation, Doench et al., Nature Biotechnology published online 3 September 2014; doi:10.1038/nbt.3026, and
- ➤ In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9, Swiech et al, Nature Biotechnology; published online 19 October 2014; doi:10.1038/nbt.3055, each of which is incorporated herein by reference.
 - **[00159]** The invention involves a high-throughput single-cell RNA-Seq and/or targeted nucleic acid profiling (for example, sequencing, quantitative reverse transcription polymerase chain reaction, and the like) where the RNAs from different cells are tagged individually, allowing a single library to be created while retaining the cell identity of each read. In this regard, technology of US provisional patent application serial no. 62/048,227 filed September 9, 2014, the disclosure of which is incorporated by reference, may be used in or as to the invention.

A combination of molecular barcoding and emulsion-based microfluidics to isolate, lyse, barcode, and prepare nucleic acids from individual cells in high-throughput is used. Microfluidic devices (for example, fabricated in polydimethylsiloxane), sub-nanoliter reverse emulsion droplets. These droplets are used to co-encapsulate nucleic acids with a barcoded capture bead. Each bead, for example, is uniquely barcoded so that each drop and its contents are distinguishable. The nucleic acids may come from any source known in the art, such as for example, those which come from a single cell, a pair of cells, a cellular lysate, or a solution. The cell is lysed as it is encapsulated in the droplet. To load single cells and barcoded beads into these droplets with Poisson statistics, 100,000 to 10 million such beads are needed to barcode ~10,000-100,000 cells. In this regard there can be a single-cell sequencing library which may comprise: merging one uniquely barcoded mRNA capture microbead with a single-cell in an emulsion droplet having a diameter of 75-125 µm; lysing the cell to make its RNA accessible for capturing by hybridization onto RNA capture microbead; performing a reverse transcription either inside or outside the emulsion droplet to convert the cell's mRNA to a first strand cDNA that is covalently linked to the mRNA capture microbead; pooling the cDNA-attached microbeads from all cells; and preparing and sequencing a single composite RNA-Seq library. Accordingly, it is envisioned as to or in the practice of the invention provides that there can be a method for preparing uniquely barcoded mRNA capture microbeads, which has a unique barcode and diameter suitable for microfluidic devices which may comprise: 1) performing reverse phosphoramidite synthesis on the surface of the bead in a pool-and-split fashion, such that in each cycle of synthesis the beads are split into four reactions with one of the four canonical nucleotides (T, C, G, or A) or unique oligonucleotides of length two or more bases; 2) repeating this process a large number of times, at least six, and optimally more than twelve, such that, in the latter, there are more than 16 million unique barcodes on the surface of each bead in the pool. (See www.ncbi.nlm.nih.gov/pmc/articles/PMC206447). Likewise, in or as to the instant invention there can be an apparatus for creating a single-cell sequencing library via a microfluidic system, which may comprise: an oil-surfactant inlet which may comprise a filter and a carrier fluid channel, wherein said carrier fluid channel further may comprise a resistor; an inlet for an analyte which may comprise a filter and a carrier fluid channel, wherein said carrier fluid channel may further comprise a resistor; an inlet for mRNA capture microbeads and lysis reagent which may comprise a filter and a carrier fluid channel, wherein said carrier fluid

channel may further comprise a resistor; said carrier fluid channels have a carrier fluid flowing therein at an adjustable or predetermined flow rate; wherein each said carrier fluid channels merge at a junction; and said junction being connected to a mixer, which contains an outlet for drops. Similarly, as to or in the practice of the instant invention there can be a method for creating a single-cell sequencing library which may comprise: merging one uniquely barcoded RNA capture microbead with a single-cell in an emulsion droplet having a diameter of 125 µm lysing the cell thereby capturing the RNA on the RNA capture microbead; performing a reverse transcription either after breakage of the droplets and collection of the microbeads; or inside the emulsion droplet to convert the cell's RNA to a first strand cDNA that is covalently linked to the RNA capture microbead; pooling the cDNA-attached microbeads from all cells; and preparing and sequencing a single composite RNA-Seq library; and, the emulsion droplet can be between 50-210 µm. In a further embodiment, the method wherein the diameter of the mRNA capture microbeads is from 10 µm to 95 µm. Thus, the practice of the instant invention comprehends preparing uniquely barcoded mRNA capture microbeads, which has a unique barcode and diameter suitable for microfluidic devices which may comprise: 1) performing reverse phosphoramidite synthesis on the surface of the bead in a pool-and-split fashion, such that in each cycle of synthesis the beads are split into four reactions with one of the four canonical nucleotides (T,C,G,or A); 2) repeating this process a large number of times, at least six, and optimally more than twelve, such that, in the latter, there are more than 16 million unique barcodes on the surface of each bead in the pool. The covalent bond can be polyethylene glycol. The diameter of the mRNA capture microbeads can be from 10 µm to 95 µm. Accordingly, it is also envisioned as to or in the practice of the invention that there can be a method for preparing uniquely barcoded mRNA capture microbeads, which has a unique barcode and diameter suitable for microfluidic devices which may comprise: 1) performing reverse phosphoramidite synthesis on the surface of the bead in a pool-and-split fashion, such that in each cycle of synthesis the beads are split into four reactions with one of the four canonical nucleotides (T, C, G, or A); 2) repeating this process a large number of times, at least six, and optimally more than twelve, such that, in the latter, there are more than 16 million unique barcodes on the surface of each bead in the pool. And, the diameter of the mRNA capture microbeads can be from 10 µm to 95 µm. Further, as to in the practice of the invention there can be an apparatus for creating a composite single-cell sequencing library via a microfluidic system, which may comprise: an oil-

surfactant inlet which may comprise a filter and two carrier fluid channels, wherein said carrier fluid channel further may comprise a resistor; an inlet for an analyte which may comprise a filter and two carrier fluid channels, wherein said carrier fluid channel further may comprise a resistor; an inlet for mRNA capture microbeads and lysis reagent which may comprise a carrier fluid channel; said carrier fluid channels have a carrier fluid flowing therein at an adjustable and predetermined flow rate; wherein each said carrier fluid channels merge at a junction; and said junction being connected to a constriction for droplet pinch-off followed by a mixer, which connects to an outlet for drops. The analyte may comprise a chemical reagent, a genetically perturbed cell, a protein, a drug, an antibody, an enzyme, a nucleic acid, an organelle like the mitochondrion or nucleus, a cell or any combination thereof. In an embodiment of the apparatus the analyte is a cell. In a further embodiment the cell is a brain cell. In an embodiment of the apparatus the lysis reagent may comprise an anionic surfactant such as sodium lauroyl sarcosinate, or a chaotropic salt such as guanidinium thiocyanate. The filter can involve square PDMS posts; e.g., with the filter on the cell channel of such posts with sides ranging between 125-135 µm with a separation of 70-100 mm between the posts. The filter on the oil-surfactant inlet may comprise square posts of two sizes; one with sides ranging between 75-100 µm and a separation of 25-30 µm between them and the other with sides ranging between 40-50 µm and a separation of 10-15 µm. The apparatus can involve a resistor, e.g., a resistor that is serpentine having a length of 7000 - 9000 µm, width of 50 - 75 µm and depth of 100 - 150 mm. The apparatus can have channels having a length of 8000 - 12,000 µm for oil-surfactant inlet, 5000-7000 for analyte (cell) inlet, and 900 - 1200 µm for the inlet for microbead and lysis agent; and/or all channels having a width of 125 - 250 mm, and depth of 100 - 150 mm. The width of the cell channel can be 125-250 µm and the depth 100-150 µm. The apparatus can include a mixer having a length of 7000-9000 µm, and a width of 110-140 µm with 35-450 zig-zigs every 150 µm. The width of the mixer can be about 125 µm. The oil-surfactant can be a PEG Block Polymer, such as BIORADTM QX200 Droplet Generation Oil. The carrier fluid can be a waterglycerol mixture. In the practice of the invention or as to the invention, a mixture may comprise a plurality of microbeads adorned with combinations of the following elements: bead-specific oligonucleotide barcodes; additional oligonucleotide barcode sequences which vary among the oligonucleotides on an indvidual bead and can therefore be used to differentiate or help identify those individual oligonucleotide molecules; additional oligonucleotide sequences that create

substrates for downstream molecular-biological reactions, such as oligo-dT (for reverse transcription of mature mRNAs), specific sequences (for capturing specific portions of the transcriptome, or priming for DNA polymerases and similar enzymes), or random sequences (for priming throughout the transcriptome or genome). The individual oligonucleotide molecules on the surface of any individual microbead may contain all three of these elements, and the third element may include both oligo-dT and a primer sequence. A mixture may comprise a plurality of microbeads, wherein said microbeads may comprise the following elements: at least one beadspecific oligonucleotide barcode; at least one additional identifier oligonucleotide barcode sequence, which varies among the oligonucleotides on an individual bead, and thereby assisting in the identification and of the bead specific oligonucleotide molecules; optionally at least one additional oligonucleotide sequences, which provide substrates for downstream molecularbiological reactions. A mixture may comprise at least one oligonucleotide sequence(s), which provide for substrates for downstream molecular-biological reactions. In a further embodiment the downstream molecular biological reactions are for reverse transcription of mature mRNAs; capturing specific portions of the transcriptome, priming for DNA polymerases and/or similar enzymes; or priming throughout the transcriptome or genome. The mixture may involve additional oligonucleotide sequence(s) which may comprise a oligio-dT sequence. The mixture further may comprise the additional oligonucleotide sequence which may comprise a primer sequence. The mixture may further comprise the additional oligonucleotide sequence which may comprise a oligo-dT sequence and a primer sequence. Examples of the labeling substance which may be employed include labeling substances known to those skilled in the art, such as fluorescent dyes, enzymes, coenzymes, chemiluminescent substances, and radioactive substances. Specific examples include radioisotopes (e.g., 32P, 14C, 125I, 3H, and 131I), fluorescein, rhodamine, dansyl chloride, umbelliferone, luciferase, peroxidase, alkaline phosphatase, β-galactosidase, β-glucosidase, horseradish peroxidase, glucoamylase, lysozyme, saccharide oxidase, microperoxidase, biotin, and ruthenium. In the case where biotin is employed as a labeling substance, preferably, after addition of a biotin-labeled antibody, streptavidin bound to an enzyme (e.g., peroxidase) is further added. Advantageously, the label is a fluorescent label. Examples of fluorescent labels include, but are not limited to, Atto dyes, 4-acetamido-4'isothiocyanatostilbene-2,2'disulfonic acid; acridine and derivatives: acridine, acridine isothiocyanate; 5-(2'-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS); 4-amino-N-[3-

vinylsulfonyl)phenyl]naphthalimide-3,5 disulfonate: N-(4-anilino-1-naphthyl)maleimide; anthranilamide; BODIPY; Brilliant Yellow; coumarin and derivatives; coumarin, 7-amino-4methylcoumarin (AMC, Coumarin 120), 7-amino-4-trifluoromethylcouluarin (Coumaran 151); cyanine dyes; cyanosine; 4',6-diaminidino-2-phenylindole (DAPI); 5'5"-dibromopyrogallolsulfonaphthalein (Bromopyrogallol Red); 7-diethylamino-3-(4'-isothiocyanatophenyl)-4methylcoumarin; diethylenetriamine pentaacetate; 4,4'-diisothiocyanatodihydro-stilbene-2,2'disulfonic acid; 4,4'-diisothiocyanatostilbene-2,2'-disulfonic 5acid; [dimethylamino]naphthalene-1-sulfonyl chloride (DNS, dansylchloride); 4dimethylaminophenylazophenyl-4'-isothiocyanate (DABITC); eosin and derivatives; eosin, eosin isothiocyanate, erythrosin and derivatives; erythrosin B, erythrosin, isothiocyanate; ethidium; fluorescein derivatives: 5-carboxyfluorescein (FAM), 5-(4,6-dichlorotriazin-2and yl)aminofluorescein (DTAF), 2',7'-dimethoxy-4'5'-dichloro-6-carboxyfluorescein, fluorescein, fluorescein isothiocyanate, QFITC, (XRITC); fluorescamine; IR144; IR1446; Malachite Green isothiocyanate; 4-methylumbelliferoneortho cresolphthalein; nitrotyrosine; pararosaniline; Phenol Red; B-phycoerythrin; o-phthaldialdehyde; pyrene and derivatives: pyrene, pyrene butyrate, succinimidyl 1-pyrene; butyrate quantum dots; Reactive Red 4 (Cibacron.TM. Brilliant Red 3B-A) rhodamine and derivatives: 6-carboxy-X-rhodamine (ROX), 6-carboxyrhodamine (R6G), lissamine rhodamine B sulfonyl chloride rhodamine (Rhod), rhodamine B, rhodamine 123, rhodamine X isothiocyanate, sulforhodamine B, sulforhodamine 101, sulfonyl chloride derivative of sulforhodamine 101 (Texas Red); N,N,N',N' tetramethyl-6-carboxyrhodamine (TAMRA); tetramethyl rhodamine; tetramethyl rhodamine isothiocyanate (TRITC); riboflavin; rosolic acid; terbium chelate derivatives; Cy3; Cy5; Cy5.5; Cy7; IRD 700; IRD 800; La Jolta Blue; phthalo cyanine; and naphthalo cyanine. A fluorescent label may be a fluorescent protein, such as blue fluorescent protein, cyan fluorescent protein, green fluorescent protein, red fluorescent protein, yellow fluorescent protein or any photoconvertible protein. Colormetric labeling, bioluminescent labeling and/or chemiluminescent labeling may further accomplish labeling. Labeling further may include energy transfer between molecules in the hybridization complex by perturbation analysis, quenching, or electron transport between donor and acceptor molecules, the latter of which may be facilitated by double stranded match hybridization complexes. The fluorescent label may be a perylene or a terrylen. In the alternative, the fluorescent label may be a fluorescent bar code. Advantageously, the label may be light

sensitive, wherein the label is light-activated and/or light cleaves the one or more linkers to release the molecular cargo. The light-activated molecular cargo may be a major light-harvesting complex (LHCII). In another embodiment, the fluorescent label may induce free radical formation. Advantageously, agents may be uniquely labeled in a dynamic manner (see, e.g., US provisional patent application serial no. 61/703,884 filed September 21, 2012). The unique labels are, at least in part, nucleic acid in nature, and may be generated by sequentially attaching two or more detectable oligonucleotide tags to each other and each unique label may be associated with a separate agent. A detectable oligonucleotide tag may be an oligonucleotide that may be detected by sequencing of its nucleotide sequence and/or by detecting non-nucleic acid detectable moieties to which it may be attached. Oligonucleotide tags may be detectable by virtue of their nucleotide sequence, or by virtue of a non-nucleic acid detectable moiety that is attached to the oligonucleotide such as but not limited to a fluorophore, or by virtue of a combination of their nucleotide sequence and the nonnucleic acid detectable moiety. A detectable oligonucleotide tag may comprise one or more nonoligonucleotide detectable moieties. Examples of detectable moieties may include, but are not limited to, fluorophores, microparticles including quantum dots (Empodocles, et al., Nature 399:126-130, 1999), gold nanoparticles (Reichert et al., Anal. Chem. 72:6025-6029, 2000), microbeads (Lacoste et al., Proc. Natl. Acad. Sci. USA 97(17):9461-9466, 2000), biotin, DNP (dinitrophenyl), fucose, digoxigenin, haptens, and other detectable moieties known to those skilled in the art. In some embodiments, the detectable moieties may be quantum dots. Methods for detecting such moieties are described herein and/or are known in the art. Thus, detectable oligonucleotide tags may be, but are not limited to, oligonucleotides which may comprise unique nucleotide sequences, oligonucleotides which may comprise detectable moieties, and oligonucleotides which may comprise both unique nucleotide sequences and detectable moieties. A unique label may be produced by sequentially attaching two or more detectable oligonucleotide tags to each other. The detectable tags may be present or provided in a plurality of detectable tags. The same or a different plurality of tags may be used as the source of each detectable tag may be part of a unique label. In other words, a plurality of tags may be subdivided into subsets and single subsets may be used as the source for each tag. One or more other species may be associated with the tags. In particular, nucleic acids released by a lysed cell may be ligated to one or more tags. These may include, for example, chromosomal DNA, RNA transcripts, tRNA, mRNA,

mitochondrial DNA, or the like. Such nucleic acids may be sequenced, in addition to sequencing the tags themselves, which may yield information about the nucleic acid profile of the cells, which can be associated with the tags, or the conditions that the corresponding droplet or cell was exposed to.

The invention accordingly may involve or be practiced as to high throughput and high [00160] resolution delivery of reagents to individual emulsion droplets that may contain cells, organelles, nucleic acids, proteins, etc. through the use of monodisperse aqueous droplets that are generated by a microfluidic device as a water-in-oil emulsion. The droplets are carried in a flowing oil phase and stabilized by a surfactant. In one aspect single cells or single organellesor single molecules (proteins, RNA, DNA) are encapsulated into uniform droplets from an aqueous solution/dispersion. In a related aspect, multiple cells or multiple molecules may take the place of single cells or single molecules. The aqueous droplets of volume ranging from 1 pL to 10 nL work as individual reactors. 104 to 105 single cells in droplets may be processed and analyzed in a single run. To utilize microdroplets for rapid large-scale chemical screening or complex biological library identification, different species of microdroplets, each containing the specific chemical compounds or biological probes cells or molecular barcodes of interest, have to be generated and combined at the preferred conditions, e.g., mixing ratio, concentration, and order of combination. Each species of droplet is introduced at a confluence point in a main microfluidic channel from separate inlet microfluidic channels. Preferably, droplet volumes are chosen by design such that one species is larger than others and moves at a different speed, usually slower than the other species, in the carrier fluid, as disclosed in U.S. Publication No. US 2007/0195127 and International Publication No. WO 2007/089541, each of which are incorporated herein by reference in their entirety. The channel width and length is selected such that faster species of droplets catch up to the slowest species. Size constraints of the channel prevent the faster moving droplets from passing the slower moving droplets resulting in a train of droplets entering a merge zone. Multi-step chemical reactions, biochemical reactions, or assay detection chemistries often require a fixed reaction time before species of different type are added to a reaction. Multi-step reactions are achieved by repeating the process multiple times with a second, third or more confluence points each with a separate merge point. Highly efficient and precise reactions and analysis of reactions are achieved when the frequencies of droplets from the inlet channels are matched to an optimized ratio and the volumes of the species are

matched to provide optimized reaction conditions in the combined droplets. Fluidic droplets may be screened or sorted within a fluidic system of the invention by altering the flow of the liquid containing the droplets. For instance, in one set of embodiments, a fluidic droplet may be steered or sorted by directing the liquid surrounding the fluidic droplet into a first channel, a second channel, etc. In another set of embodiments, pressure within a fluidic system, for example, within different channels or within different portions of a channel, can be controlled to direct the flow of fluidic droplets. For example, a droplet can be directed toward a channel junction including multiple options for further direction of flow (e.g., directed toward a branch, or fork, in a channel defining optional downstream flow channels). Pressure within one or more of the optional downstream flow channels can be controlled to direct the droplet selectively into one of the channels, and changes in pressure can be effected on the order of the time required for successive droplets to reach the junction, such that the downstream flow path of each successive droplet can be independently controlled. In one arrangement, the expansion and/or contraction of liquid reservoirs may be used to steer or sort a fluidic droplet into a channel, e.g., by causing directed movement of the liquid containing the fluidic droplet. In another, the expansion and/or contraction of the liquid reservoir may be combined with other flow-controlling devices and methods, e.g., as described herein. Non-limiting examples of devices able to cause the expansion and/or contraction of a liquid reservoir include pistons. Key elements for using microfluidic channels to process droplets include: (1) producing droplet of the correct volume, (2) producing droplets at the correct frequency and (3) bringing together a first stream of sample droplets with a second stream of sample droplets in such a way that the frequency of the first stream of sample droplets matches the frequency of the second stream of sample droplets. Preferably, bringing together a stream of sample droplets with a stream of premade library droplets in such a way that the frequency of the library droplets matches the frequency of the sample droplets. Methods for producing droplets of a uniform volume at a regular frequency are well known in the art. One method is to generate droplets using hydrodynamic focusing of a dispersed phase fluid and immiscible carrier fluid, such as disclosed in U.S. Publication No. US 2005/0172476 and International Publication No. WO 2004/002627. It is desirable for one of the species introduced at the confluence to be a pre-made library of droplets where the library contains a plurality of reaction conditions, e.g., a library may contain plurality of different compounds at a range of concentrations encapsulated as separate library elements for screening

their effect on cells or enzymes, alternatively a library could be composed of a plurality of different primer pairs encapsulated as different library elements for targeted amplification of a collection of loci, alternatively a library could contain a plurality of different antibody species encapsulated as different library elements to perform a plurality of binding assays. The introduction of a library of reaction conditions onto a substrate is achieved by pushing a premade collection of library droplets out of a vial with a drive fluid. The drive fluid is a continuous fluid. The drive fluid may comprise the same substance as the carrier fluid (e.g., a fluorocarbon oil). For example, if a library consists of ten pico-liter droplets is driven into an inlet channel on a microfluidic substrate with a drive fluid at a rate of 10,000 pico-liters per second, then nominally the frequency at which the droplets are expected to enter the confluence point is 1000 per second. However, in practice droplets pack with oil between them that slowly drains. Over time the carrier fluid drains from the library droplets and the number density of the droplets (number/mL) increases. Hence, a simple fixed rate of infusion for the drive fluid does not provide a uniform rate of introduction of the droplets into the microfluidic channel in the substrate. Moreover, library-to-library variations in the mean library droplet volume result in a shift in the frequency of droplet introduction at the confluence point. Thus, the lack of uniformity of droplets that results from sample variation and oil drainage provides another problem to be solved. For example if the nominal droplet volume is expected to be 10 pico-liters in the library, but varies from 9 to 11 pico-liters from library-to-library then a 10,000 pico-liter/second infusion rate will nominally produce a range in frequencies from 900 to 1,100 droplet per second. In short, sample to sample variation in the composition of dispersed phase for droplets made on chip, a tendency for the number density of library droplets to increase over time and library-tolibrary variations in mean droplet volume severely limit the extent to which frequencies of droplets may be reliably matched at a confluence by simply using fixed infusion rates. In addition, these limitations also have an impact on the extent to which volumes may be reproducibly combined. Combined with typical variations in pump flow rate precision and variations in channel dimensions, systems are severely limited without a means to compensate on a run-to-run basis. The foregoing facts not only illustrate a problem to be solved, but also demonstrate a need for a method of instantaneous regulation of microfluidic control over microdroplets within a microfluidic channel. Combinations of surfactant(s) and oils must be developed to facilitate generation, storage, and manipulation of droplets to maintain the unique

chemical/biochemical/biological environment within each droplet of a diverse library. Therefore, the surfactant and oil combination must (1) stabilize droplets against uncontrolled coalescence during the drop forming process and subsequent collection and storage, (2) minimize transport of any droplet contents to the oil phase and/or between droplets, and (3) maintain chemical and biological inertness with contents of each droplet (e.g., no adsorption or reaction of encapsulated contents at the oil-water interface, and no adverse effects on biological or chemical constituents in the droplets). In addition to the requirements on the droplet library function and stability, the surfactant-in-oil solution must be coupled with the fluid physics and materials associated with the platform. Specifically, the oil solution must not swell, dissolve, or degrade the materials used to construct the microfluidic chip, and the physical properties of the oil (e.g., viscosity, boiling point, etc.) must be suited for the flow and operating conditions of the platform. Droplets formed in oil without surfactant are not stable to permit coalescence, so surfactants must be dissolved in the oil that is used as the continuous phase for the emulsion library. Surfactant molecules are amphiphilic--part of the molecule is oil soluble, and part of the molecule is water soluble. When a water-oil interface is formed at the nozzle of a microfluidic chip for example in the inlet module described herein, surfactant molecules that are dissolved in the oil phase adsorb to the interface. The hydrophilic portion of the molecule resides inside the droplet and the fluorophilic portion of the molecule decorates the exterior of the droplet. The surface tension of a droplet is reduced when the interface is populated with surfactant, so the stability of an emulsion is improved. In addition to stabilizing the droplets against coalescence, the surfactant should be inert to the contents of each droplet and the surfactant should not promote transport of encapsulated components to the oil or other droplets. A droplet library may be made up of a number of library elements that are pooled together in a single collection (see, e.g., US Patent Publication No. 2010002241). Libraries may vary in complexity from a single library element to 1015 library elements or more. Each library element may be one or more given components at a fixed concentration. The element may be, but is not limited to, cells, organelles, virus, bacteria, yeast, beads, amino acids, proteins, polypeptides, nucleic acids, polynucleotides or small molecule chemical compounds. The element may contain an identifier such as a label. The terms "droplet library" or "droplet libraries" are also referred to herein as an "emulsion library" or "emulsion libraries." These terms are used interchangeably throughout the specification. A cell library element may include, but is not limited to, hybridomas, B-cells, primary cells, cultured

cell lines, cancer cells, stem cells, cells obtained from tissue, or any other cell type. Cellular library elements are prepared by encapsulating a number of cells from one to hundreds of thousands in individual droplets. The number of cells encapsulated is usually given by Poisson statistics from the number density of cells and volume of the droplet. However, in some cases the number deviates from Poisson statistics as described in Edd et al., "Controlled encapsulation of single-cells into monodisperse picolitre drops." Lab Chip, 8(8): 1262-1264, 2008. The discrete nature of cells allows for libraries to be prepared in mass with a plurality of cellular variants all present in a single starting media and then that media is broken up into individual droplet capsules that contain at most one cell. These individual droplets capsules are then combined or pooled to form a library consisting of unique library elements. Cell division subsequent to, or in some embodiments following, encapsulation produces a clonal library element. A bead based library element may contain one or more beads, of a given type and may also contain other reagents, such as antibodies, enzymes or other proteins. In the case where all library elements contain different types of beads, but the same surrounding media, the library elements may all be prepared from a single starting fluid or have a variety of starting fluids. In the case of cellular libraries prepared in mass from a collection of variants, such as genomically modified, yeast or bacteria cells, the library elements will be prepared from a variety of starting fluids. Often it is desirable to have exactly one cell per droplet with only a few droplets containing more than one cell when starting with a plurality of cells or yeast or bacteria, engineered to produce variants on a protein. In some cases, variations from Poisson statistics may be achieved to provide an enhanced loading of droplets such that there are more droplets with exactly one cell per droplet and few exceptions of empty droplets or droplets containing more than one cell. Examples of droplet libraries are collections of droplets that have different contents, ranging from beads, cells, small molecules, DNA, primers, antibodies. Smaller droplets may be in the order of femtoliter (fL) volume drops, which are especially contemplated with the droplet dispensors. The volume may range from about 5 to about 600 fL. The larger droplets range in size from roughly 0.5 micron to 500 micron in diameter, which corresponds to about 1 pico liter to 1 nano liter. However, droplets may be as small as 5 microns and as large as 500 microns. Preferably, the droplets are at less than 100 microns, about 1 micron to about 100 microns in diameter. The most preferred size is about 20 to 40 microns in diameter (10 to 100 picoliters). The preferred properties examined of droplet libraries include osmotic pressure balance, uniform size, and size

ranges. The droplets within the emulsion libraries of the present invention may be contained which may comprise at least one fluorosurfactant. In some within an immiscible oil embodiments, the fluorosurfactant within the immiscible fluorocarbon oil may be a block copolymer consisting of one or more perfluorinated polyether (PFPE) blocks and one or more polyethylene glycol (PEG) blocks. In other embodiments, the fluorosurfactant is a triblock copolymer consisting of a PEG center block covalently bound to two PFPE blocks by amide linking groups. The presence of the fluorosurfactant (similar to uniform size of the droplets in the library) is critical to maintain the stability and integrity of the droplets and is also essential for the subsequent use of the droplets within the library for the various biological and chemical assays described herein. Fluids (e.g., aqueous fluids, immiscible oils, etc.) and other surfactants that may be utilized in the droplet libraries of the present invention are described in greater detail herein. The present invention can accordingly involve an emulsion library which may comprise a plurality of aqueous droplets within an immiscible oil (e.g., fluorocarbon oil) which may comprise at least one fluorosurfactant, wherein each droplet is uniform in size and may comprise the same aqueous fluid and may comprise a different library element. The present invention also provides a method for forming the emulsion library which may comprise providing a single aqueous fluid which may comprise different library elements, encapsulating each library element into an aqueous droplet within an immiscible fluorocarbon oil which may comprise at least one fluorosurfactant, wherein each droplet is uniform in size and may comprise the same aqueous fluid and may comprise a different library element, and pooling the aqueous droplets within an immiscible fluorocarbon oil which may comprise at least one fluorosurfactant, thereby forming an emulsion library. For example, in one type of emulsion library, all different types of elements (e.g., cells or beads), may be pooled in a single source contained in the same medium. After the initial pooling, the cells or beads are then encapsulated in droplets to generate a library of droplets wherein each droplet with a different type of bead or cell is a different library element. The dilution of the initial solution enables the encapsulation process. In some embodiments, the droplets formed will either contain a single cell or bead or will not contain anything, i.e., be empty. In other embodiments, the droplets formed will contain multiple copies of a library element. The cells or beads being encapsulated are generally variants on the same type of cell or bead. In another example, the emulsion library may comprise a plurality of aqueous droplets within an immiscible fluorocarbon oil, wherein a single molecule may be encapsulated, such that

there is a single molecule contained within a droplet for every 20-60 droplets produced (e.g., 20, 25, 30, 35, 40, 45, 50, 55, 60 droplets, or any integer in between). Single molecules may be encapsulated by diluting the solution containing the molecules to such a low concentration that the encapsulation of single molecules is enabled. In one specific example, a LacZ plasmid DNA was encapsulated at a concentration of 20 fM after two hours of incubation such that there was about one gene in 40 droplets, where 10 µm droplets were made at 10 kHz per second. Formation of these libraries rely on limiting dilutions.

[00161] The present invention also provides an emulsion library which may comprise at least a first aqueous droplet and at least a second aqueous droplet within a fluorocarbon oil which may comprise at least one fluorosurfactant, wherein the at least first and the at least second droplets are uniform in size and comprise a different aqueous fluid and a different library element. The present invention also provides a method for forming the emulsion library which may comprise providing at least a first aqueous fluid which may comprise at least a first library of elements, providing at least a second aqueous fluid which may comprise at least a second library of elements, encapsulating each element of said at least first library into at least a first aqueous droplet within an immiscible fluorocarbon oil which may comprise at least one fluorosurfactant, encapsulating each element of said at least second library into at least a second aqueous droplet within an immiscible fluorocarbon oil which may comprise at least one fluorosurfactant, wherein the at least first and the at least second droplets are uniform in size and may comprise a different aqueous fluid and a different library element, and pooling the at least first aqueous droplet and the at least second aqueous droplet within an immiscible fluorocarbon oil which may comprise at least one fluorosurfactant thereby forming an emulsion library. One of skill in the art will recognize that methods and systems of the invention are not preferably practiced as to cells, mutations, etc as herein disclosed, but that the invention need not be limited to any particular type of sample, and methods and systems of the invention may be used with any type of organic, inorganic, or biological molecule (see, e.g., US Patent Publication No. 20120122714). In particular embodiments the sample may include nucleic acid target molecules. Nucleic acid molecules may be synthetic or derived from naturally occurring sources. In one embodiment, nucleic acid molecules may be isolated from a biological sample containing a variety of other components, such as proteins, lipids and non-template nucleic acids. Nucleic acid target molecules may be obtained from any cellular material, obtained from an animal, plant,

bacterium, fungus, or any other cellular organism. In certain embodiments, the nucleic acid target molecules may be obtained from a single cell. Biological samples for use in the present invention may include viral particles or preparations. Nucleic acid target molecules may be obtained directly from an organism or from a biological sample obtained from an organism, e.g., from blood, urine, cerebrospinal fluid, seminal fluid, saliva, sputum, stool and tissue. Any tissue or body fluid specimen may be used as a source for nucleic acid for use in the invention. Nucleic acid target molecules may also be isolated from cultured cells, such as a primary cell culture or a cell line. The cells or tissues from which target nucleic acids are obtained may be infected with a virus or other intracellular pathogen. A sample may also be total RNA extracted from a biological specimen, a cDNA library, viral, or genomic DNA. Generally, nucleic acid may be extracted from a biological sample by a variety of techniques such as those described by Maniatis, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., pp. 280-281 (1982). Nucleic acid molecules may be single-stranded, double-stranded, or double-stranded with single-stranded regions (for example, stem- and loop-structures). Nucleic acid obtained from biological samples typically may be fragmented to produce suitable fragments for analysis. Target nucleic acids may be fragmented or sheared to desired length, using a variety of mechanical, chemical and/or enzymatic methods. DNA may be randomly sheared via sonication, e.g. Covaris method, brief exposure to a DNase, or using a mixture of one or more restriction enzymes, or a transposase or nicking enzyme. RNA may be fragmented by brief exposure to an RNase, heat plus magnesium, or by shearing. The RNA may be converted to cDNA. If fragmentation is employed, the RNA may be converted to cDNA before or after fragmentation. In one embodiment, nucleic acid from a biological sample is fragmented by sonication. In another embodiment, nucleic acid is fragmented by a hydroshear instrument. Generally, individual nucleic acid target molecules may be from about 40 bases to about 40 kb. Nucleic acid molecules may be single-stranded, double-stranded, or double-stranded with single-stranded regions (for example, stem- and loop-structures). A biological sample as described herein may be homogenized or fractionated in the presence of a detergent or surfactant. The concentration of the detergent in the buffer may be about 0.05% to about 10.0%. The concentration of the detergent may be up to an amount where the detergent remains soluble in the solution. In one embodiment, the concentration of the detergent is between 0.1% to about 2%. The detergent, particularly a mild one that is nondenaturing, may act to solubilize the sample. Detergents may

be ionic or nonionic. Examples of nonionic detergents include triton, such as the TritonTM X series (TritonTM X-100 t-Oct-C6H4--(OCH2--CH2)xOH, x=9-10, TritonTM X-100R, TritonTM X-114 x=7-8), octyl glucoside, polyoxyethylene(9)dodecyl ether, digitonin, IGEPALTM CA630 octylphenyl polyethylene glycol, n-octyl-beta-D-glucopyranoside (betaOG), n-dodecyl-beta, TweenTM. 20 polyethylene glycol sorbitan monolaurate, TweenTM 80 polyethylene glycol sorbitan monooleate, polidocanol, n-dodecyl beta-D-maltoside (DDM), NP-40 nonylphenyl polyethylene glycol, C12E8 (octaethylene glycol n-dodecyl monoether), hexaethyleneglycol mono-n-tetradecyl ether (C14E06), octyl-beta-thioglucopyranoside (octyl thioglucoside, OTG), Emulgen, and polyoxyethylene 10 lauryl ether (C12E10). Examples of ionic detergents (anionic or cationic) include deoxycholate, sodium dodecyl sulfate (SDS), N-lauroylsarcosine, and cetyltrimethylammoniumbromide (CTAB). A zwitterionic reagent may also be used in the purification schemes of the present invention, such as Chaps, zwitterion 3-14, and 3-[(3cholamidopropyl)dimethylammonio]-1-propanesulf-onate. It is contemplated also that urea may be added with or without another detergent or surfactant. Lysis or homogenization solutions may further contain other agents, such as reducing agents. Examples of such reducing agents include dithiothreitol (DTT), β-mercaptoethanol, DTE, GSH, cysteine, cysteamine, tricarboxyethyl phosphine (TCEP), or salts of sulfurous acid. Size selection of the nucleic acids may be performed to remove very short fragments or very long fragments. The nucleic acid fragments may be partitioned into fractions which may comprise a desired number of fragments using any suitable method known in the art. Suitable methods to limit the fragment size in each fragment are known in the art. In various embodiments of the invention, the fragment size is limited to between about 10 and about 100 Kb or longer. A sample in or as to the instant invention may include individual target proteins, protein complexes, proteins with translational modifications, and protein/nucleic acid complexes. Protein targets include peptides, and also include enzymes, hormones, structural components such as viral capsid proteins, and antibodies. Protein targets may be synthetic or derived from naturally-occurring sources. The invention protein targets may be isolated from biological samples containing a variety of other components including lipids, non-template nucleic acids, and nucleic acids. Protein targets may be obtained from an animal, bacterium, fungus, cellular organism, and single cells. Protein targets may be obtained directly from an organism or from a biological sample obtained from the organism, including bodily fluids such as blood, urine, cerebrospinal fluid, seminal fluid, saliva, sputum, stool and tissue.

Protein targets may also be obtained from cell and tissue lysates and biochemical fractions. An individual protein is an isolated polypeptide chain. A protein complex includes two or polypeptide chains. Samples may include proteins with post translational modifications including but not limited to phosphorylation, methionine oxidation, deamidation, glycosylation, ubiquitination, carbamylation, s-carboxymethylation, acetylation, and methylation. Protein/nucleic acid complexes include cross-linked or stable protein-nucleic acid complexes. Extraction or isolation of individual proteins, protein complexes, proteins with translational modifications, and protein/nucleic acid complexes is performed using methods known in the art. The invention can thus involve forming sample droplets. The droplets are aqueous [00162] droplets that are surrounded by an immiscible carrier fluid. Methods of forming such droplets are shown for example in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163), Stone et al. (U.S. Pat. No. 7,708,949 and U.S. patent application number 2010/0172803), Anderson et al. (U.S. Pat. No. 7,041,481 and which reissued as RE41,780) and European publication number EP2047910 to Raindance Technologies Inc. The content of each of which is incorporated by reference herein in its entirety. The present invention may relates to systems and methods for manipulating droplets within a high throughput microfluidic system. A microfluid droplet encapsulates a differentiated cell The cell is lysed and its mRNA is hybridized onto a capture bead containing barcoded oligo dT primers on the surface, all inside the droplet. The barcode is covalently attached to the capture bead via a flexible multi-atom linker like PEG. In a preferred embodiment, the droplets are broken by addition of a fluorosurfactant (like perfluorooctanol), washed, and collected. transcription (RT) reaction is then performed to convert each cell's mRNA into a first strand cDNA that is both uniquely barcoded and covalently linked to the mRNA capture bead. Subsequently, a universal primer via a template switching reaction is amended using conventional library preparation protocols to prepare an RNA-Seq library. Since all of the mRNA from any given cell is uniquely barcoded, a single library is sequenced and then computationally resolved to determine which mRNAs came from which cells. In this way, through a single sequencing run, tens of thousands (or more) of distinguishable transcriptomes can be simultaneously obtained. The oligonucleotide sequence may be generated on the bead surface. During these cycles, beads were removed from the synthesis column, pooled, and aliquoted into four equal portions by mass; these bead aliquots were then placed in a separate

synthesis column and reacted with either dG, dC, dT, or dA phosphoramidite. In other instances, dinucleotide, trinucleotides, or oligonucleotides that are greater in length are used, in other instances, the oligo-dT tail is replaced by gene specific oligonucleotides to prime specific targets (singular or plural), random sequences of any length for the capture of all or specific RNAs. This process was repeated 12 times for a total of $4^{12} = 16,777,216$ unique barcode sequences. Upon completion of these cycles, 8 cycles of degenerate oligonucleotide synthesis were performed on all the beads, followed by 30 cycles of dT addition. In other embodiments, the degenerate synthesis is omitted, shortened (less than 8 cycles), or extended (more than 8 cycles); in others, the 30 cycles of dT addition are replaced with gene specific primers (single target or many targets) or a degenerate sequence. The aforementioned microfluidic system is regarded as the reagent delivery system microfluidic library printer or droplet library printing system of the present invention. Droplets are formed as sample fluid flows from droplet generator which contains lysis reagent and barcodes through microfluidic outlet channel which contains oil, towards junction. Defined volumes of loaded reagent emulsion, corresponding to defined numbers of droplets, are dispensed on-demand into the flow stream of carrier fluid. The sample fluid may typically comprise an aqueous buffer solution, such as ultrapure water (e.g., 18 megaohm resistivity, obtained, for example by column chromatography), 10 mM Tris HCl and 1 mM EDTA (TE) buffer, phosphate buffer saline (PBS) or acetate buffer. Any liquid or buffer that is physiologically compatible with nucleic acid molecules can be used. The carrier fluid may include one that is immiscible with the sample fluid. The carrier fluid can be a non-polar solvent, decane (e.g., tetradecane or hexadecane), fluorocarbon oil, silicone oil, an inert oil such as hydrocarbon, or another oil (for example, mineral oil). The carrier fluid may contain one or more additives, such as agents which reduce surface tensions (surfactants). Surfactants can include Tween, Span, fluorosurfactants, and other agents that are soluble in oil relative to water. In some applications, performance is improved by adding a second surfactant to the sample fluid. Surfactants can aid in controlling or optimizing droplet size, flow and uniformity, for example by reducing the shear force needed to extrude or inject droplets into an intersecting channel. This can affect droplet volume and periodicity, or the rate or frequency at which droplets break off into an intersecting channel. Furthermore, the surfactant can serve to stabilize aqueous emulsions in fluorinated oils from coalescing. Droplets may be surrounded by a surfactant which stabilizes the droplets by reducing the surface tension at the aqueous oil interface. Preferred surfactants

that may be added to the carrier fluid include, but are not limited to, surfactants such as sorbitanbased carboxylic acid esters (e.g., the "Span" surfactants, Fluka Chemika), including sorbitan monolaurate (Span 20), sorbitan monopalmitate (Span 40), sorbitan monostearate (Span 60) and sorbitan monooleate (Span 80), and perfluorinated polyethers (e.g., DuPont Krytox 157 FSL, FSM, and/or FSH). Other non-limiting examples of non-ionic surfactants which may be used include polyoxyethylenated alkylphenols (for example, nonyl-, p-dodecyl-, and dinonylphenols), polyoxyethylenated straight chain alcohols, polyoxyethylenated polyoxypropylene glycols, polyoxyethylenated mercaptans, long chain carboxylic acid esters (for example, glyceryl and polyglyceryl esters of natural fatty acids, propylene glycol, sorbitol, polyoxyethylenated sorbitol esters, polyoxyethylene glycol esters, etc.) and alkanolamines (e.g., diethanolamine-fatty acid condensates and isopropanolamine-fatty acid condensates). In some cases, an apparatus for creating a single-cell sequencing library via a microfluidic system provides for volume-driven flow, wherein constant volumes are injected over time. The pressure in fluidic cnannels is a function of injection rate and channel dimensions. In one embodiment, the device provides an oil/surfactant inlet; an inlet for an analyte; a filter, an inlet for for mRNA capture microbeads and lysis reagent; a carrier fluid channel which connects the inlets; a resistor; a constriction for droplet pinch-off; a mixer; and an outlet for drops. In an embodiment the invention provides apparatus for creating a single-cell sequencing library via a microfluidic system, which may comprise: an oil-surfactant inlet which may comprise a filter and a carrier fluid channel, wherein said carrier fluid channel may further comprise a resistor; an inlet for an analyte which may comprise a filter and a carrier fluid channel, wherein said carrier fluid channel may further comprise a resistor; an inlet for mRNA capture microbeads and lysis reagent which may comprise a filter and a carrier fluid channel, wherein said carrier fluid channel further may comprise a resistor; said carrier fluid channels have a carrier fluid flowing therein at an adjustable or predetermined flow rate; wherein each said carrier fluid channels merge at a junction; and said junction being connected to a mixer, which contains an outlet for drops. Accordingly, an apparatus for creating a single-cell sequencing library via a microfluidic system icrofluidic flow scheme for single-cell RNA-seq is envisioned. Two channels, one carrying cell suspensions, and the other carrying uniquely barcoded mRNA capture bead, lysis buffer and library preparation reagents meet at a junction and is immediately co-encapsulated in an inert carrier oil, at the rate of one cell and one bead per drop. In each drop, using the bead's barcode

tagged oligonucleotides as cDNA template, each mRNA is tagged with a unique, cell-specific identifier. The invention also encompasses use of a Drop-Seq library of a mixture of mouse and human cells. The carrier fluid may be caused to flow through the outlet channel so that the surfactant in the carrier fluid coats the channel walls. The fluorosurfactant can be prepared by reacting the perflourinated polyether DuPont Krytox 157 FSL, FSM, or FSH with aqueous ammonium hydroxide in a volatile fluorinated solvent. The solvent and residual water and ammonia can be removed with a rotary evaporator. The surfactant can then be dissolved (e.g., 2.5 wt %) in a fluorinated oil (e.g., Flourinert (3M)), which then serves as the carrier fluid. Activation of sample fluid reservoirs to produce regent droplets is based on the concept of dynamic reagent delivery (e.g., combinatorial barcoding) via an on demand capability. The on demand feature may be provided by one of a variety of technical capabilities for releasing delivery droplets to a primary droplet, as described herein. From this disclosure and herein cited documents and knowledge in the art, it is within the ambit of the skilled person to develop flow rates, channel lengths, and channel geometries; and establish droplets containing random or specified reagent combinations can be generated on demand and merged with the "reaction chamber" droplets containing the samples/cells/substrates of interest. By incorporating a plurality of unique tags into the additional droplets and joining the tags to a solid support designed to be specific to the primary droplet, the conditions that the primary droplet is exposed to may be encoded and recorded. For example, nucleic acid tags can be sequentially ligated to create a sequence reflecting conditions and order of same. Alternatively, the tags can be added independently appended to solid support. Non-limiting examples of a dynamic labeling system that may be used to bioninformatically record information can be found at US Provisional Patent Application entitled "Compositions and Methods for Unique Labeling of Agents" filed September 21, 2012 and November 29, 2012. In this way, two or more droplets may be exposed to a variety of different conditions, where each time a droplet is exposed to a condition, a nucleic acid encoding the condition is added to the droplet each ligated together or to a unique solid support associated with the droplet such that, even if the droplets with different histories are later combined, the conditions of each of the droplets are remain available through the different nucleic acids. Non-limiting examples of methods to evaluate response to exposure to a plurality of conditions can be found at US Provisional Patent Application entitled "Systems and Methods for Droplet Tagging" filed September 21, 2012. Accordingly, in or as to the invention it is

envisioned that there can be the dynamic generation of molecular barcodes (e.g., DNA oligonucleotides, flurophores, etc.) either independent from or in concert with the controlled delivery of various compounds of interest (drugs, small molecules, siRNA, CRISPR guide RNAs, reagents, etc.). For example, unique molecular barcodes can be created in one array of nozzles while individual compounds or combinations of compounds can be generated by another nozzle array. Barcodes/compounds of interest can then be merged with cell-containing droplets. An electronic record in the form of a computer log file is kept to associate the barcode delivered with the downstream reagent(s) delivered. This methodology makes it possible to efficiently screen a large population of cells for applications such as single-cell drug screening, controlled perturbation of regulatory pathways, etc. The device and techniques of the disclosed invention facilitate efforts to perform studies that require data resolution at the single cell (or single molecule) level and in a cost effective manner. The invention envisions a high throughput and high resolution delivery of reagents to individual emulsion droplets that may contain cells, nucleic acids, proteins, etc. through the use of monodisperse aqueous droplets that are generated one by one in a microfluidic chip as a water-in-oil emulsion. Being able to dynamically track individual cells and droplet treatments/combinations during life cycle experiments, and having an ability to create a library of emulsion droplets on demand with the further capability of manipulating the droplets through the disclosed process(es) are advantagous. In the practice of the invention there can be dynamic tracking of the droplets and create a history of droplet deployment and application in a single cell based environment. Droplet generation and deployment is produced via a dynamic indexing strategy and in a controlled fashion in accordance with disclosed embodiments of the present invention. Microdroplets can be processed, analyzed and sorted at a highly efficient rate of several thousand droplets per second, providing a powerful platform which allows rapid screening of millions of distinct compounds, biological probes, proteins or cells either in cellular models of biological mechanisms of disease, or in biochemical, or pharmacological assays. A plurality of biological assays as well as biological synthesis are contemplated. Polymerase chain reactions (PCR) are contemplated (see, e.g., US Patent Publication No. 20120219947). Methods of the invention may be used for merging sample fluids for conducting any type of chemical reaction or any type of biological assay. There may be merging sample fluids for conducting an amplification reaction in a droplet. Amplification refers to production of additional copies of a nucleic acid sequence and is

generally carried out using polymerase chain reaction or other technologies well known in the art (e.g., Dieffenbach and Dveksler, PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. [1995]). The amplification reaction may be any amplification reaction known in the art that amplifies nucleic acid molecules, such as polymerase chain reaction, nested polymerase chain reaction, polymerase chain reaction-single strand conformation polymorphism, ligase chain reaction (Barany F. (1991) PNAS 88:189-193; Barany F. (1991) PCR Methods and Applications 1:5-16), ligase detection reaction (Barany F. (1991) PNAS 88:189-193), strand displacement amplification and restriction fragments length polymorphism, transcription based amplification system, nucleic acid sequence-based amplification, rolling circle amplification, and hyper-branched rolling circle amplification. In certain embodiments, the amplification reaction is the polymerase chain reaction. Polymerase chain reaction (PCR) refers to methods by K. B. Mullis (U.S. Pat. Nos. 4,683,195 and 4,683,202, hereby incorporated by reference) for increasing concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. The process for amplifying the target sequence includes introducing an excess of oligonucleotide primers to a DNA mixture containing a desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The primers are complementary to their respective strands of the double stranded target sequence. To effect amplification, primers are annealed to their complementary sequence within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing and polymerase extension may be repeated many times (i.e., denaturation, annealing and extension constitute one cycle; there may be numerous cycles) to obtain a high concentration of an amplified segment of a desired target sequence. The length of the amplified segment of the desired target sequence is determined by relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. Methods for performing PCR in droplets are shown for example in Link et al. (U.S. Patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163), Anderson et al. (U.S. Pat. No. 7,041,481 and which reissued as RE41,780) and European publication number EP2047910 to Raindance Technologies Inc. The content of each of which is incorporated by reference herein in its entirety. The first sample fluid contains nucleic acid templates. Droplets of the first sample fluid are formed as described above. Those droplets will include the nucleic acid templates. In certain embodiments, the droplets will include only a

single nucleic acid template, and thus digital PCR may be conducted. The second sample fluid contains reagents for the PCR reaction. Such reagents generally include Taq polymerase, deoxynucleotides of type A, C, G and T, magnesium chloride, and forward and reverse primers, all suspended within an aqueous buffer. The second fluid also includes detectably labeled probes for detection of the amplified target nucleic acid, the details of which are discussed below. This type of partitioning of the reagents between the two sample fluids is not the only possibility. In some instances, the first sample fluid will include some or all of the reagents necessary for the PCR whereas the second sample fluid will contain the balance of the reagents necessary for the PCR together with the detection probes. Primers may be prepared by a variety of methods including but not limited to cloning of appropriate sequences and direct chemical synthesis using methods well known in the art (Narang et al., Methods Enzymol., 68:90 (1979); Brown et al., Methods Enzymol., 68:109 (1979)). Primers may also be obtained from commercial sources such as Operon Technologies, Amersham Pharmacia Biotech, Sigma, and Life Technologies. The primers may have an identical melting temperature. The lengths of the primers may be extended or shortened at the 5' end or the 3' end to produce primers with desired melting temperatures. Also, the annealing position of each primer pair may be designed such that the sequence and, length of the primer pairs yield the desired melting temperature. The simplest equation for determining the melting temperature of primers smaller than 25 base pairs is the Wallace Rule (Td=2(A+T)+4(G+C)). Computer programs may also be used to design primers, including but not limited to Array Designer Software (Arrayit Inc.), Oligonucleotide Probe Sequence Design Software for Genetic Analysis (Olympus Optical Co.), NetPrimer, and DNAsis from Hitachi Software Engineering. The TM (melting or annealing temperature) of each primer is calculated using software programs such as Oligo Design, available from Invitrogen Corp.

[00163] A droplet containing the nucleic acid is then caused to merge with the PCR reagents in the second fluid according to methods of the invention described above, producing a droplet that includes Taq polymerase, deoxynucleotides of type A, C, G and T, magnesium chloride, forward and reverse primers, detectably labeled probes, and the target nucleic acid. Once mixed droplets have been produced, the droplets are thermal cycled, resulting in amplification of the target nucleic acid in each droplet. Droplets may be flowed through a channel in a serpentine path between heating and cooling lines to amplify the nucleic acid in the droplet. The width and depth of the channel may be adjusted to set the residence time at each temperature, which may be

controlled to anywhere between less than a second and minutes. The three temperature zones may be used for the amplification reaction. The three temperature zones are controlled to result in denaturation of double stranded nucleic acid (high temperature zone), annealing of primers (low temperature zones), and amplification of single stranded nucleic acid to produce double stranded nucleic acids (intermediate temperature zones). The temperatures within these zones fall within ranges well known in the art for conducting PCR reactions. See for example, Sambrook et al. (Molecular Cloning, A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001). The three temperature zones can be controlled to have temperatures as follows: 95° C. (TH), 55° C. (TL), 72° C. (TM). The prepared sample droplets flow through the channel at a controlled rate. The sample droplets first pass the initial denaturation zone (TH) before thermal cycling. The initial preheat is an extended zone to ensure that nucleic acids within the sample droplet have denatured successfully before thermal cycling. The requirement for a preheat zone and the length of denaturation time required is dependent on the chemistry being used in the reaction. The samples pass into the high temperature zone, of approximately 95° C., where the sample is first separated into single stranded DNA in a process called denaturation. The sample then flows to the low temperature, of approximately 55° C., where the hybridization process takes place, during which the primers anneal to the complementary sequences of the sample. Finally, as the sample flows through the third medium temperature, of approximately 72° C., the polymerase process occurs when the primers are extended along the single strand of DNA with a thermostable enzyme. The nucleic acids undergo the same thermal cycling and chemical reaction as the droplets pass through each thermal cycle as they flow through the channel. The total number of cycles in the device is easily altered by an extension of thermal zones. The sample undergoes the same thermal cycling and chemical reaction as it passes through N amplification cycles of the complete thermal device. In other aspects, the temperature zones are controlled to achieve two individual temperature zones for a PCR reaction. In certain embodiments, the two temperature zones are controlled to have temperatures as follows: 95° C. (TH) and 60° C. (TL). The sample droplet optionally flows through an initial preheat zone before entering thermal cycling. The preheat zone may be important for some chemistry for activation and also to ensure that double stranded nucleic acid in the droplets is fully denatured before the thermal cycling reaction begins. In an exemplary embodiment, the preheat dwell length results in approximately 10 minutes preheat of the droplets

at the higher temperature. The sample droplet continues into the high temperature zone, of approximately 95° C., where the sample is first separated into single stranded DNA in a process called denaturation. The sample then flows through the device to the low temperature zone, of approximately 60° C., where the hybridization process takes place, during which the primers anneal to the complementary sequences of the sample. Finally the polymerase process occurs when the primers are extended along the single strand of DNA with a thermostable enzyme. The sample undergoes the same thermal cycling and chemical reaction as it passes through each thermal cycle of the complete device. The total number of cycles in the device is easily altered by an extension of block length and tubing. After amplification, droplets may be flowed to a detection module for detection of amplification products. The droplets may be individually analyzed and detected using any methods known in the art, such as detecting for the presence or amount of a reporter. Generally, a detection module is in communication with one or more detection apparatuses. Detection apparatuses may be optical or electrical detectors or combinations thereof. Examples of suitable detection apparatuses include optical waveguides, microscopes, diodes, light stimulating devices, (e.g., lasers), photo multiplier tubes, and processors (e.g., computers and software), and combinations thereof, which cooperate to detect a signal representative of a characteristic, marker, or reporter, and to determine and direct the measurement or the sorting action at a sorting module. Further description of detection modules and methods of detecting amplification products in droplets are shown in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163) and European publication number EP2047910 to Raindance Technologies Inc.

[00164] Examples of assays are also ELISA assays (see, e.g., US Patent Publication No. 20100022414). The present invention provides another emulsion library which may comprise a plurality of aqueous droplets within an immiscible fluorocarbon oil which may comprise at least one fluorosurfactant, wherein each droplet is uniform in size and may comprise at least a first antibody, and a single element linked to at least a second antibody, wherein said first and second antibodies are different. In one example, each library element may comprise a different bead, wherein each bead is attached to a number of antibodies and the bead is encapsulated within a droplet that contains a different antibody in solution. These antibodies may then be allowed to form "ELISA sandwiches," which may be washed and prepared for a ELISA assay. Further, these contents of the droplets may be altered to be specific for the antibody contained therein to

maximize the results of the assay. Single-cell assays are also contemplated as part of the present invention (see, e.g., Ryan et al., Biomicrofluidics 5, 021501 (2011) for an overview of applications of microfluidics to assay individual cells). A single-cell assay may be contemplated as an experiment that quantifies a function or property of an individual cell when the interactions of that cell with its environment may be controlled precisely or may be isolated from the function or property under examination. The research and development of single-cell assays is largely predicated on the notion that genetic variation causes disease and that small subpopulations of cells represent the origin of the disease. Methods of assaying compounds secreted from cells, subcellular components, cell-cell or cell-drug interactions as well as methods of patterning individual cells are also contemplated within the present invention.

Another aspect of the invention is the combination of the technologies described herein. For example, the use of a high-throughput single-cell RNA-Seq and/or targeted nucleic acid profiling (for example, sequencing, quantitative reverse transcription polymerase chain reaction, and the like) where the RNAs from different cells are tagged individually, allowing a single library to be created while retaining the cell identity of each read, as explained above. RNA-Seq profiling of single cells (e.g. single Th17 cells) may be performed on cells isolated in vivo (e.g. isolated directly from a subject / patient, preferably without further culture steps). RNA-Seq profiling of single cells may be performed on any number of cells, including tumor cells, accociated infiltrating cells into a tumor, immune derived cells, microglia, astrocytes, CD4 cells, CD8 cells, most preferably Th17 cells. Computational analysis of the high-throughput single-cell RNA-Seq data. This allows, for example, to dissect the molecular basis of different functional cellular states. This also allows for selection of signature genes as described herein. Once selection of signature genes is performed, an optional further step is the validation of the signature genes using any number of technologies for knock-out or knock-in models. For example, as explained herein, mutations in cells and also mutated mice for use in or as to the invention can be by way of the CRISPR-Cas system or a Cas9-expressing eukaryotic cell or Cas-9 expressing eukaryote, such as a mouse.

[00166] Such a combination of technologies, e.g. in particular with direct isolation from the subject / patient, provides for more robust and more accurate data as compared to in vitro scenarious which cannot take into account the full in vivo system and networking. This combination, in several instances is thus more efficient, more specific, and faster. This

combination provides for, for example, methods for identification of signature genes and validation methods of the same. Equally, screening platforms are provided for identification of effective therapeutics or diagnostics.

[00167] These and other technologies may be employed in or as to the practice of the instant invention.

EXAMPLE 1: Identification of novel regulators of Th17 cell pathogenicity by single cell genomics

[00168] Upon immunological challenge, diverse immune cells collectively orchestrate an appropriate response. Extensive cellular heterogeneity exists even within specific immune cell subtypes classified as a single lineage, but its function and molecular underpinnings are rarely characterized at a genomic scale. Here, single-cell RNA-seq was use to investigate the molecular mechanisms governing heterogeneity and pathogenicity of murine Th17 cells isolated from the central nervous system (CNS) and lymph nodes (LN) at the peak of autoimmune encephalomyelitis (EAE) or polarized in vitro under either pathogenic or nonpathogenic differentiation conditions. Computational analysis reveals that Th17 cells span a spectrum of cellular states in vivo, including a self-renewal state in the LN, and Th1-like effector/memory states and a dysfunctional/senescent state in the CNS. Relating these states to in vitro differentiated Th17 cells, novel genes governing pathogenicity and disease susceptibility were discovered. Using knockout mice, the crucial role in Th17 cell pathogenicity of four novel genes was tested: Gpr65, Plzp, Toso and Cd51. Th17 cellular heterogeneity thus plays an important role in defining the function of Th17 cells in autoimmunity and can be leveraged to identify targets for seelctive suppression of pathogenic Th17 cells while sparing non-pathogenic tissue-protective ones.

[00169] *RNA-Seq profiling of single Th17 cells isolated in vivo and in vitro.* The transcriptome of 1,029 Th17 cells (subsequently retaining a final set of 806 cells, below), either harvested *in vivo* or differentiated *in vitro* (Figure 1A and Table S1) was profiled. For *in vivo* experiments, EAE was induced by myelin oligodendrocyte glycoprotein (MOG) immunization, CD3⁺CD4⁺IL-17A/GFP⁺ cells were harvested from the draining LNs at the peak of disease and profiled immediately. For *in vitro* experiments, cells were collected during differentiation of CD4⁺ naïve T cells under two polarizing conditions: TGF-β1+IL-6 and IL-1β+IL-6+IL-23; while both lead to IL-17A-producing cells, only the latter induces

EAE upon adoptive transfer of cell ensembles into wild type or RAG-1 -/- mice(Chung et al., 2009; Ghoreschi et al., 2010). At least two independent biological replicates were used for each *in vivo* and *in vitro* condition, and two technical replicates for two *in vivo* conditions. Single-cell mRNA SMART-Seq libraries were prepared using microfluidic chips (Fluidigm C₁) for single-cell capture, lysis, reverse transcription, and PCR amplification, followed by transposon-based library construction. Corresponding population controls (>50,000 cells for *in vitro* samples; ~2,000-20,000 cells for *in vivo* samples, as available) were also profiled, with at least two replicates for each condition.

The libraries were filtered by a set of quality metrics, removing 223 (~21%) of the 1,029 profiled cells, and controlled for quantitative confounding factors and batch effects (Figures S1A,B). ~7,000 appreciably expressed genes (fragments per kilobase of exon per million (FPKM) > 10) in at least 20% of each sample's cells) were retained for in vitro experiments and ~4,000 for in vivo ones. To account for expressed transcripts that are not detected (false negatives) due to the limitations of single-cell RNA-Seq (Deng et al., 2014; Shalek et al., 2014), subsequent analysis down-weighted the contribution of less reliably measured transcripts (Shalek et al., 2014) (Figure S1C. Following these filters, expression profiles were tightly correlated between population replicates (Figure 1C), and the average expression across all single cells correlated well with the matching bulk population profile (r ~ 0.76-0.89; Figure 1C, Figure S1D, red bars, and Table S1). While the average expression of single cells correlated well with the bulk population, substantial differences were found in expression between individual cells in the same condition ($r \sim 0.3$ -0.8; Figure 1D and Figure S1D, blue bars) comparable to previous observations in other immune cells (Shalek et al., 2014). High-throughput, high-resolution, flow RNA-fluorescence was applied in situ hybridization (RNA-FlowFISH), an amplification-free imaging technique (Lalmansingh et al., 2013) to validate the observed patterns of gene expression heterogeneity for nine representative genes (Figure 1F, Figure 6E), chosen to span a wide range of expression and variation levels at 48h under the TGF-β1+IL-6 in vitro polarization condition. These experiments reveal that although canonical Th17 transcripts (e.g., Rorc, Irf4, Batf) are expressed unimodally, other key immune transcripts (e.g., Il-17a, Il-2) can vary in their expression across Th17 cells and exhibit a bimodal distribution. The analysis of this variation

can provide clues on the functional states of the Th17 cells that have been associated with different disease states or specificity to various pathogens.

A functional annotation of single cell heterogeneity shows that Th17 cells span a spectrum of states in vivo. To study the main sources of cellular variation in vivo and their functional ramifications, a principal component analysis (PCA, Figure 2A) was used followed by a novel analysis for functional annotation of the PC space based on the single cell expression of gene signatures of previously characterized T cell states (Figure 2B). Specifically, drawing from previous studies feature-specific gene signatures were assembled for various T-cell types and perturbation states, each consisting of a set of 'plus' and 'minus' genes that are highly and lowly expressed in each signature, respectively (Figure 2B). For every cell-signature pair, a score reflecting the difference in the average expression of 'plus' vs. 'minus' genes in that cell was computed, and then estimated whether each signature score significantly varied: either (1) across cells of the same source (either LN or CNS; using a one vs. all Gene Set Enrichment Analysis (GSEA); FDR < 0.05 in at least 10% of cells); or (2) between the LN and the CNS cells (KS-test, FDR<10⁻⁴). For the signatures with significant variation in at least one test, the correlations of the respective single cell signature scores with the projection of cells to each of the first two principal components (PCs; Figure 2B and Table S2 (Gaublomme 2015)) were computed, and selected correlations were plotted on a normalized PCA map (Figure 2A, numbered open circles). To identify transcription factors that may orchestrate this heterogeneity, the single-cell RNA-seq data were combined with transcription factor target enrichment analysis (Yosef et al., 2013) to find factors whose targets are strongly enriched (Fisher exact test, p<10⁻⁵) in genes that correlated with each PC (Pearson correlation, FDR < 0.05; Figures 2E,F, Table S3 (Gaublomme 2015)).

[00172] Based on the functional annotation, the first PC (PC1) positively correlates with a recently defined effector *vs.* memory signature following viral infection (Crawford et al., 2014), and negatively correlates with an independent molecular signature characterizing memory T cells (Wherry et al., 2007) (Figure 2A, number 4 and 7, respectively; Table S2 (Gaublomme 2015)). This suggests that cells with high positive PC1 scores adopt an effector phenotype, and those with negative PC1 scores obtain a memory profile, and at the extreme – a dysfunctional/senescent profile. The second PC (PC2) separates cells by their source of origin (CNS and LN, Figure 2A) and correlates with a transition from a naïve-like self-

renewal state (negatively correlated with PC2; p<10⁻³³, Figure 2A, number 5; Table S2 (Gaublomme 2015)) with low cell cycle activity (negatively correlated with PC2, FDR<5%) to a Th1-like effector or memory effector state (positively correlated with PC2, Figure 2, number 2 and 3, p<10⁻¹⁹ and p<10⁻²³, respectively). Consistently, an MsigDB analysis of genes that highly correlate with the PCs (Pearson correlation, FDR<5%) shows strong association with immune response (PC1; p< 1.2X10⁻²⁷ and PC2; p< 1.2X10⁻²⁸, hyoerhgeometric test) and cell cycle stage (PC1; p<10⁻³⁰).

[00173] A trajectory of progressing cell states from the LN to the CNS. To further explore the diversity of LN and CNS cells, five of the key signatures discovered by functional annotation were used to divide the PCA space into distinct subsets of cells (Figure 2C, Table S2 (Gaublomme 2015)). To this end, a Voronoi diagram was computed that delineates regions that are most strongly associated with each of the five signatures. The resulting putative subpopulations exhibit a gradual progression from a self-renewing state to a pre-Th1 effector phenotype in the LN and CNS, to a Th1-like effector state and a Th1-like memory state in the CNS, and finally a dysfunctional/senescent state in the CNS, as detailed below.

First, self-renewing Th17 cells in the LN (Figure 2C, green) are characterized by: (1) a signature of Wnt signaling (p<10⁻⁷, KS, Figure 2A, number 6, Table S4 (Gaublomme 2015)), Table 6, a known feature critical for self-renewal of hematopoietic stem cells and survival of thymocytes (Ioannidis et al., 2001; Reya et al., 2003), and supported by high expression of Tcf7 (p<10⁻¹², Figure 2D, Table S4 (Gaublomme 2015)) Table 6, a key target of the Wnt pathway. Tcf7 is a key transcription factor regulating the stem cell-like state of Th17 cells (Muranski et al., 2011), whose expression is lost when T-cells acquire an effector phenotype (Gattinoni et al., 2009; Willinger et al., 2006); (2) high expression (p<10⁻¹⁰, KStest, see Table S4 (Gaublomme 2015), Table 6) of the known naïve state marker Cd62l (De Rosa et al., 2001) (Figure 2D); and (3) up-regulation (p<10⁻⁹) of Cd27, a pro-survival gene lacking in short-lived T cells (Dolfi et al., 2008; Hendriks et al., 2000; Hendriks et al., 2003; Snyder et al., 2008) (Figure 2D). Transcription factors analysis (negative PC2, Figure 2E, green) suggests that Etv6, Med12 and Zfx specifically drive this self-renewing population. While neither of them has been linked to Th17 self-renewal, each is associated with such functions in other cells: Med12 is essential for Wnt signaling and early mouse development (Rocha et al., 2010); Etv6, a known positive regulator of Th17 cell differentiation (Ciofani et

al., 2012; Yosef et al., 2013), functions as an essential regulator of hematopoietic stem cell survival (Hock et al., 2004) and an initiator of self-renewal in pro-B cells (Tsuzuki and Seto, 2013); and *Zfx* is required for self renewal in embryonic and hematopoietic stem cells (Galan-Caridad et al., 2007; Harel et al., 2012), and of the tumorigenic, non-differentiated state in glioblastoma stem cells (Fang et al., 2014) and acute T-lymphoblastic and myeloid leukemia (Weisberg et al., 2014).

Second, cells from the LN and CNS adopt similar (overlapping) cell states only in [00175] the central state of PCA plot (Figure 2C, pink), reflecting effector Th17 cells with a pre-Th1 phenotype. Compared to the self-renewing subpopulöation, these effector Th17 cells (1) begin to express receptors for IFN (IFNAR-1, p<10⁻³, KS, Table S4 (Gaublomme 2015), Table 6) and IL-18 (IL-18R1, p<10⁻¹¹, Figure 2D), both of which mediate differentiation of Th1 cells (Esfandiari et al., 2001; Shinohara et al., 2008); and (2) induce the Th1 associated chemokine receptor Cxcr6 (p<10⁻¹³, KS, Figure 2D) (Aust et al., 2005; Latta et al., 2007), and Ccr2 (p<10⁻⁶, KS, Figure 2D), associated with recruitment to the CNS in EAE/MS (Mahad and Ransohoff, 2003). Since these cells begin to express receptors that make them responsive to both IFN-γ and IL-18 and poised for recruitment to the CNS, they may therefore be the precursors that lead to the generation of Th17/Th1-like effector T cells observed in the CNS. IL-17a/GFP+ sorted cells acquire a Th17/Th1-like effector phenotype in the CNS (Figure 2C, yellow), as indicated by up-regulation (p<10⁻³, KS, Table S4 (Gaublomme 2015), Table 6) of: (1) Ifn-y, consistent with a Th1 phenotype (Figure 2D); (2) Rankl (Figure 2D), a marker of Th1 and IL-23 induced Th17 cells (Nakae et al., 2007), especially pathogenic Th17 cells in arthritis (Komatsu et al., 2014); and (3) cell cycle genes (e.g., Geminin (Codarri et al., 2011), Figure 2D). Surprisingly, Th1-like cells in **CNS** the the (except dysfunctional/senescent state; Figure 2C,D grey) also induce Ccr8 (Figure 7A, bottom), previously described as a cell marker of Th2 cells (Zingoni et al., 1998), but not of Th17 / Th1 cells (Annunziato et al., 2007). Mice deficient for Ccr8 exhibit later onset and milder signs of EAE (Ghosh et al., 2006; Hamann et al., 2008). Transcription factor analysis shows that these effector cells are associated with both canonical Th17 factors (Stat3, Irf4 and Hif1a) and Th1associated factors, including Rel and Stat4 (Kaplan et al., 1996; Nishikomori et al., 2002; Thierfelder et al., 1996) (Figure 2E, red), which are associated with EAE (Hilliard et al., 2002; Mo et al., 2008) or with autoimmune disease in humans (Gilmore and Gerondakis, 2011).

These sorted IL-17A/GFP+ cells could either be a stable population of double producers or reflect Th17 plasticity into the Th1 lineage, as Th17 cells transition into a Th1 state.

[00177] Next, Th1-like memory cells detected in the CNS (Figure 2C, light blue) correlate highly with both a memory phenotype (negative PC1) and a Th1-like phenotype (positive PC2). These cells are associated with an effector memory signature (p<10⁻⁵, KS-test compared with all other sub-populations, see Table S4 (Gaublomme 2015), Table 6), and up-regulate (p<10⁻⁵, KS) memory signature genes (e.g., Nur77; Figure 2D, Samsn1, Il2ra, Il2rb, Tigit, Ifngr1 and 2), and inflammatory genes (Gm-csf and Gpr65; Figure 2D). Il-1r2 is a decoy receptor in the IL-1 pathway involved in Th17 pathogenicity (Sutton et al., 2006), the cytokine *Gm-csf* (Figure 2D) is essential for Th17 encephalitogenicity (El-Behi et al., 2011) and neuroinflammation (Codarri et al., 2011). Nur77 (Nr4a1) (Figure 2D), a transcriptional repressor of IL-2 (Harant and Lindley, 2004), is strongly up-regulated, to maintain cells in a Th17 state despite acquiring a Th1 factor (Sester et al., 2008). Note that while IL-2 is a growth factor for Th1 cells, IL-2 affects Th17 differentiation and stability. Transcription factor analysis (Figure 2F) suggests that this cell state is in part driven by Egr1, a regulator of Thet expression (Shin et al., 2009) that may help route Th1-like cells into the memory pool; Bcl6, a repressor of lymphocyte differentiation, inflammation, and cell cycle genes, essential for CD4 T-cell memory generation (Ichii et al., 2007); and Hifla, crucial for controlling human Th17 cells to become long-lived effector memory cells (Kryczek et al., 2011) and particularly associated with cells that correlate highly with the memory and Th1 signatures (negative PC1, positive PC2).

[00178] Finally, Th17 cells acquire a dysfunctional, senescent-like state in the CNS (negative PC1 and PC2 scores; Figure 2C, moss grey), with (1) down-regulation (p<10⁻³) of genes critical to T-cell activation, including Cd3 (Figure 2D) (Chai and Lechler, 1997; Lamb et al., 1987; Trimble et al., 2000), *Cd28* (Trimble et al., 2000; Wells et al., 2001), *Lat* (Figure 2D) (Hundt et al., 2006), *Lck* (Isakov and Biesinger, 2000; Nika et al., 2010), and *Cd2* (Bachmann et al., 1999; Lamb et al., 1987) (Table S4 (Gaublomme 2015), Table 6); (2) upregulation of genes associated with senescence, such as *Ccrl2* (up regulated in exhausted CD8+ T-cells (Wherry et al., 2007)), *Marcks* (Figure 2D) (inducer of senescence (Jarboe et al., 2012)), and *Cd74* (a receptor to *Mif* in the *Hif-Mif* senescence pathway (Maity and Koumenis, 2006; Salminen and Kaarniranta, 2011; Welford et al., 2006)); and (3) association

with signatures for CD28 costimulation (p<10⁻¹¹, GSEA, Table S2 (Gaublomme 2015)) and PD-1 signaling (p<10⁻¹⁰, GSEA, Table S2 (Gaublomme 2015)). Among the possible regulators of this cell state is mir-144, an inhibitor of TNF- α and IFN- γ production and of T-cell proliferation (Liu et al., 2011), whose targets are enriched (p<10⁻⁴, hypergeometric test) in these cells.

[00179] In vitro derived cells span a broad spectrum of pathogenicity states with key similarities and distinctions from in vivo isolated cells. The analysis of in vivo Th17 cells harvested from mice undergoing EAE identified a progressive trajectory of at least five states, from self-renewing cells in the LN, through effector LN cells, effector Th1-like CNS cells, memory cells, and senescent ones. Given the limited number of cells available from in vivo samples, obtained as a mixed "snapshot" of an asynchronous process, it is difficult to determine their distinct pathogenic potential and underlying regulatory mechanisms. A complementary strategy is offered by profiling in vitro differentiated cells, where one can assess the heterogeneity of Th17 cells at the same condition (time point and cytokine stimulation). Furthermore, comparing in vivo and in vitro profiles can help uncover to what extent the in vitro differentiation conditions faithfully mirror in vivo states.

[00180] Single-cell RNA-seq profiles of 414 individual Th17 cells derived under non-pathogenic conditions (TGF- β 1+IL-6, unsorted: 136 cells from 2 biological replicates, TGF- β 1+IL-6, sorted for IL-17A/GFP+: 159 cells from 3 biological replicates) and pathogenic conditions (Il-1 β +IL-6+IL-23, sorted for IL-17a/GFP+: 147 cells from 2 biological replicates) (Figure 3A) were then analyzed.

[00181] Using the functional annotation approach (Figure 2B) to annotate the cells with immune cell signatures, it was found that in vitro differentiated Th17 cells vary strongly in a key signature of pathogenicity and tolerance (Lee et al., 2012), reflecting the conditions in which they were derived (Figure 3A, number 1, and 3D). High pathogenicity scores were associated with IL-17A/GFP+ sorted cells polarized under a pathogenic condition (Figure 3A,D red, number 1, PC1), whereas IL-17A/GFP+ sorted cells from non-pathogenic conditions correlate highly with the expression of regulatiory cytokines, such as IL-10, and their targets, which are barely detected in the pathogenic cells (Figure 3E). Finally, a signature obtained from the T-cells harvested from IL23R knockout mice and differentiated under the IL-1β+IL-6+IL23 condition correlates highly with the cells that adopt a more regulatory

profile, further confirming a crucial role of the IL-23 pathway in inducing a pathogenic phenotype in Th17 cells (Figure 3A, number 4, positive PC1).

[00182] Importantly, there is a clear zone of overlap in cell states between the pathogenic and non-pathogenic conditions, with pathogenic-like cells present (in a small proportion) in populations differentiated in non-pathogenic conditions (Figure 3A, red oval shading). In particular, cells polarized under the non-pathogenic (TGF-β1+IL-6) condition that were not specifically sorted to be IL-17A/GFP+ span the broadest pathogenicity spectrum: from cells resembling the least pathogenic cells in the IL-17A/GFP+ TGF-β1+IL-6 condition to those resembling more pathogenic cells in the IL-17A/GFP+IL-1β+IL-6+IL23 condition (Figure 3D, open black circles). At one end of this spectrum Th17 cells were observed with high expression of regulatory transcripts such as IL-9, IL-16, Foxp1 and Podoplanin Peters et al. 2014) (Figure 7B, left), and at the other end, Th17 cells were observed that express high levels of pro-inflammatory transcripts such as IL-22, IL23r, Cxcr3 and Gm-csf (Figure 7B, right).

[00183] To relate the *in vitro* differentiated cells to the *in vivo* observed behavior the *in vitro* cells (Figure 2B) were scored for immune related genes that characterize the *in vivo* identified subpopulations (Figure 2C) (Figure 3B,C). Cells derived in the non-pathogenic conditions scored more highly for the self-renewing signature (p<1e-9 KS test; Table S2 (Gaublomme 2015) and Figure 3A, number 6, and 3C), whereas those derived in pathogenic conditions resembled more the Th-17/Th-1 like memory phenotype identified in the CNS (p<1e-7 KS test; Table S2 (Gaublomme 2015) and Figure 3B).

[00184] Co-variation with pro-inflammatory and regulatory modules in Th17 cells highlights novel candidate regulators. The cellular heterogeneity within a single population of in vitro differentiated cells was then leveraged to identify regulators that might selectively influence pathogenic vs. nonpathogenic states of Th17 cells. Focusing on the (unsorted) cells from the TGF-β1+IL-6 in vitro differentiation condition, in which the broadest spectrum of cells spanning from pathogenic to nonpathogenic-like profiles was observed, first transcriptome-wide gene expression distributions across the population were analyzed. About 35% (2,252) of the detected genes are expressed in >90% of the cells (Figure 4A) with a unimodal distribution: these include housekeeping genes (p<10⁻¹⁰, hypergeometric test, Figure 6F & 6G), the Th17 signature cytokine IL-17f, and transcription factors (e.g., Batf, Stat3 and

Hifla) that are essential for Th17 differentiation. On the other hand, bimodally expressed genes (Figure 4A, bottom) – with high expression in at least 20% of the cells and much lower (often undetectable) levels in the rest – include cytokines like Il-17a and Il-10 and other proinflammatory (e.g., Il-21, Ccl20) and regulatory cytokines or their receptors (Il-24, Il-27ra, Figure 4A). This suggests that variation in expression across Th17 cells may be related more to their (varying) pathogenicity state than to their (more uniform) differentiation state. Furthermore, while almost all cells express transcripts encoding the pioneer and master transcription factors for the Th17 lineage (Rorc, Irf4, Batf), a minority (<30%) also express transcripts encoding one or more of the transcription factors and cytokines that characterize other T-cell lineages (e.g., Stat4 for Th1 cells, and Ccr4 for Th2 cells). This may suggest the presence of "hybrid" double-positive cells, consistent with reports on plasticity in T-cell differentiation (Antebi et al., 2013), and/or reflect the previous model of duality in the Th17 transcriptional network (Yosef et al., 2013). Finally, the expression of many key immune genes varies more than the rest of the genome, even with the same mean expression level (Figure 6H), or when only considering the expressing cells (Figure 6I), implying a greater degree of diversity in immune gene regulation. While such patterns may be biologically important, they must be interpreted with caution. First, some (e.g., Il-17a, Il-24 and Ccl20), but not all (e.g., Il-9), of the transcripts with bi-modal patterns are also lowly expressed (on average) and thus may not be detected as reliably (Shalek et al., 2014). Second, transcription bursts coupled with instability of transcripts may lead to 'random' fluctuations in gene expression levels at any given cell.

[00185] To overcome these challenges and to identify candidate regulators of pathogenicity, co-variation between transcripts across cells (Figure 4B) was analyzed. It was reasoned that if transcript variation reflects distinct physiological cell states, entire gene modules should robustly co-vary across the cells. Furthermore, transcription factors and signaling molecules that are members of such modules may highlight new putative regulators of these modules and functional states. Focusing on significant co-variation (Spearman correlation; FDR < 0.05) between each bimodally expressed transcript (expressed by less than 90% of the cells; Figure 4B, rows) and a curated set of bimodally expressed immune response genes (cytokines, cytokine receptors, T helper cell specific signatures, Figure 4B, columns), two key transcript modules were found: a pro-inflammatory module (Figure 4B, orange) of

transcripts that co-vary with known Th17 cytokines, such as *Il-17a* and *Ccl-20*, and a regulatory module (Figure 4B, green) of transcripts that co-vary with known regulatory genes, such as *Il-10*, *Il-24*, and *Il-9*. Using these modules as signatures to annotate the original *in vitro* cell states (Figure 3A and 4C), the pro-inflammatory module (Figure 4C, number 1) and key inflammatory genes (Figure 4D, bottom) are correlated with the most pathogenic cells (PC1, negative correlation) and the regulatory module (Figure 4C), and key members (Figure 4ED, top), are correlated with the least pathogenic (PC1, positive correlation).

[00186] Co-variation of genes with each module highlights many novel putative regulators, many not detected by previous, population-level, approaches (Ciofani et al., 2012; Yosef et al., 2013). To select the most compelling candidate genes in the two modules (Figure 4b, rows) for follow-up functional studies, a computational ranking scheme was developed that considers each gene's correlation with the pro-inflammatory or regulatory modules, their loading on the first *in vitro* PC marking for pathogenic potential, and their role in the EAE context *in vivo* (Figure 4E, Table 2 herein). While the genes from our co-variation matrix (rows, **Figure 4B**) tend to be highly ranked compared to all genes also in bulk-population data (p<10⁻¹⁰, Wilcoxon Ranksum test) or rankings (Ciofani et al., 2012), they do not necessarily stand out in bulk population rankings (**Figure 15**), highlighting the distinct signal from single-cell profiles. Based on this ranking and availability of knockout mice, three genes were chosen for functional follow up: *Plzp, Cd51 and Gpr65* that are co-expressed with the pro-inflammatory module, and *Toso*, co-expressed with the regulatory module. None of these genes was previously implicated in differentiation or effector function of Th17 cells.

[00187] GPR65 promotes Th17 cell pathogenicity and is essential for EAE. GPR65, a glycosphingolipid receptor, is co-expressed with the pro-inflammatory module (Figure 4B), suggesting that it might have a role in promoting pathogenicity. GPR65 is also highly expressed in the *in vivo* Th17 cells harvested from the CNS that attain a Th1-like effector/memory phenotype (Figure 2D). Importantly, genetic variants in the GPR65 locus are associated with multiple sclerosis (International Multiple Sclerosis Genetics et al., 2011), ankylosing spondylitis (International Genetics of Ankylosing Spondylitis et al., 2013), inflammatory bowel disease (Jostins et al., 2012), and Crohn's disease (Franke et al., 2010).

[00188] The role of GPR65 was tested in Th17 differentiation in vitro and in the development of autoimmunity in vivo. Naïve T-cells isolated from $Gpr65^{-/-}$ mice in vitro

were differentiated with TGF- β 1+IL-6 (non-pathogenic condition) or with IL-1 β +IL-6+IL-23 (pathogenic condition) for 96 hours. In both cases, there was a ~40% reduction of IL-17a positive cells in $Gpr65^{-/-}$ cells compared to their wild type (WT) controls as measured by intracellular cytokine staining (ICC) (Figure 5A). Memory cells from $Gpr65^{-/-}$ mice that were reactivated with IL-23 also showed a ~45% reduction in IL-17a-positive cells when compared to wild type controls (Figure S3A). Consistently, an enzyme-linked immunosorbent assay (ELISA) of the supernatant obrtained from the activated Th17 culture showed a reduced secretion of IL-17a (p<0.01) and IL-17f (p<10⁻⁴) (Figure 5B) and increased IL-10 secretion (p<0.01, Figure S3A) under pathogenic (IL-1 β +IL-6+ L-23) Th17 differentiation conditions in the knockout mice.

[00189] To further validate the effect of GPR65 on Th17 function, RNA-seq profiles were measured of a bulk population of $Gpr65^{-/-}$ Th17 cells, differentiated *in vitro* under both non-pathogenic (TGF- β 1+IL-6) and pathogenic (IL-1 β +IL-6+IL-23) conditions for 96 hours. Supporting a role for GPR65 as a driver of pathogenicity of Th17 cells, it was found that genes up-regulated in $Gpr65^{-/-}$ cells (compared to WT) are most strongly enriched (P< 10⁻²⁸, hypergeometric test, Figure 5E) for the genes characterizing the more regulatory cells under TGF- β 1+IL-6 (positive PC1, Figure 4C, Table S6 (Gaublomme 2015), Table 7).

[00190] To determine the effect of loss of GPR65 on tissue inflammation and autoimmune disease *in vivo*, RAG-1^{-/-} mice were reconstituted with naïve CD4+ T-cells from wild type or *Gpr65*^{-/-}, then induced EAE with myelin oligodendrocytes glycoprotein peptide emulsified with complete Freund's adjuvant (MOG35-55/CFA). It was found that in the absence of GPR65-expressing T cells, mice are protected from EAE (Figure 5D) and far fewer IL-17A and IFN-γ positive cells are recovered from the LN and spleen compared to wild-type controls transferred with wild-type cells (Figure S3B). Furthermore, *in vitro* restimulation with MOG₃₅₋₅₅ of the spleen and LN cells from the immunized mice showed that loss of GPR65 resulted in dramatic reduction of MOG-specific IL-17A or IFN-γ positive cells compared to their wild-type controls (Figure 5C), suggesting that GPR65 regulates the generation of encephalitogenic T cells *in vivo*. Taken together, the data strongly validates that GPR65 is a positive regulator of the pathogenic Th17 phenotype, and its loss results in protection from EAE.

TOSO is implicated in Th17-mediated induction of EAE. TOSO (FAIM3) is an [00191]immune cell specific surface molecule, is known to negatively regulate Fas-mediated apoptosis (Hitoshi et al., 1998; Nguyen et al., 2011; Song and Jacob, 2005), and is coexpressed with the regulatory module in Th17 cells. Although its covariance with the regulatory module (Fogure 4B) may naively suggest that it positiviely regulates the regulatory module. Toso knockout mice were recently reported to be resistant to EAE (Lang et al., 2013). This may be consistent with a hypothesis that Toso is a negative regulatore of the nonpathogenic state, co-expressed with the regulatory module, as has been often obsreved for negative regulators and their targets in other systems (Amit et al., 2007; Segal et al., 2003) To test this hypothesis, in vitro differentiation and MOG recall assays on TOSO-/- cells were performed. Differentiation of TOSO-/- cells showed a defect in the production of proinflammatory cytokine IL-17A for both differentiation conditions (Figure 5F), which was confirmed by ELISA (Figure 5G). Moreover, memory cells stimulated with IL-23 show a lack of IL-17A production (Figure S4A). Consistently, in a MOG recall assay, CD3⁺CD4⁺ *Toso*^{-/-} T cells showed no production of IL-17a across a range of MOG₃₅₋₅₅ concentrations (Figure 5H). This supports a role for TOSO as a promoter of pathogenicity.

[00192] To further explore this, RNA-seq analysis of *Toso*. Th17 cell populations, differentiated *in vitro* under non-pathogenic conditions for 96 hours was performed. Loss of TOSO results in suppression of the key regulatory genes (e.g., IL-24 (FC=0.08), IL-9 (FC=0.33) and Procr (FC=0.41)(Table S6 (Gaublomme 2015), Table 7), consistent with the reduction of IL-10 production as measured by ELISA (Figure S4C), and a reduced number of FOXP3+ cells under Treg differentiation conditions (Figure S4B). On the other hand, in pathogenic conditions, IL-17a (FC=0.21) is down regulated in the absence of TOSO. Enrichment analysis with respect to PC1 of the non-pathogenic differentiation condition suggests that TOSO knockout cells, rather than up-regulating regulatory genes, down-regulate genes associated with a more pro-inflammatory cell phenotype (Figure 5E). Taken together, the data suggest that TOSO plays a critical role as a positive regulator of Th17-cell mediated pathogenticity.

[00193] MOG-stimulated Plzp^{-/-} cells have a defect in generating pathogenic Th17 cells. PLZP (ROG), a transcription factor, is a known repressor of (the Th2 master regulator) GATA3 (Miaw et al., 2000), and regulates cytokine expression (Miaw et al., 2000) in T-

helper cells. Since *Plzp* is co-expressed with the pro-inflammatory module, it was hypothesized that it may regulate pathogenicity in Th17 cells.

[00194] While *in vitro* differentiated *Plzp*^{-/-} cells produced IL-17A at comparable levels to wild-type (Figure S5A), a MOG-driven recall assay revealed that *Plzp*^{-/-} cells do have a defect in IL-17A production that becomes apparent with increasing MOG concentration during restimulation (Figure 5I). Furthermore, *Plzp*^{-/-} cells also produced less IL-17A than wild-type cells when reactivated in the presence of IL-23, which acts to expand previously *in vivo* generated Th17 cells (Figure S5B). Finally, *Plzp*^{-/-} T cells secreted less IL-17A, IL-17F (Figure 5J), IFN-γ, IL-13 and GM-CSF (Figure S5C). These observations suggest that PLZP regulates the expression of a wider range of inflammatory cytokines. Based on RNA-Seq profiles, at 48 hours into the non-pathogenic differentiation of *Plzp*^{-/-} cells, *Irf1* (FC=5.2), *Il-9* (FC= 1.8) and other transcripts of the regulatory module are up regulated compared to WT (Table S6 (Gaublomme 2015), Table 7), whereas transcripts from the pro-inflammatory module, such as *Ccl-20* (FC=0.38), *Tnf* (FC=0.10) and *Il-17a* (FC=0.42), are repressed. A similar pattern is observed with respect to PC1, where genes characterizing the more pro-inflammatory cells are strongly enriched among the down-regulated genes in *Plzp*^{-/-} T cells (Figure 5E).

[00195] *DISCUSSION:* Genome-wide analysis of single-cell RNA expression profiles opens up a new vista for characterizing cellular heterogeneity in ensembles of cells, previously studied as a population. By profiling individual Th17 cells from the LN and CNS at the peak of EAE, it was found that Th17 cells adopt a spectrum of cellular states, ranging from cells with a self-renewing gene signature, to pro-inflammatory Th1-like effector or memory-like cells, to a dysfunctional/senescent phenotype. These findings shed light on the controversy in the field on whether Th17 cells are short-lived, terminally differentiated, effector cells (Pepper et al., 2010) or long-lived self-renewing T cells (Muranski et al., 2011). The analysis also shows that Th17 cells present in the lymph node and CNS generally appear to have different transcriptional profiles and that the only group of Th17 cells that transcriptionally overlap are those that attain a pre-Th1-like state with acquisition of cytokine receptors (like IL-18R) that push Th17 cells into a Th1 phenotype. This fits well with the data that most Th17 cells begin to co-express Th1 genes in the CNS and become highly pathogenic.

[00196] The Th1-like phenotype of Th17 cells observed in the CNS might facilitate memory cell formation, as the entry of Th1 cells into the memory pool is well established (Harrington et al., 2008; Sallusto et al., 1999). It is unclear if cells that adopt a Th1 phenotype are stable 'double producers' or if they show plasticity towards a Th1 fate. IL-23, which induces a pathogenic phenotype in Th17 cells has been shown to induce IFN-g in Th17 cells. Consistent with this data, *IL-23R*-deficient mice have lower frequencies of double producers (McGeachy et al., 2009) and chronic exposure of Th17 cells to IL-23 induces IFN-g production from Th17 cells. Additionally, a conversion from a Th17 to a Th1-like phenotype is also documented in other disease models and these are considered to be the most pathogenic T cells (Bending et al., 2009; Lee et al., 2009; Muranski et al., 2011; Palmer and Weaver, 2010; Wei et al., 2009b).

[00197] Despite being differentiated under the same culture conditions, *in vitro* differentiated Th17 cells also exhibit great cellular diversity, with a pathogenic, proinflammatory state on the one end of the spectrum and an immunosuppressive, regulatory state on the other end. A comparative analysis of *in vivo* and *in vitro* derived cells with respect to immune-related genes reveals that *in vitro* polarization towards a pathogenic Th17 phenotype (with IL-1 β +IL-6+IL-23) produces cells that resemble more the Th17/Th1 memory cells in the CNS found during EAE (Figure 3A).

[00198] Single cell RNA-seq further showed that pro-inflammatory genes that render Th17 cells pathogenic and regulatory genes that render Th17 cell nonpathogenic are expressed as modules in groups of Th17 cells. This allowed for dissection of factors that relate to this specific facet of th17 cell functionality, rather than their general differentiation. Strong correlation (either positive or negative) between two genes suggests that their biological function may be linked. In this study, strong co-variation with key Th17 genes allowed us to recover many known regulators, but also to identify many promising novel candidates that were coexpressed with either a proinflammatory or a regulatory module in Th17 cells. For example, Gpr65 positively correlated with the *in vitro* derived pro-inflammatory gene module. Consistently, Gpr65 CD4 T cells reconstituted to Rag1 mice were incapable of inducing EAE and had compromised IL-17A production. There are many genes similarly highlighted by this analysis, including Gem, Cst7, and Rgs2, all of which significantly correlate with the *in vitro* derived pro-inflammatory gene module and are highly expressed in

the *in vivo* Th17/Th1-like memory subpopulation the are present in the CNS during peak inflammaiton. *Foxp1*, on the other hand, one of the genes negatively correlated with the proinflammatory module, was lowly expressed in the inflammatory Th17/Th1-like subpopulations *in vivo*, but was highly expressed in the LN-derived Th17 self-renewing subpopulation (p<10⁻⁷, KS test; Table S4 (Gaublomme 2015), Table 6). In line with this finding, in T follicular helper cells, Foxp1 has very recently been shown to directly and negatively regulate IL-21 (Wang et al., 2014), a driver of Th17 generation (Korn et al., 2007; Nurieva et al., 2007; Zhou et al., 2007), and to dampen the expression of the co-stimulatory molecule ICOS and its downstream signaling at the early stages of T-cell activation (Wang et al., 2014). Further functional studies with *Foxp1* knockout mice in the context of EAE could elucidate its potential role in regulating Th17 cell differentiation and development of autoimmune tissue inflammation.

[00199] Importantly, it should be noted that the co-variation of a gene with the proinflammatory or regulatory module does not necessarily indicate a pro-inflammatory or regulatory function to this gene. For example, one of the follow-up genes, *Toso*, co-varies with the regulatory module, but its absence protects mice from EAE (Brenner et al., 2014) and compromises IL-17A production, suggesting *Toso* does not serve as a regulatory factor. This is consistent with previous studies – from yeast (Segal et al 2003) to human (Amit et al 2007), showing how regulators with opposite, antagonistic functions, are co-regulated.

[00200] Examining the single-cell RNA-seq data together with ChIP data reveals transcription factors that regulate various cellular states observed in the study. For example, *Zfx* was identified as a strong candidate regulator of the self-renewing state of Th17 cells in the LN, because its targets are strongly enriched in this subpopulation, it is a known regulator of self-renewal in stem cells (Cellot and Sauvageau, 2007; Galan-Caridad et al., 2007; Harel et al., 2012), and it prevents differentiation in leukemias (Weisberg et al., 2014). In contrast, for the pathogenic effector and memory cells observed in the CNS during EAE, a prominent role is assigned to known Th17/Th1 transcription factors such as *Hifla*, *Fosl2*, *Stat4* and *Rel*, and it is specified in which subpopulations their regulatory mechanisms contribute to disease. As such, this study elaborates on Th17 pathogenicity beyond differentiation and development. This data suggests that processes such as self-renewal, observed in the lymph node, may provide a pool of cells that are precursors for differentiating Th17 cells to effector/ memory formation in the CNS that may contribute to

Th17 pathogenicity in EAE. These cellular functional states enable us to map the contribution of novel and known genes to each of these processes during Th17 differentiation and function. Whereas population-based expression profiling has enabled identification of cytokines and transcription factors that set the differentiation states of Th17 cells, using single cell RNA-seq new granularity is provided in the transcriptome of a rather homogenous population of T cells. Many of the novel regulators that identified by single cell RNA-seq are regulating pathogenic *vs.* nonpathogenic functional states in Th17 cells. These novel regulators will allow the manipulation of pathogenic Th17 cells without affecting nonpathogenic Th17 cells that may be critical for tissue homeostasis and for maintaining barrier functions.

Single-cell RNA-seq identifies CD5L as a candidate regulator of pathogenicity. Cd5l [00201] is one of the high-ranking genes by single-cell analysis of potential regulators, exhibiting two surprising features: although Cd5l is expressed in Th17 cells derived under non-pathogenic conditions (Figure 16A), in these non-pathogenic cells, Cd5l positively correlates with the first PC of *in-vitro* derived cells and co-varies with other genes in the pro-inflammatory module (Figure 19A, B, C). In addition, Cd51 positively correlates with the cell pathogenicity score (Figure 16B, C). Comparing Cd5l expression at the single-cell level in Th17 cells (sorted IL-17.GFP+) derived in vitro showed ~80% of Th17 cells derived with IL-1β+IL-6+IL-23 lacked Cd5l expression, whereas Th17 cells differentiated with TGF-β1+IL-6 predominantly expressed Cd5l (Figure 16A). Neither Th17 cells differentiated under an alternative pathogenic condition (TGF-β3+IL-6) nor encephalitogenic Th17 cells sorted from the CNS of mice undergoing active EAE expressed Cd51 at the single-cell level (Figure 16A). However, Cd51 expressed in nonpathogenic Th17 cells (unsorted single-cell analysis, Figure 19A) correlates with the first PC and co-varies with the pro-inflammatory module (Figure 19B) that is indicative of the pathogenic signature (Figure 19C) as previously defined (Lee et al., 2012). Furthermore, Cd5l correlates with the defining signature of the pro-inflammatory module, and negatively correlates with that of the regulatory module (Figure 16C). Finally, it is among the top 8 genes in the single cell based pro-inflammatory module whose expression most strongly correlates with the previously defined pathogenic gene signature (**Figure 16B**, $p = 2.63 \times 10^{-5}$). CD5L is a member of the scavenger receptor cysteine rich superfamily (Sarrias et al., 2004). It is expressed in macrophages and can bind cytosolic fatty acid synthase in adipocytes following endocytosis (Miyazaki et al., 1999). CD5L is also a receptor for pathogen associated molecular patterns

(PAMPs), and may regulate innate immune responses (Martinez et al., 2014). However, its expression has not been reported in T cells, and its role in T-cell function has not been identified. [00202] CD5L expression is associated with non-pathogenic Th17 cells in vitro and in vivo. Applicants determined that the preferential expression of CD5L in non-pathogenic Th17 cells, but in association with the pro-inflammatory module, may reflect a unique role for CD5L in regulating the transition between a non-pathogenic and pathogenic state. While co-expression with the proinflammatory module (Figure 16C) and correlation with a pathogenicity signature (Figure 16B) per se could suggest a function as a positive regulator of pathogenicity, the apparent absence of CD5L from Th17 cells differentiated in vitro under the pathogenic conditions or isolated from lesions in the CNS (Figure 16A) suggested a more nuanced role. Applicants hypothesized that CD5L is a negative regulator of pathogenicity, explaining its absence from truly pathogenic cells. In fact, mRNAs encoding negative regulators of cell states are often positively co-regulated with the modules they suppress in eukaryotes from yeast (Pe'er et al., 2002; Segal et al., 2003) to human (Amit et al., 2007).

[00203] Applicants first validated and extended the initial finding that CD5L is uniquely expressed in nonpathogenic Th17 cells by analyzing naïve CD4 T cells cultured under various differentiation conditions using qPCR and flow cytometry (**Figure 16D**, **E**, **F**). At the mRNA level, Applicants found little Cd5l expression in Th0, Th1 or Th2 helper T cells, high expression in Th17 cells differentiated with TGF- β 1+IL-6, but low expression in Th17 cells differentiated with IL-1 β +IL-6+IL-23 or in iTregs (**Figure 16D**). Protein measurements confirmed the presence of CD5L in a large proportion of non-pathogenic Th17 cells (**Figure 16F**).

[00204] Next, Applicants explored whether CD5L expression is associated with less pathogenic Th17 cells *in vivo*. Applicants analyzed Th17 cells isolated from mice induced with EAE. Th17 cells (CD3+CD4+IL-17.GFP+) sorted from the spleen expressed *Cd5l* but IL-17- T cells did not (Figure 16G). In contrast, *Cd5l* was not expressed in Th17 cells from the CNS despite significant expression of *Il17* (Figure 16H), consistent with the single-cell RNA-seq data (Figure 16A). Next, Applicants analyzed Th17 cells from mesenteric lymph nodes (mLN) and lamina propria (LP) of naïve mice, where Th17 cells contribute to tissue homeostasis and mucosal barrier function. IL-17+ but not IL-17- Tcells harvested from mLN and LP expressed high levels of *Cd5l* (Figure 16I and data not shown). Thus, CD5L is a gene expressed in non-pathogenic but not pathogenic Th17 cells *in vivo*. Applicants asked if IL-23, known to make

Th17 cells more pathogenic, can regulate *Cd5l* expression. Applicants hypothesized that if CD5L is a positive regulator of IL-23-dependent pathogenicity, its expression will be increased by IL-23, whereas if it is a negative regulator, its expression will be suppressed. As IL-23R is induced after T-cell activation, Applicants differentiated naïve T cells with TGF-β1+IL-6 for 48h and expanded them in IL-23 in fresh media. IL-23 suppressed *Cd5l* (**Figure 16E**), consistent with these cells acquiring a pro-inflammatory module and becoming pathogenic Th17 cells, and with our hypothetical assignment of CD5L as a negative regulator of pathogenicity. CD5L expression can be promoted by STAT3 but not RORγt (**Figure 19D, E**), as IL-23 can enhance STAT3 function further studies are required to elucidate the pathways involved in regulating CD5L expression.

[00205] CD5L represses effector functions without affecting Th17 differentiation. To analyze the functional role of CD5L in vivo, Applicants immunized mice with MOG35-55/CFA to induce EAE. CD5L-/- mice exhibited more severe clinical EAE that persisted for at least 28 days, whereas wildtype (WT) mice began recovering 12 days post immunization (Figure 17A). Similar frequencies of FoxP3+ CD4+ Treg cells were found in WT and CD5L-/- mice, suggesting that the increased severity of the disease was not due to changes in the number of Tregs in CD5L-- mice (Figure 12A). In contrast, more CD4 T cells produced IL-17 and fewer cells produced IFNy in the CNS of CD5L-/- mice (Figure 17A, 12B). In response to MOG reactivation in vitro, cells from the draining lymph nodes of CD5L-/- mice showed higher proliferative responses and produced more IL-17 (Figure 12C, 12D). These observations are consistent with either a direct or indirect role for CD5L in defining Th17 cell function. Applicants studied the impact of CD5L on Th17 cells differentiated from naïve WT and CD5L-/- T cells by analyzing signature gene expression. CD5L deficiency did not affect Th17 differentiation as measured by IL-17 expression (Figure 17B, C), nor did it affect other Th17 signature genes including Il17f, Il21, Il23r, Rorc or Rorα (Figure 17D). Of note, under the non-pathogenic differentiation condition, CD5L-/- Th17 cells made less IL-10 (Figure 17C, D). These observations suggest that changes in differentiation alone cannot explain the increased susceptibility to EAE in CD5L-/mice, but that CD5L may indeed affect the internal state of differentiated Th17 cells. Applicants determined if CD5L regulates effector/memory Th17 cells by differentiation of nonpathogenic Th17 cells from naïve cells. Upon restimulation, more CD5L-/- Th17 cells produced IL-17 and expressed IL-23R without affecting viability (Figure 17E and data not shown), suggesting that

CD5L deficiency leads to more stable expansion of Th17 cells. Consistently, CD5L-/- Th17 cells expressed more *II17* and *II23r*, less *II10* and similar levels of *Rorc* or *Rorα* (**Figure 17F**). Thus, CD5L does not regulate Th17 cell differentiation, but affects Th17 cell expansion and/or effector functions over time. Similarly, effector memory cells (CD4+CD62LCD44+) isolated *ex vivo* from CD5L-/- mice have higher frequencies of IL-17+ and lower frequencies of IL-10+ cells (**Figure 17G, 12E**), possibly reflecting the greater stability of Th17 cells that persist in the repertoire of CD5L-/- mice. To address if Th17 cells isolated *in vivo* also produced more IL-17 per-cell, Applicants sorted RORγt+ (GFP+) effector/memory T cells from WT and CD5L-/- mice and found more IL-17+ and fewer IL-10+ cells in CD5L-/- cells, suggesting RORγt+ cells are better IL-17 producers in the absence of CD5L (**Figure 17H, 12F**).

[00206] CD5L is a major switch that regulates Th17 cells pathogenicity. To determine if loss of CD5L can convert non-pathogenic Th17 cells into disease-inducing Th17 cells, Applicants crossed CD5L-/- mice to 2D2 transgenic mice expressing a T-cell receptor specific for MOG35-55/IAb (Bettelli et al., 2003). Naïve CD5L-/- 2D2 T cells were differentiated with the nonpathogenic (TGF-β1+IL-6) Th17 condition and transferred into WT recipients. Applicants analyzed the phenotype of T cells from the CNS of mice undergoing EAE. The 2D2 CD5L-/-Th17 cells retained more IL-17+ and fewer IL-10+ cells (Figure 20A). A considerable proportion of endogenous T cells produced IL-10 compared to transferred 2D2 T cells (Figure 20A), suggesting that extracellular IL-10 is not sufficient to restrain the pathogenicity of CD5L-/- Th17 cells. WT 2D2 T cells also acquired IFNy expression in vivo, whereas CD5L-/- 2D2 T cells produced little IFNy, suggesting CD5L may also regulate Th17 cellstability. Consistently, naïve CD5L-/- 2D2 T cells transferred into WT hosts immunized with MOG35-55/CFA without inducing EAE made more IL-17 and little IL-10 in contrast to WT 2D2 T cells (Figure 20B). As IL-23 suppresses CD5L (Figure 16E) and CD5L restrains Th17 cell pathogenicity, Applicants reasoned that sustained CD5L expression should antagonize IL-23-driven pathogenicity. To test this hypothesis, Applicants generated a retroviral vector for ectopic expression of CD5L. Naive 2D2 T cells were differentiated with IL-1β+IL-6+IL-23, transduced with CD5L, transferred into WT recipients, and followed for weight loss and the development of clinical EAE (Experimental Procedures). 2D2 T cells transduced with CD5L (CD5L-RV 2D2) had a small reduction in IL-17 and higher IL-10 levels (Figure 20C). Ectopic expression of CD5L in

pathogenic Th17 cells reduced their pathogenicity as CD5L-RV 2D2 recipients had reduced weight loss and a significant decrease in the incidence and peak severity of EAE (**Figure 20D**, **E**). Furthermore, CD5L-RV 2D2 Th17 cells transferred *in vivo* lost IL-17 production and began producing IFNγ (**Figure 20F**). Therefore, sustained expression of *Cd5l* in pathogenic Th17 cells converts them to a less pathogenic and less stable phenotype in that these cells lose the expression of IL-17 and acquire an IFNγ-producing phenotype *in vivo*. This observation, combined with the observation that the loss of CD5L converts non-pathogenic Th17 cells into pathogenic Th17 cells *in vivo*, unequivocally supports the role of CD5L as a negative regulator of the functional pathogenic state of Th17 cells.

CD5L shifts the Th17 cell lipidome balance from saturated to unsaturated lipids, [00207] modulating Roryt ligand availability and function: Since CD5L is known to regulate lipid metabolism, by binding to fatty acid synthase in the cytoplasm of adipocytes (Kurokawa, Arai et al. 2010), it was speculated that CD5L may also regulate Th17-cell function by specifically regulating lipid metabolites in T cells. To test this hypothesis, it was analyzed whether lipid metabolism is regulated by CD5L and is associated with the increased pathogenicity observed in Th17 cells from CD5L^{-/-} mice. The lipidome of WT and CD5L^{-/-} Th17 cells differentiated under the non-pathogenic (TGFβ1+IL-6) and pathogenic (TGFβ1+IL-6+IL-23) conditions was profiled. It was possible to resolve and identify around 200 lipid metabolites intracellularly or in the supernatant of differentiating Th17 cells using mass spectrometry and liquid chromatography (Table 3 herein). Of those metabolites that were differentially expressed between WT and CD5L^{-/-}, a striking similarity between the lipidome of CD5L^{-/-} Th17 cells differentiated under the non-pathogenic condition and WT Th17 cells differentiated under the pathogenic condition (Figure 11A) was observed. Among other metabolic changes, CD5L deficiency significantly increased the levels of saturated lipids (SFA), including metabolites that carry saturated fatty acyl and cholesterol ester (CE) as measured by liquid chromatography and mass spectrometry (Figure 11B), and free cholesterol as shown by microscopy (Figure 11D). Moreover, the absence of CD5L resulted in a significant reduction in metabolites carrying poly-unsaturated fatty acyls (PUFA) (Figure 11B). Similar increase in CE and reduction in PUFA is observed in the lipidome of Th17 cells differentiated under either of two pathogenic conditions (IL-1β+IL-6+IL-23 and TGFβ3+IL-6+IL-23) compared to non-pathogenic WT cells (Figure 11C). Thus, Th17 cell pathogenicity

is associated with a shift in the balance of lipidome saturation as reflected in the increase in saturated lipids and decrease in PUFA metabolites.

[00208] Cholesterol metabolites, such as oxysterols, have been previously reported to function as agonistic ligands of Rorγt (Jin, Martynowski et al. 2010, Soroosh, Wu et al. 2014). Previous ChIP-Seq analysis (Xiao, Yosef et al. 2014) suggests that Rorγt binds at several sites in the promoter and intronic regions of *Il23r* and *Il17* (Figure 11D) and near CNS-9 of *Il10*, where other transcription factors, such as cMaf, which regulates *Il10* expression, also binds. As showed above, CD5L restrains the expression of IL-23R and IL-17 and promotes IL-10 production in Rorγt⁺ Th17 cells, and because CD5L-deficient Th17 cells contain higher cholesterol metabolite and lower PUFA (Figure 11A,B). Putting these data together, it was hypothesized that CD5L regulates the expression of IL-23R, IL-17 and IL-10 by affecting the binding of Rorγt to these targets, through affecting the SFA-PUFA balance.

Applicants hypothesized that CD5L could regulate Th17-cell function by regulating [00209] fatty acid (FA) profiles in T cells. Applicants asked if lipid metabolites are regulated by CD5L and if any such changes are associated with the increased pathogenicity of CD5L-/- Th17 cells. Applicants profiled the lipidome of WT and CD5L-/- Th17 cells differentiated under the nonpathogenic (TGF-β1+IL-6) and pathogenic (TGF-β1+IL-6+IL-23) conditions using a nontargeted approach. Applicants detected 178 lipid metabolites from Th17 cells, 39 of which showed differences among various Th17 polarizing conditions (Figure 11A, p < 0.05, fold change > 1.5; **Table 4**). Strikingly, non-pathogenic WT Th17 cells had a unique lipidome profile that was distinct from those of CD5L-/- Th17 cells and WT Th17 cells differentiated with TGFβ1+IL-6+IL-23 (Figure 11A). Applicants analyzed the FA profile and lipid class in the Th17 cell lipidome. As Applicants did not detect free FA except myristic acid, Applicants analyzed the FA content (side-chain) of the lipids in Figure 11A. WT non-pathogenic Th17 cells (compared to CD5L-/- Th17 cells of the same conditions) have increased polyunsaturated fatty acid (PUFA), accompanied by a decrease in lipids containing saturated (SFA) and monounsaturated fatty acids (MUFA) (Figure 11K). Applicants then extended this analysis to the 178 lipids detected. Not all PUFA are different in WT vs. CD5L-/- Th17 cells: linoleic acid (C18:2) and linolenic acid (C18:3) are equally distributed in the lipidome, whereas downstream PUFA, in particular arachidonic acid (C20:4), are elevated in WT non-pathogenic Th17 cells (Figure 21B). In contrast, MUFA is equivalently distributed and the corresponding SFA is decreased in WT non-

pathogenic Th17 cells (Figure 21C). The PUFA increase in WT non-pathogenic Th17 is equivalently distributed among the phospholipid and neutral lipid compartments (Figure 11L), whereas the relative decrease of SFA is only significant in phospholipid (Figure 11L). Finally, comparing the difference in specific lipid species (Figure 21D), Applicants found a higher level of cholesterol ester (CE), lysophosphatidylcholine (LPC) and phosphatidylcholine (PC), as well as decreased triacylglyceride (TAG) in both the CD5L-/- and more pathogenic cells (Figure 21D). Taken together, these findings suggest CD5L predominantly regulates FA composition in Th17 cells, resulting in elevation of PUFA and changes in specific lipid species, including cholesterol metabolites. Similar changes are also observed in WT Th17 cells differentiated under the pathogenic condition. Cholesterol metabolites, such as oxysterols, can function as agonists of Roryt (Jin et al., 2010; Soroosh et al., 2014), and the cholesterol synthesis pathway has been linked to the production of endogenous Roryt ligand. While Applicants did not detect any oxysterols or intermediates of cholesterol synthesis, the higher level of cholesterol esters (Figure 21D) prompted us to further investigate the cholesterol pathway. Applicants confirmed the higher intensity of free cholesterol in CD5L-/- Th17 cells using microscopy (Figure 21E). Next, Applicants analyzed the expression of cyp51 and sc4mol, two enzymes of the cholesterol synthesis pathway responsible for generating endogenous Roryt ligands (Santori et al., 2015), and found both increased in CD5L-7-Th17 cells or in pathogenic WT Th17 cells (Figure 11M). suggesting this may be a common mechanism by which Th17 cells regulate their function. Applicants asked if the change in FA profile in CD5L-/- Th17 cells is responsible for the regulation of cyp51 and sc4mol. Indeed, while SFA had a modest effect, PUFA abolished the increased expression of the enzymes in CD5L-/- Th17 cells (Figure 11M). Thus CD5L can regulate fatty acid composition in Th17 cells and alter the cholesterol synthesis pathway, a source of Roryt ligand.

[00210] CD5L and PUFA/SFA profile regulate Roryt function in a ligand-dependent manner. Applicants analyzed if CD5L and the PUFA/SFA profile can alter Roryt binding and function. Our previous chromatin immunoprecipitation (ChIP)-Seq analysis (Xiao et al., 2014) suggested Roryt binds at several sites in the promoter and intronic regions of Il23r and Il17 and near CNS-9 of Il10 (Figure 54 WO2015130968) where other Il10-regulating transcription factors, such as cMaf, also bind (Xiao et al., 2014). As CD5L restrains IL-17 and promotes IL-10 in Roryt+ Th17

cells (Figure 46 WO2015130968) and CD5L-/- Th17 cells have more cholesterol metabolites and lower PUFA (Figure 11A, 11K, 11M, 21E), Applicants hypothesized that CD5L regulates the expression of IL-23R, IL-17, IL-10 and, in turn, pathogenicity by affecting the binding of Roryt to these targets by changing the SFA/PUFA profile and cholesterol biosynthesis. Applicants assessed if CD5L regulates Roryt binding and transcription using ChIP-PCR and luciferase reporter assays. ChIP of Roryt showed higher binding in the Il17 and Il23r region and reduced binding to the Il10 region in CD5L-/- Th17 cells despite similar Roryt expression compared to WT (Figure 18A, B, Fig 54 WO2015130968). Further, CD5L overexpression was sufficient to suppress Roryt dependent transcription of Il17 and Il23r luciferase reporters (Figure 18C, Fig 54 WO2015130968) and to enhance the transcription of the III0 reporter (Figure Fig 54) **WO2015130968**). This effect of CD5L is not observed with PPARy, another regulator of *Il10*, further supporting the hypothesis that the effect of CD5L depends on Roryt (Fig 54 WO2015130968). Applicants then examined whether changing the lipidome of WT Th17 cells with exogenous SFA or PUFA can regulate Roryt binding to genomic regions (Figure 18A, B and Fig 54 WO2015130968). SFA enriched binding of Roryt at Il17 and Il23r loci and PUFA decreased such binding (Figure 18A, Fig 54 WO2015130968). Instead, PUFA increased Roryt binding to the III0 CNS-9 locus (Figure 18B), suggesting that manipulation of the lipid content of Th17 cells can indeed modulate Roryt binding to DNA. Applicants reasoned that if CD5L regulates Roryt transcriptional activity by limiting Roryt ligand, adding exogenous agonists of Roryt would rescue CD5L-induced suppression. Indeed, 7β, 27-dihydroxycholesterol, previously shown as an endogenous ligand of Roryt (Soroosh et al., 2014), rescued the CD5L-driven suppression of Il17 reporter transcription, suggesting ligand availability partly contributes to the regulation of Roryt function by CD5L (Figure 18D). Consistently, CD5L inhibited IL-17 expression in unpolarized Th0 cells with ectopic Roryt expression and this inhibition could be partially rescued by the addition of a Roryt ligand (Figure 18E). Addition of Roryt ligand also increased IL-17 production from non-pathogenic Th17 cells (Figure 18F), suggesting that ligand restriction may be one of the mechanisms by which CD5L regulates Th17 cell pathogenicity. Applicants then determined if SFA/PUFA regulate Roryt activity through Roryt ligand. While Roryt strongly transactivates the *II23r* enhancer in the presence of an agonistic ligand, the addition of PUFA to the agonist ligand inhibited Roryt-mediated Il23r transactivation and

enhanced *II10* transactivation (**Fig 48 WO2015130968**). Similarly, adding SFA alone had little impact on Roryt-dependent transcription, but it modified the transcriptional effect of oxysterol (**Fig 48 WO2015130968**). Thus, PUFA/SFA can modulate Roryt transcriptional activity via a Roryt-ligand dependent mechanism, although the precise mechanism of exogenous PUFA and SFA require further studies. Taken together, these observations suggest that CD5L shifts the FA composition in the lipidome, changes Roryt ligand availability and Roryt genomic binding, and regulates *II23r* and *II10*, members of the proinflammatory vs. regulatory modules.

[00211] PUFA/SFA regulate Th17 cell and contribute to CD5L function. As CD5L-- Th17 cells have an altered balance in lipid saturation, and PUFA/SFA modulate Roryt binding and function, Applicants analyzed the relevance of FA moieties to Th17 cell function and their contribution to CD5L-driven Th17 cell pathogenicity. Applicants first tested the effect of PUFA/SFA on the generation of Th17 cells. WT Th17 cells were differentiated with TGFβ1+IL-6 and expanded using IL-23 in fresh media with either PUFA or SFA. PUFA suppressed IL-17 and IL-23R expression consistent with reduced transactivation in WT but not in Roryt-/-Th17 cells, suggesting PUFA can limit pathogenic Th17 cell function in a Roryt dependent manner (Fig 50 WO2015130968). CD5L-/- Th17 cells differentiated with TGF-β1+IL-6 were also sensitive to PUFA treatment, resulting in reduced percentage of IL-17+ CD4+ T cells (Fig 50 WO2015130968). In contrast, addition of SFA only slightly increased the expression of both IL-17 and IL-23R expression, and this effect was not significant, possibly because pathogenic Th17 cells had already very high levels of SFA. Applicants studied the contribution of lipid saturation to Th17 cell pathogenicity. Applicants speculated that if the balance of lipid saturation distinguishes non-pathogenic WT Th17 cells and pathogenic CD5L-/- Th17 cells, the addition of SFA to WT and PUFA to CD5L-/- Th17 cells can result in reciprocal changes in the transcriptional signature relevant to Th17 cell pathogenicity. Applicants analyzed the expression of a 312 gene signature of Th17 cell differentiation and function (Yosef et al., 2013) in SFA- or control-treated WT Th17 cells and in PUFA- or control-treated CD5L-/- Th17 cells differentiated with TGF- β 1+IL-6. Of those genes that are differentially expressed (**Table 5**, \geq 1.5 fold), PUFAtreated CD5L-/- Th17 cells resemble WT non-pathogenic Th17 cells, and SFA-treated WT nonpathogenic Th17 cells are more similar to CD5L--Th17 cells (Fig 50 WO2015130968, Table 5). qPCR analysis confirmed that PUFA and SFA reciprocally regulated effector molecule

expression of the pathogenicity signature (Lee et al., 2012), including *II10*, *II23r*, *CcI5*, *Csf2* and *Lag3* (**Fig 50 WO2015130968**). Notably, in some cases PUFA and SFA have the same effects; for example, *II22* expression is increased following either FA treatment. Taken together, these observations suggest that the balance of lipid saturation contributes to CD5L-dependent regulation of Th17 cells by regulating the Th17-cell transcriptome.

[00212] DISCUSSION. Th17 cells are a helper cell lineage capable of diverse functions ranging from maintaining gut homeostasis, mounting host defense against pathogens, to inducing autoimmune diseases. How Th17 cells can mediate such diverse and opposing functions remains a critical open question. Addressing this is especially important since anti-IL-17 and Th17-based therapies have been highly efficacious in some autoimmune diseases, but had no impact on others (Baeten and Kuchroo, 2013; Genovese et al., 2010; Hueber et al., 2012; Leonardi et al., 2012; Papp et al., 2012; Patel et al., 2013), even when Th17 cells have been genetically linked to the disease process (Cho, 2008; Lees et al., 2011). Using single-cell genomics Applicants have addressed this issue and have identified novel functional regulators of pathogenicity in Th17 cells. Here, Applicants highlight and investigate CD5L as one of the novel regulators that affect the pathogenicity of Th17 cells. Applicants show that: (1) Among CD4 T cells, CD5L is highly expressed only in non-pathogenic Th17 cells, but in them positively co-varies with a proinflammatory module, a pattern consistent with being a negative regulator of pathogenicity; (2) CD5L does not affect Th17 differentiation but affects their long-term expansion and function; (3) CD5Ldeficiency converts non-pathogenic Th17 cells into pathogenic Th17 cells; (4) CD5L regulates lipid metabolism in Th17 cells and alters their fatty acid composition; and (5) change in the lipidome in CD5L-/- Th17 cells affects the ligand availability and binding of Roryt to its target genes.

[00213] In a seemingly paradoxical way, CD5L is expressed only in non-pathogenic Th17 cells, but in co-variance with the pro-inflammatory module. This observation led us to hypothesize that CD5L is a negative regulator of a non-pathogenic to pathogenic transition, since negative regulators are often known to co-vary in regulatory networks with the targets they repress in organisms from yeast (Segal et al., 2003) to mammals (Amit et al., 2007; Amit et al., 2009). Our functional analysis bears out this hypothesis, suggesting that CD5L might indeed be expressed to restrain the pro-inflammatory module in the non-pathogenic Th17 cells. Similarly, other genes with this specific pattern, *i.e.* exclusive expression in non-pathogenic cells but in co-

variance with the pro-inflammatory module, may also be repressors that quench pro-inflammatory effector functions and make Th17 cells non-pathogenic. Thus, depending on the environmental context or trigger, non-pathogenic Th17 cells can be readily converted into pathogenic Th17 cells by inhibiting a single gene like CD5L. This is supported by our data showing IL-23R signalling can suppress CD5L and persistent CD5L expression inhibits the pro-inflammatory function of Th17 cells. In addition to suppressing the pro-inflammatory module, CD5L also promotes the regulatory module, acting as a switch to allow rapid responses to environmental triggers such that Th17 cells can change their functional phenotype without intermediary pathways.

Both pathogenic and non-pathogenic Th17 cells are present in peripheral lymphoid organs, but pathogenic Th17 cells appear at sites of tissue inflammation (CNS) and nonpathogenic Th17 cells appear in the gut or other mucosal surfaces. This is mirrored in the expression of CD5L. IL-23, which is present in the CNS during EAE, can suppress CD5L and convert non-pathogenic Th17 cells into pathogenic Th17 cells. At steady state, it is unknown what promotes CD5L expression and non-pathogenicity in the gut. TGF-\u03b3 could be a candidate given its abundance in the intestine and its role in both differentiation of IL-10-producing CD4 T cells in vivo (Konkel and Chen, 2011; Maynard et al., 2007) and Th17 cell differentiation (Bettelli et al., 2006; Veldhoen et al., 2006). Specific commensal bacteria (Ivanov et al., 2009; Yang et al., 2014) and metabolites from microbiota (Arpaia et al., 2013) can also regulate T cell differentiation. Notably, CD5L is reported as a secreted protein and can recognize PAMPs (Martinez et al., 2014). It is possible CD5L expressed by non-pathogenic Th17 cells in the gut can interact with the immune cells interacting with gut microbiota and maintain gut tolerance and a non-pathogenic Th17 phenotype. Other CD5L-expressing cells in the intestine may also contribute to such a function. Therefore, the two functional states of Th17 cells may be highly plastic, in that either pathogenic or non-pathogenic Th17 cells can be generated by sensing changes in the tissue microenvironment. CD5L is critical for maintaining the non-pathogenic functional state of Th17 cells, and IL-23 rapidly suppresses CD5L rendering the cells pathogenic. This hypothesis also predicts that non-pathogenic Th17 cells can be easily converted into pathogenic Th17 cells by production of IL-23 locally in the gut during inflammatory bowel disease. How does CD5L regulate Th17 cell pathogenicity? Applicants provide evidence CD5L can regulate Th17 cell function by regulating intracellular lipid metabolism and limiting Roryt

ligand. CD5L inhibits the de novo synthesis of fatty acid through direct binding to fatty acid synthase. Applicants discovered that in Th17 cells CD5L is more than a general inhibitor, as it regulates the fatty acid composition of PUFA vs. SFA and MUFA. Applicants showed CD5L suppresses the cholesterol synthesis pathway by regulating critical enzymes sc4mol and cyp51 and the addition of PUFA could reverse this phenotype. Importantly, exogenous Roryt ligand can rescue the suppressive effect of CD5L on IL-17 expression. PUFA metabolites can function as ligands of several transcription factors and the exact mode of function for PUFA requires further investigation. Applicants showed that PUFA limits ligand-dependent function for Roryt, such that in the presence of CD5L or PUFA, Roryt binding to the Il17a and Il23r loci is decreased, along with reduced transactivation of both genes, whereas binding at and expression from the Il10 locus is enhanced. Notably, Roryt's ability to regulate Il10 expression was not reported previously. As CD5L does not impact overall Th17 cell differentiation, this suggests a nuanced effect of CD5L and lipid balance on Roryt function, enhancing its binding to and transactivation at some loci, while reducing it in others. In Th17 cells, Stat3 and c-Maf can promote II10 (Stumhofer et al., 2007; Xu et al., 2009). As Stat3, C-Maf and Roryt can all bind to the same II10 enhancer element, it is possible that, depending on the quality and quantity of the available ligands, Roryt may interact with other transcription factors and regulate 1110 transcription. This supports a hypothesis in which the spectrum of Roryt ligands depends, at least in part, on the CD5L-regulated PUFA vs. SFA lipid balance in the cell, and these resulting ligands can impact the specificity of Roryt, allowing it to assume a spectrum of functional states. Several metabolic pathways are associated with Th17 cell differentiation. HIF1\alpha regulates Th17 cells through direct transactivation of Roryt (Dang et al., 2011; Shi et al., 2011) and acetyl-coA carboxylase influences the Th17/Treg balance through the glycolytic and lipogenic pathways (Berod et al., 2014). Mice harbouring mutations in genes that regulate Th17 cell differentiation and function acquire an obese phenotype, associating Th17 cell development with obesity (Ahmed and Gaffen, 2010; Jhun et al., 2012; Mathews et al., 2014; Winer et al., 2009). A hallmark of obesity is the accumulation of saturated fat and cholesterol and mice fed with a diet rich in PUFA were reported to have reduced severity of chronic colitis and Th17 cell polarization (Monk et al., 2013; Monk et al., 2012). In this study, Applicants provided evidence that at the cellular level, lipidome saturation can promote Th17 cell function by regulating Roryt function.

[00215] In conclusion, by using single-cell genomics and computational analysis, Applicants identified CD5L as a novel repressor of Th17 cell pathogenicity, highlighting the power of single-cell genomics to identify molecular switches that are otherwise obscured by population-level genomic profiles. CD5L appears to be a molecular switch that does not affect Th17 differentiation *per se* but one that impacts the function (pathogenic *vs.* non-pathogenic phenotype) of Th17 cells, potentially by regulating the quality and/or quantity of available Roryt ligands, allowing a single master regulator to possibly assume multiple functional states. Our results connect the lipidome to essential functions of immune cells, opening new avenues for sensitive and specific therapeutic intervention.

[00216] EXPERIMENTAL PROCEDURES. Mice: C57BL/6 wild-type and CD4^{-/-}(2663) mice were obtained from Jackson Laboratory. IL-17A–GFP mice were from Biocytogen. All animals were housed and maintained in a conventional pathogen-free facility at the Harvard Institute of Medicine in Boston (IUCAC protocols: 0311-031-14 (V.K.K.) and 0609-058015 (A.R.)). All experiments were performed in accordance to the guidelines outlined by the Harvard Medical Area Standing Committee on Animals at the Harvard Medical School. In addition, spleens and lymph nodes from GPR65^{-/-} mice were generously provided by Yang Li (IACUC protocol: 453). PLZP^{-/-} mice and TOSO^{-/-} mice were provided by Pier Paolo Pandolfi from Beth Israel Deaconess medical center and John Coligan from National instutite of Allergy and Infectious Diseases repectively.

[00217] Cell sorting and in vitro T-cell differentiation: CD4+ T cells were purified from spleen and lymph nodes using anti-CD4 microbeads (Miltenyi Biotech) then stained in PBS with 1% FCS for 20 min at room temperature with anti-CD4-PerC^{P, a}nti-^{CD6}2l-APC and anti-CD44-PE antibodies (all Biolegend). Naive CD4+CD62l^{high}CD44^{low} T cells were sorted using the BD FACSAria cell sorter. Sorted cells were activated with plate-bound anti-CD3 (2 μg ml-1) and anti-CD28 (2 μg ml-1) in the presence of cytokines. For Th17 differentiation, the following reagents were used: 2 ng/ml recombinant human TGF-β1 and recombinant human TGF-β3 (Miltenyi Biotec), 25 ng/ml recombinant mouse IL-6 (Miltenyi Biotec), 20 ng/ml recombinant mouse IL-1β (Miltenyi Biotec). Cells were cultured for 48h and collected for RNA, intracellular cytokine staining, flow-fish, and flow cytometry.

Active induction of EAE and disease analysis: For active induction of EAE, mice [00218]were immunized by subcutaneous injection of 100 MOG(35-55)μg (MEVGWYRSPFSRVVHLYRNGK) in CFA, then received 200 ng pertussis toxin intraperitoneally (List Biological Laboratory) on days 0 and 2. Mice were monitored and were assigned scores daily for development of classical and atypical signs of EAE according to the following criteria (Jager et al., 2009): 0, no disease; 1, decreased tail tone or mild balance defects; 2, hind limb weakness, partial paralysis or severe balance defects that cause spontaneous falling over; 3, complete hind limb paralysis or very severe balance defects that prevent walking; 4, front and hind limb paralysis or inability to move body weight into a different position; 5, moribund state.

[00219] Isolation of T-cells from EAE mice at the peak of disease: At the peak of disease, T cells were collected from the draining lymph nodes and the CNS. For isolation from the CNS, mice were perfused through the left ventricle of the heart with cold PBS. The brain and the spinal cord were flushed out with PBS by hydrostatic pressure. CNS tissue was minced with a sharp razor blade and digested for 20 min at 37°C with collagenase D (2.5 mg/ml; Roche Diagnostics) and DNaseI (1 mg/ml; Sigma). Mononuclear cells were isolated by passage of the tissue through a cell strainer (70 μm), followed by centrifugation through a Percoll gradient (37% and 70%). After removal of mononuclear cells, the lymphocytes were washed, stained and sorted for CD3 (Biolegend), CD4 (Biolegend), 7AAD and IL-17a-GFP or FOXP3-GFP.

[00220] *Memory cell isolation/reactivation*: Spleen and lymph nodes were isolated from indicated mice and CD4+ T cells were purified using Automacs using the manufacturers protocol (Miltenyi Biotec, CA). Cells were stained with CD44-PE, CD62L-APC and CD4-Percp antibodies prior to being sorted on the Aria FACS sorter for CD4+CD44+CD62L- cells. Cells were plated on anti-CD3/anti-CD28 (2ug/ml each) coated flat- bottomed 96 well plate at 2x10⁵ cells/well with or without IL-23 (20ng/ml) for reactivation. Cells were cultured in vitro for 96 hours and then live cells (7AAD-) were analyzed for intracellular cytokine staining or sorted for harvesting prior to RNA purification.

[00221] Recall experiments: Naïve CD4 T cells (CD4+CD62L+CD44-) were sorted from indicated KO and WT (or littermate) controls then adoptively transferred at 1x10⁶ cells into Rag-1 KO mice for reconstitution. Two weeks post adoptive transfer; mice were immunized with

100ug of MOG₃₅₋₅₅/CFA. Cells were harvested from draining LNs and spleen 8 days post immunization and restimulated with MOG₃₅₋₅₅ with or without IL-23 (20ng/ml) for 4 days. Cells were harvested for intracellular cytokine analysis.

[00222] Isolation of T cells from lamina propria: Cells were isolated from the lamina propria of the large intestine from 3-6 month old IL-17GFP KI mice using Miltenyi Biotec Lamina Propria Dissociation kit following the manufacturer's protocol (Militenyi Biotec, Calfornia). GFP+CD4+TCRb+7AAD- T cells were sorted using a MoFlow Astrios into RLT lysis buffer (Qiagen RNeasy micro kit) and subsequently taken through the 'RNA-seq of population controls' protocol described below.

[00223] Whole transcriptome amplification: Cell lysis and SMART-Seq (Ramskold et al., 2012) whole transcriptome amplification (WTA) was performed on the C₁ chip using the C₁ Single-Cell Auto Prep System (C₁ System) using the SMARTer Ultra Low RNA Kit for Illumina Sequencing (Clontech) with the following modifications:

Cell Lysis Mix:

Composition	Stock Conc.	Volume
C ₁ Loading Reagent	20X	0.60 ul
SMARTer Kit RNase Inhibitor	40 x	0.30 ul
SMARTer Kit 3' SMART CDS Primer II A	12 μΜ	4.20 ul
SMARTer Kit Dilution Buffer	1X	6.90 ul

Cycling Conditions I:

- a) 72°C, 3 min
- b) 4°C, 10 min
- c) 25°C, 1 min

Reverse Transcription (RT) Reaction Mix:

Composition	Stock Conc.	Volume

C ₁ Loading Reagent	20.0 x	0.45 ul
SMARTer Kit 5X First-Strand Buffer (RNase-Free)	5.0 x	4.20 ul
SMARTer Kit Dithiothreitol	100 mM	0.53 ul
SMARTer Kit dNTP Mix (dATP, dCTP, dGTP, and dTTP, each at 10 mM)	10 mM	2.10 ul
SMARTer Kit SMARTer II A Oligonucleotide	12 uM	2.10 ul
SMARTer Kit RNase Inhibitor	40 x	0.53 ul
SMARTer Kit SMARTScribe™ Reverse Transcriptase	100.0 x	2.10 ul

Cycling Conditions II:

- a) 42°C, 90 min
- b) 70°C, 10 min

PCR Mix:

Composition	Stock Conc.	Volume
PCR Water	-	35.2 ul
10X Advantage 2 PCR Buffer	10.0 x	5.6 ul
50X dNTP Mix	10 mM	2.2 ul
IS PCR primer	12 uM	2.2 ul
50X Advantage 2 Polymerase Mix	50.0 x	2.2 ul
C1 Loading Reagent	20.0 x	2.5 ul

Cycling Conditions III:

- a) 95°C, 1 min
- b) 5 cycles of:
- i) 95°C, 20s
- ii) 58°C, 4 min
- ii) 68°C, 6 min
- c) 9 cycles of:
- i) 95°C, 20s
- ii) 64°C, 30s
- ii) 68°C, 6 min
- d) 7 cycles of:
- i) 95°C, 30s
- ii) 64°C, 30s
- ii) 68°C, 7 min
- e) 72°C, 10 min

[00224] Single cell RNA-Seq. WTA products were harvested from the C₁ chip and cDNA libraries were prepared using Nextera XT DNA Sample preparation reagents (Illumina) as per the manufacturer's recommendations, with minor modifications. Specifically, reactions were run at ½ the recommended volume, the tagmentation step was extended to 10 minutes, and the extension time during the PCR step was increased from 30s to 60s. After the PCR step, all 96 samples were pooled without library normalization, cleaned twice with 0.9x AMPure XP SPRI beads (Beckman Coulter), and eluted in buffer TE. The pooled libraries were quantified using Quant-IT DNA High-Sensitivity Assay Kit (Invitrogen) and examined using a high sensitivity DNA chip (Agilent). Finally, samples were sequenced deeply using either a HiSeq 2000 or a HiSeq 2500 sequencer.

[00225] Single-cell RNAseq data acquisition and analysis. Applicants profiled the transcriptome of 806 Th17 cells, either harvested in vivo or differentiated in vitro. For in vivo

experiments, CD3+CD4+IL-17A.GFP+ cells were isolated from draining LNs and CNS of mice at peak of EAE. For *in vitro* experiments, cells were sorted at 48h post induction of differentiation of naïve CD4+ T cells under different conditions. Applicants had at least two independent biological replicates for each *in vivo* and *in vitro* condition (except for TGF-β3+IL-6 for which Applicants only had one replicate), as well as two technical replicates for two *in vivo* conditions.

Applicants prepared single-cell mRNA SMART-Seq libraries using microfluidic [00226] chips (Fluidigm C1) for single-cell capture, lysis, reverse transcription, and PCR amplification, followed by transposon-based library construction. For quality assurance, Applicants also profiled corresponding population controls (>50,000 cells for in vitro samples; ~2,000-20,000 cells for in vivo samples, as available), with at least two replicates for each condition. RNA-seq reads were aligned to the NCBI Build 37 (UCSC mm9) of the mouse genome using TopHat (Trapnell et al., 2009). The resulting alignments were processed by Cufflinks to evaluate the abundance (using FPKM) of transcripts from RefSeq (Pruitt et al., 2007). Applicants used log transform and quantile normalization to further normalize the expression values (FPKM) within each batch of samples (i.e., all single-cells in a given run). To account for low (or zero) expression values Applicants added a value of 1 prior to log transform. Applicants filtered the set of analyzed cells by a set of quality metrics (such as sequencing depth), and added an additional normalization step specifically controlling for these quantitative confounding factors as well as batch effects. Our analysis is based on \sim 7,000 appreciably expressed genes (fragments per kilobase of exon per million (FPKM) \geq 10 in at least 20% of cells in each sample) for *in vitro* experiments and ~4,000 for *in vivo* ones. Applicants also developed a strategy to account for expressed transcripts that are not detected (false negatives) due to the limitations of single-cell RNA-seq (Deng et al., 2014; Shalek et al., 2014). Our analysis (e.g., computing signature scores, and principle components) downweighted the contribution of less reliably measured transcripts. The ranking of regulators shown in Figure 16 is based on having a strong correlation to at least one of the founding signature genes, and in addition, the significance of the overall pattern relative to the proinflammatory vs. regulatory signature by comparing the aggregates pattern across the individual correlations to shuffled data.

[00227] *Mice*. C57BL/6 wildtype (WT) was obtained from Jackson laboratory (Bar Harbor, ME). For EAE experiment, littermate control WT was used in comparison to CD5L-/- mice in one experiment which produced similar results compared to WT from Jackson. CD5L-/- mice were provided by Dr. Toru Miyazaki from the University of Tokyo (Miyazaki et al., 1999). CD5L-/- 2D2 mice were generated by crossing CD5L-/- mice with WT 2D2 transgenic mice. IL-23R GFP reporter mice were generated as previously published (Awasthi et al., 2009). Roryt.GFP reporter mice were provided by Dr. Dan Littman and bred at the Harvard Institute of Medicine animal facility. All experiments were performed in accordance to the guidelines outlined by the Harvard Medical Area Standing Committee on Animals at the Harvard Medical School (Boston, MA).

[00228] Experimental Autoimmune Encephalomyelitis (EAE). For active EAE immunization, MOG35-55 peptide was emulsified in complete freund adjuvant (CFA). Equivalent of 40μg MOG peptide was injected per mouse subcutaneously followed by pertussis toxin injection intravenously on day 0 and day 2 of immunization. For adoptive transfer EAE, naïve 2D2 transgenic T cells were sorted as described in T cell culture and co-cultured with irradiated APC in the presence of soluble anti-CD3 and anti-CD28 antibodies (2.5μg/ml) and cytokines for five days. Cells were then harvested and restimulated with plate-bound anti-CD3 and anti-CD28 (2μg/ml) for 2 days prior to transfer. For overexpression of CD5L, retroviruses, MSCV, carrying either GFP empty vector control or GFP.CD5L vector was used to infect T cell culture as outlined above one day after T cell activation. Five million cells were transferred per mouse intravenously. EAE is scored as previously published (Jager et al., 2009).

[00229] *T cell differentiation culture*. Naïve CD4+CD44-CD62L+CD25- T cells or Effector memory CD4+CD44+CD62L- were sorted using BD FACSAria sorter and activated with plate-bound anti-CD3 and anti- CD28 antibodies (both at 2μg/ml) in the presence of cytokines at a concentration of 2.5 X 10⁵ cells/ml. For Th17 differentiation: 2ng/ml of rhTGFβ1, 2ng/ml of rhTGFβ3, 25ng/ml rmIL-6, 20ng/ml rmIL-1β (all from Miltenyi Biotec) and 20ng/ml rmIL-23 (R & D systems) were used at various combinations as specified in figures. For Th1 differentiation, 20ng/ml rmIL-12 (R & D systems); for Th2 differentiation 20ng/ml rmIL-4 (Miltenyi Biotec); for iTreg differentiation, 2.5ng/ml of rhTGFβ1 were used (Miltenyi Biotec). For differentiation experiments, cells were harvested at 48 hours. For restimulation experiments, cells were differentiated for 48 hours and resuspended in fresh media with no additional cytokines for 48-72 hours. Cells were re-stimulated with PMA/ionomycin for four hours before

analysis for cytokines by intracellular cytokine staining. For experiments with exogenous fatty acid, fatty acids were purchased and resuspended first with serum-free media containing BSA prior being added to culture.

[00230] Lipidomics. Th17 cells were differentiated from naïve WT and CD5L-/- T cells. Culture media were snap frozen. Cells were harvested at 96h. 10 X 106 cells per sample were snap frozen and extracted in either 80% methanol (for fatty acids and oxylipids) or isopropanol (for polar and nonpolar lipids). Two liquid chromatography tandem mass spectrometry (LC-MS) methods were used to measure fatty acids and lipids in cell extracts.

Fatty acid extracts (10 μL) were injected onto a 150 x 2 mm ACQUITY T3 column [00231] (Waters; Milford, MA). The column was eluted isocratically at a flow rate of 400 µL/min with 25% mobile phase A (0.1% formic acid in water) for 1 minute followed by a linear gradient to 100% mobile phase B (acetonitrile with 0.1% formic acid) over 11 minutes. MS analyses were carried out using electrospray ionization in the negative ion mode using full scan analysis over m/z 200-550 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray voltage, -3.5 kV; capillary temperature, 320°C; probe heater temperature, 300 °C; sheath gas, 45; auxiliary gas, 10; and S-lens RF level 60. Lipids extracts (2 µL) were injected directly onto a 100 x 2.1 mm ACQUITY BEH C8 column (1.7 µm; Waters; Milford, MA). The column was eluted at a flow rate of 450 µL/min isocratically for 1 minute at 80% mobile phase A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/methanol/acetic acid), followed by a linear gradient to 80% mobile-phase B (99.9:0.1 vol/vol methanol/acetic acid) over 2 minutes, a linear gradient to 100% mobile phase B over 7 minutes, and then 3 minutes at 100% mobile-phase B. MS analyses were carried out using electrospray ionization in the positive ion mode using full scan analysis over m/z 200-1100 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray voltage, 3.0 kV; capillary temperature, 300°C; probe heater temperature, 300 °C; sheath gas, 50; auxiliary gas, 15; and S-lens RF level 60. Raw data from methods 1-3 were processed using Progenesis CoMet and QI software (Nonlinear Dynamics Ltd.; Newcastle upon Tyne, UK) for feature alignment, nontargeted signal detection, and signal integration. Targeted processing of a subset of known metabolites was conducted using TraceFinder software (Thermo Fisher Scientific; Waltham, MA).

[00232] ChIP-qPCR. Chromatin ImmunoPrecipitation (ChIP) for Roryt was performed as previously published (Xiao et al., 2014) using anti-Roryt antibody (AFKJS-9) and RatIgG2a

isotype control antibody (eBioscience, CA). qPCR was performed using the following primers: *Il17a CNS2*: Fwd: 5'- TGG AAA GTT TTC TGA CCC ACT T; Rv: 5'- GGA AGC TGA GTA CGA GAA GGA A; *Il17a In1*: Fwd: 5'- ACC AAA GGA ACA AGT GGA AAG A; Rv:5'- TTT GAG AAC CAG TCA TGT CAC C; *Il17a p5*: Fwd: 5'- GGG GTA GGG TCA ATC TAA AAG C; Rv: 5'- GTG TGC TGA CTA ATT CCA TCC A; *Il10 CNS-9*: Fwd: 5' TTA CAG AAT GGC ACT TCC AGA G; Rv: 5' CGA TGT ATT AGT TCC GGT GTG T; *Il23r in3*: Fwd 5'- CTT GGC ATC ACA AAG CTT ACA G; Rv: 5'- ACT GCC AGG CAA GAA TTT ACT C; *Il23r in6*: Fwd 5'- TAC CTG AAA GCT GTG CAG AGA G; Rv: 5'- AAG TCC AAG CCT GTG AAA CAA T.

[00233] Nanostring nCounter. Nanostring nCounter platform (NanoString Technologies) is used to measure the number of RNA transcripts in RNA samples (Fig 16I, Fig 18D). A codeset containing 312 signature genes of Th17 cell differentiation and function as well as 4 additional house-keeping genes were custom-made (Yosef et al., 2013) and used in these experiments. Experimental procedures as detailed by the manufacturer is strictly followed.

[00234] Antibodies. Biotinylated anti-CD5L antibody used for flow cytometry analysis was purchased from R & D systems. All other flow cytometry antibodies were purchased from Biolegend. ELISA coating and capturing antibodies for IL-10 were from BD Biosciences and anti-IL-17 were purchased from Biolegend.

[00235] Statistical Analysis. Unless otherwise specified, all statistical analyses were performed using the two-tail student t test using GraphPad Prism software. P value less than 0.05 is considered significant (P < 0.05 = *; P < 0.01 = **; P < 0.001 = ***).

[00236] RNA-Seq of population controls. Population controls were generated by extracting total RNA using RNeasy plus Micro RNA kit (Qiagen) according to the manufacturer's recommendations. Subsequently, 1 μ L of RNA in water was added to 2 μ L of lysis reaction mix, thermocycled using cycling conditions I (as above). Next, 4 μ L of the RT Reaction Mix were added and the mixture was thermocycled using cycling conditions II (as above). Finally, 1 μ L of the total RT reaction was added to 9 μ L of PCR mix and that mixture was thermocycled using cycling conditions III (as above). Products were quantified, diluted to 0.125 ng / μ L and libraries were prepared, cleaned, and tested as above.

[00237] RNA-Seq preprocessing. RNA-Seq preprocessing was performed using the following. RNA-seq reads are aligned to the NCBI Build 37 (UCSC mm9) of the mouse

genome using TopHat (Trapnell et al., 2009). The resulting alignments are processed by Cufflinks to evaluate the abundance (using FPKM) of transcripts from RefSeq (Pruitt et al., 2007). Log transform and quantile normalization is used to further normalize the expression values (FPKM) within each batch of samples (*i.e.*, all single cells in a given run). To account for low (or zero) expression values a value of 1 prior to log transform was added.

[00238] Sample filtering and normalization. For each library quality scores were computated using Fastqc, Picard tools, and in-house scripts. Computed scores included: (1) Number of reads, (2) Number of aligned reads, (3) Percentage of aligned reads, (4) Percentage of transcripts identified (compared with the overall number of transcripts identified by at least one cell in the respective run), (5) Percentage of duplicate reads, (6) primer sequence contamination, (7) insert size (mean), (8) insert size (std), (9) Complexity, (10) Percentage of Ribosomal reads, (11) Percentage of Coding reads, (12) Percentage of UTR reads, (13) Percentage of Intronic reads, (14) Percentage of Intergenic reads, (15) Percentage of mRNA reads, (16) Coefficient of variation of coverage, (17) mean 5' Bias, (18) mean 3' Bias, (19) mean 5' to 3' Bias.

[00239] Libraries are excluded from further analysis with poor values in either the number of aligned reads, the percentage of aligned reads, or the percentage of identified transcripts. To this end, for a given performance measure x, a minimum cutoff value cx was set by taking the maximum over: $\{AVG(x) - 1.645*STD(x), MED(x) - 1.645*MAD(x)\}$ (MED stands for median and MAD is the median absolute deviation). For the latter two performance measures, a Gaussian mixture model is fit to x; if x fits a multi-modal distribution rather than a single Gaussian (using Bayesian Information Criteria to determine the best model), then an additional cutoff z determined as the boundary between the right-most distribution and the other distributions is used. Finally, hard lower bounds (hlb) are introduced for the cutoff values (#aligned reads >25k; percentage of aligned reads>20%; percentage of identified transcripts>20%). Then the cutoff is re-set to be $\max\{cx, z, hlb\}$. Only cells are retained that scored above the cutoff in all three cases.

[00240] As an additional pre-processing step a normalization technique (Risso et al., 2011) is employed to reduce the effects of the quality scores. To this end, a principal component analysis (PCA) is computed over the quality score matrix (a matrix with columns corresponding to cells and rows corresponding to quality scores). Then a global-scaling

normalization approach (previously used for GC content normalization in RNA-Seq data(Risso et al., 2011) is used to remove the effects of the top principal components (PCs), until >90% of the variance in the quality matrix is covered (Notably, the quality scores are correlated, and usually the top one or two principal components are sufficient). For a given PC, the cells are divided into 10 equally-sized bins based on their projected values. The normalized expression measures are defined as:

$$E'(i,j) = E(i,j) - Median(\{E(i,j'), s.t. j' \in k(j)\}) + Median(\{E(i,:)\})$$

where E(i,j) is the original expression value of gene i in cell j; k(j) denotes the PC-value bin to which cell j belongs; and E(i,:) denotes the median value of gene i across all cells.

[00241] This approach was validated by computing PCA on the expression data (before filtering, after filtering, but before normalization, and after filtering and normalization) and calculating the correlation between the quality scores and the top PCs. It was found that before filtering and normalization the main PCs highly correlate with the various library quality scores; indicating that the dominant signal in the pre-normalization data might reflect experimental artifacts. These correlations are reduced after normalization, indicating that the remaining signal is less affected by artifacts (Figure 6).

[00242] Batch correction. Two or more replicates for the majority of the analyzed conditions were obtained. Since the replicates were divided into batches, a procedure to eliminate the pertaining batch effects was applied. Due to substantial differences in the number of detected genes between *in vivo* and *in vitro* samples, this analysis is performed separately for the *in vivo* and the *in vitro* samples. For a given sample, its *filtered gene set* is defined as the genes that have an expression level exceeding 10 FPKM in at least 20% of the cells. For a given set of samples (*in vivo* or *in vitro*), only the genes that appear in the filtered set of at least two of the samples are retained. This results in ~4,000 genes for the *in vivo* data and ~7,000 genes for the *in vitro*. Batch correction is then performed on the resulting matrices (generated by combining all the samples and filtering for the selected genes) using the COMBAT software (Johnson et al., 2007; Novershtern et al.). To eliminate the effects of quality scores on the resulting matrix (*i.e.*, systematic differences in the quality of different

samples, rather than cells within a sample), the correction procedure described in the previous section was re-applied.

Taking into account false negatives using weighted analysis. The estimation of [00243] transcript abundance as zero can be attributed to false-negatives in the RNA-Seq data. Different individual cells within a sample can have different rates of false-negatives, depending on the quality of the library, and cell integrity. To account for this, for every cell a false-negative curve (FNC) was constructed using the following. The cell-specific FNC represents the false-negative rate as a function of transcript abundance in the bulk population. The FNC is built by taking all the housekeeping genes that are detectable (non zero estimated abundance) in the bulk population and in at least one cell, and arranging them into 30 bins. Then for every bin, the ratio of housekeeping genes that are detectable is computed. Finally, a sigmoid function is fitted to the estimated values (See, e.g., Figure 6C). These values are used to weigh down possible false-negatives in the subsequent analysis: (1) For correlation-based analysis weighted correlations are used where a zero-value of a gene i in cell j is weighted by the value associated in the FNC of j with the expression of i in the bulk population. For lowly expressed genes the weight will be lower, indicating a higher chance for them to be falsenegatives. Notably, the PCA analysis is done by computing the eigenvectors of the weighted covariance matrices. (2) For signature-based scores a weighted version of the gene set enrichment analysis algorithm is used, described next.

[00244] RNA-FlowFish analysis of RNA-expression. Cells prepared under the same conditions as the RNA-seq samples were prepared with the QuantiGene® ViewRNA ISH Cell Assay kit from Affymetrix following the manufacturers protocol. High throughput image acquisition at 60x magnification with an ImageStream X MkII allows for analysis of high-resolution images, including brightfield, of single cells. Genes of interest were targeted by type 1 probes, housekeeping genes by type 4 probes, and nuclei were stained with DAPI. Single cells were selected based on cell properties like area, aspect ratio (brightfield images) and nuclear staining. As a negative control, Bacterial DapB gene (Type 1 probe) were used. Spot counting was performed with the amnis IDEAS software to obtain the expression distributions.

[00245] Weighted gene signature scores and gene set enrichment analysis. To interpret the functional implications of the variation between cells, a set of gene signatures was assembled

that are indicative of various cell states, using the following. A typical signature is comprised of a "plus" subset and a "minus" subset. A strong match will have extreme, and opposite values for the expression of genes in the two sets (e.g., high values for the "plus" genes and low values for the "minus" genes). The signatures from the following sources are assembled: (1) The immunological signature (ImmSig) collection from MSigDB ((Liberzon et al., 2011); denoted as collection C7): ~2,000 gene sets (each divided into "plus" subset and a "minus" subset) found by comparing immune cells under different conditions (e.g., knockout vs. WT, different stimulations, time post infection etc.). (2) Cell cycle gene sets from MSigDB (Liberzon et al., 2011) and based on the gene ontology database (Huntley et al., 2009); (3) The NetPath database (Kandasamy et al., 2010): a collection of gene sets (each divided into "plus" subset and a "minus" subset) that are downstream of various immune signaling and are either positively or negatively regulated. (4) Signatures of T helper cell subsets, based on previous work (Wu et al., 2013)(Xiao et al., 2014). (5) Signatures of exhausted and memory T cells (Crawford et al., 2014); (6) Microarray data from Sarkar et al. (Sarkar et al., 2008), comparing memory vs. effector CD8+ CT cells; (7) Microarray data from Muranski et al., 2011), tracking the development of Th17 and Th1 cell in an adoptive transfer model. (8) Microarray data from Kurachi et al (Kurachi et al., 2014), tracking the development of CD4+ and CD8+ T cells in acute and chronic infection models. (9) Microarray data comparing IL-23R knockout mice CD4⁺ T cells differentiated in IL-1β+IL-6+IL-23 to WT (Y.L. and V.K.K, unpublished data). Notably, while sources 1-5 already provide processed gene sets, analysis of the remaining sources is based on the raw data (microarrays). This data was analyzed to infer differentially expressed genes. To this end, all genes with a fold change over 1.5 are reported; if there are at least two replicates, consistent (up or down) and >1.5 fold change in all pairwise comparisons is required (all replicates of condition "A" vs. all replicates of condition "B" must show fold change above the cutoff). To avoid spurious fold levels due to low expression values a small constant is added to the expression values (c=50) prior to the analysis. To search for signatures that are significantly expressed in a subset of cells the following test was performed: First, standardizing the rows of the expression matrix (i.e., every cell is normalized w.r.t. the other cells) and weighing down zero entries as above (multiplying the respective entries in the Z-normalized matrix by (1 – probability for false negative)). Given a signature $S=\{S^+,S^-\}$, a gene set enrichment analysis (GSEA) for every cell independently is

performed, using the values in the standardized, weighted matrix. To account for the direction, the values in the rows that correspond to the genes in S' are negated. The standard GSEA formulation with 250 randomizations is used, where in each randomized run a random selection of S is considered, and 50 randomly selected cells. The reported p-values are computed empirically by comparing to the resulting 12,500 random scores. A 5% FDR cutoff is computed using the Benjamini-Hochberg scheme (Benjamini and Hochberg (1995) and only signatures that had a p-value below the cutoff in at least 10% of the cells is reported. To associate gene signatures with cell's location along the principle components, for every cell a signature score is computed. For every cell-signature pair, Applicants estimated whether the expression of genes in the signature significantly varied either: (1) across cells of the same source or (2) between conditions (e.g., LN vs. CNS). A subset of the results for this analysis are presented in Figures 2 and 4. The complete result set is provided in Table S2 (Gaublomme 2015). To identify signatures that significantly vary between conditions, Applicants then compute for every cell a signature score. Given a signature $S=\{S^+,S^-\}$, Applicants define the score as the weighted mean of the genes in S⁺ minus the weighted mean of the genes in S. Applicants use the gene expression values under the same normalization and weighting scheme as in the weighted PCA analysis above. Signatures that significantly vary between two given conditions ("A", "B") were identified by comparing the distributions of signature scores of cells from condition "A" vs. cells of condition "B" (Kolmogorov-Smirnov (KS) test, FDR<10⁻⁴). For the signatures with significant variation in at least one of the two tests above, Applicants next investigated whether they are significantly associated with the main PCs. To this end, Applicants computed a Pearson correlation coefficient between the signature score and each of the first two PCs (i.e., comparing two vectors whose length equals the number of cells: one vector is the signature scores, the other vector is the projection value (i.e., x- or y- coordinate) of that cell in the PC space; Figures 2-4 and Table S2 (Gaublomme 2015)). Applicants plotted selected correlations on a normalized PCA map (for example: Figure 2A, numbered open circles).

[00246] *TF binding enrichment analysis*. TFs were looked for with a significant overlap between their previously annotated target genes and the genes that correlated with each principal component using the following. TF-target interaction data is obtained from public databases (Chen et al., 2011; Ciofani et al., 2012a; Lachmann et al., 2010; Liberzon et al.,

2011; Linhart et al., 2008). To select the set of genes for a given PC (PC1 or PC2), for every gene the Pearson correlation between its log expression value in every cell (adding a value of 1 to avoid effects of low expression levels) and the projection of this cell to that PC (i.e., the X [for PC1] or Y [for PC2] coordinate in the PC plot) is computed. Only genes with a p-value lower than a 5% FDR cutoff are retained. For every TF in the database, the statistical significance of the overlap between its putative targets and each of the groups defined above using a Fisher's exact test is computed. Cases where p< 5*10⁻⁵ and the fold enrichment > 1.5 are included. Finally, in Figure 2, only cases in which the TF was expressed above a minimal level (5 FPKM) in at least one of the respective bulk population conditions are reported.

[00247] Relating the in vitro differentiated cells to their in vivo counterparts. To perform the analysis presented in Figures 3bB,C genes are identified that are significantly up- or down-regulated in each sub-population of in-vivo cells (FDR<0.05; one-vs-all KS test; Table S4 (Gaublomme 2015), Table 6). A signature is then defined by retaining only genes that are annotate with immune response function based on the gene ontology database (Huntley et al., 2009). Finally, the signature analysis above is repeated to score the in-vitro derived cells.

[00248] Voronoi diagrams. Voronoi diagrams were used in order to delineate areas (in the space of the first two principle components (PC)) that are most strongly associated with given signatures. Specifically, given a set of signature $S=\{s_1,...,s_k\}$ is computed for every cell k signature scores (one for each signature). For each signature i the top 5 high-scoring cells are selected, and point c_i is computed as the centroid of these points in the PC map (be averaging over their x and y coordinates). Given a set of centroid points $\{c_1,...,c_k\}$, the Voronoi diagram divides the space into respective regions $r_1,...,r_k$ such that for every $1 \le i$ $\le k$, c_i is the closest centroid to all the points in r_i . Given a set of signatures that were significantly associated with the PC map in Figure 2a, the above procedure was followed to compute the Voronoi diagram in Figure 2b.

[00249] Defining biomodal genes. To quantify the shape of heterogeneity in the expression levels of genes across cells, the following scheme was devised: First, a number of statistical tests are applied in order to identify genes that exhibit a bimodal distribution: (1) Hartigans Dip Test (with a p-value cutoff of 5%); (2) Gaussian mixture model - comparing a 2- or 3-Gaussian model to a 1-Gaussian model using the Bayesian Information Criteria; (3) More than 10% of cells deviate from the mean by more than 2.32 times the standard deviation

(corresponding to a p-value of 1%); (4) More than 10% of cells deviate from the median by more than 2.32 times the median absolute deviation. For genes identified by at least one of the tests, two mixture models are fit using expectation maximization: (1) Exponential (for "non-expressing" cells) and normal (for "expressing" cells); and (2) Uniform (for "non-expressing" cells) and normal (for "expressing" cells). The model with the best fit us retained. Using this model a cutoff x is determined for each gene such that cells with expression higher than x are considered "expressing cells". x is determined as the maximum between $\{0, \text{ the boundary between the Gaussian distribution and the alternative distribution (for bi-modal genes)}. Finally, to define the set of bimodal genes, it is required (in addition to the aforementioned tests) that the percentage of "expressing cells" is smaller than 90%.$

Gene ranking. An unbiased approach was used to select potential regulator of [00250] Th17 pathogenicity. The ranking is based on: (1) Correlation with the first principle component in the in-vitro derived Th17 cells (using Tgfb1+IL6; Figure 4c). To this end, the correlation between the expression of a given gene in each cell and the PC1 projection value of each cell (X coordinate in Figure 4b) is computed. A 5% FDR cutoff is computed using the Benjamini-Hochberg scheme and only correlations below that cutoff are reported. (2), (3) A similar analysis is performed for correlations with the first and second principle components in the in-vivo derived Th17 cells (Figure 2a). (4) Correlation with immunerelated genes in the anti-correlated modules in Figure 4b (a "single cell pathogenicity signature" consisting of a pro-inflammatory module: Ccr6, Il18r1, Ccl4, Ccl20, Ctla4, Il17a, Il2, Cd40lg, Tnf, Il21, Cxcr3, Tnfsf9, Ebi3, and Stat4; and a regulatory module: Ccr4, Il10, Il24, Il9, Il16, Irf4, Sigirr, Il21r, and Il4ra). (5) A similar analysis using a curated pathogenicity signature (genes that are positively or negatively associated with pathogenic Th17). In the following the analysis done to evaluate selection criteria (4) and (5) is explained. For a given gene, and a signature (consisting of two opposing subsets; e.g., pro-inflammatory genes and regulatory genes) it is desirable to evaluate the statistical relationship between them. To this end, the values x1 and x2 are computed as its average correlation with the two opposing subsets respectively. Then for cases where sign(x1)!=sign(x2) its score is designated as $sign(x1)*min{abs(x1), abs(x2)}$. To estimate the significance of this score the original expression matrix is shuffled, and the test is repeated for 50 times. The shuffling is done independently for each row (gene), but it retains the original values of the gens in the

signature. This way it conserves the expression distribution of each gene, as well as correlations between the member genes of the signature. Only genes that "failed" at most twice are reported, when compared against the shuffled data (empirical p-value <= 0.04). Finally, the genes are ranked based on their scores (correlation values for criteria (1)-(3) and an aggregate score for criteria (4)-(5)). Here genes are stratified into groups of 5 (first five genes are ranked 1st; next five genes are ranked 2nd, etc.). The final score is set as the second best rank among criteria (1-5), thus requiring a gene to preform well in at least two tests. This score is amended to prioritize (ranking 1st) genes that come up both in the in-vitro analysis (criteria 1, 4, 5; top 95%) and the in-vivo analysis (criteria 2, 3; top 75%). To break the ties between equally ranked genes, the following features are used, which are based on bulkpopulation studies: (a) whether the gene is significantly induced during Th17 differentiation (using previous analysis (Yosef et al., 2013), which considers only cases where the induction happened after 4 hours to exclude non-specific hits); (b) whether the gene was differentially expressed in response to Th17-related perturbations in previous studies, using the same collection of knockouts used for ranking in previous work (Yosef et al., 2013). (c) Whether the gene is bound by key Th17 transcription factors, and is affected by their perturbation during Th17 differentiation. To this end, the combined score computed by Ciofani et al. (Ciofani et al., 2012b) is used.

[00251] Population based studies used to compare top ranking genes found by bulk population vs. single-cell analysis: Population based data was based on either a compendium of 41 studies of Th17 cells from our labs, (Table S7 (Gaublomme 2015)), or a literature based ranking (Ciofani et al., 2012). Each study from our labs is a comparison of two treatments (e.g., Th17 cells with or without sodium) for which Applicants identified differentially expressed genes (as described in the Methods section "Signature scores and gene set enrichment analysis"). Applicants then ranked each gene according to the number of studies (0-41) in which it was identified as differentially expressed. The literature based study (Ciofani et al., 2012) considers a combination of RNA-seq and ChIP-seq data, prioritizing genes that are differentially expressed, and bound by key Th17 transcription factors, such as Rorc.

[00252] Flow cytometry and intracellular cytokine staining. Sorted naive T cells were stimulated with phorbol 12-myristate 13-aceate (PMA) (50 ng/ml, Sigma-aldrich), ionomycin (1 µg/ml, Sigma-aldrich) and a protein transport inhibitor containing monensin (Golgistop)

(BD Biosciences) for 4 h before detection by staining with antibodies. Surface markers were stained in PBS with 1% FCS for 20 min at room temperature, then subsequently the cells were fixed in Cytoperm/Cytofix (BD Biosciences), permeabilized with Perm/Wash Buffer (BD Biosciences) and stained with Biolegend conjugated antibodies, that is, Brilliant violet 650 anti-mouse IFN- γ (XMG1.2) and allophycocyanin-anti-IL-17A (TC11-18H10.1), diluted in Perm/Wash buffer as described (Bettelli et al., 2006). Foxp3 staining was performed with the Foxp3 staining kit by eBioscience (00-5523-00) in accordance with their 'One-step protocol for intracellular (nuclear) proteins'. Data were collected using either a FACS Calibur or LSR II (Both BD Biosciences), then analysed using Flow Jo software (Treestar).

Analysis of RNA-Seq data from knockout cells. RNA-Seq was used to identify [00253] genes that are differentially expressed in knockout T cells, (compared with WT). To this end, replicate data was used to empirically infer a decision cutoff, above which the genes are reported. The decision cutoff is defined as a function of the magnitude of gene expression – genes that are lowly expressed are associated with a higher decision cutoff. To infer the cutoffs, first a set of replicate RNA-Seq experiments is collected. For each pair of replicates, the fold difference across all genes is calculated. The genes are then stratified into 10 bins (taking 10 quartiles), and then for each bin i the standard deviation d i of fold changes between all pairs of replicates is computed. The fold change cutoff is then determined in each bin i to be max $\{1.5, d i\}$. As an additional stringent step, the obtained fold change cutoffs is smoothed, such that if the cutoff for a bin i is lower than bin i+1 (which includes genes with higher expression levels) then the cutoff of bin i+1 is set to that of bin i. For given knockout experiments with n "cases" and m "controls", differentially expressed only cases are expressed in which more than $(n \times m)/2$ comparisons are above the cutoff, and all comparisons are consistent (i.e., up- or down- regulation). As above, to avoid spurious fold levels due to low expression values a small constant to the expression values (5 FPKM) prior to the analysis is added. For the analysis in Figure 5E Applicants define the sets of all genes that either positively or negatively correlate with the first PC in cells differentiated with TGFβ1+IL-6 (Figure 4C; Pearson correlation, FDR<5%). Applicants then evaluate the significance of overlaps between these sets and the knockout-affected genes using a hypergeometric test. Applicants use the same approach to identify genes that are differentially expressed in the gut vs. the LN or CNS.

[00254] RNA-FlowFISH. RNA-fish using QuantiGene® FlowRNA Assay was performed in accordance with manufacturers guidelines for suspension cells, with minor modifications such as pipetting instead of vortexing, cells were stained with dapi and type 1 gene probes only. Cells were imaged using an ImageStream X MkII with a 60x objective. As a negative control, the expression of the bacterial DapB gene, in addition to Csf2, Itgax and Scd1, which are not expressed on Th17 cells in the TGF-β1/IL-6 condition at 48h was checked.

[00255] Quantification of cytokine secretion using ELISA. Naive T cells from knockout mice and their wild-type controls were cultured as described above, their supernatants were collected after 48h and 96h, and cytokine concentrations were determined by ELISA (antibodies for IL-17 and IL-10 from BD Bioscience) or by cytometric bead array for the indicated cytokines (BD Bioscience), according to the manufacturers' instructions.

[00256] TABLES

[00257] The following Tables form a part of this disclosure:

[00258] Table 1 Sample information: Columns Name; indicates sample origin, Batch; samples with the same batch number originated from the same animal (in addition, batch 1&2 also come from the same animal and serve as technical replicates), #Cells before filtering; the number of captured, viable single cells on the Fluidigm C1 chip, #Cells after filtering; number of cells that survived filtering criteria (Experimental Procedures), #Sequencing Reads; Number of reads sequenced on Illumina HiSeq (average across all cells), %Aligned reads: percentage of reads that align to the NCBI Build 37 (UCSC mm9) of the mouse genome using TopHat (average across all cells).

Name	Batch	#Cells after filtering	#Cells before filtering	Average #Sequencing Reads	Average %Aligned reads
EAE-CNS-IL-17A/GFP+	1	48	86	2890292	41,134266
EAE-CNS-IL-17A/GFP+	2	61	75	2728575	45,292021
EAE-CNS-IL-17A/GFP+	4	57	68	2800285	48,0711565
EAE-LN-IL-17A/GFP+	1	39	33	2990609	35,9401461
EAE-LN-IL-17A/GFP+	2	40	38	2593529	45,8093984
EAE-LN-IL-17A/GFP+	3	57	70	3025209	74,5995014
TGFB1_IL6-48h	5	56	80	5468975	69,3823763
TGFB1_IL6-48h	6	74	93	2229856	67,1002098

TGFB1_IL6-48h-IL-17A/GFP+	7	67	86	1945212	63,6447485
TGFB1_IL6-48h-IL-17A/GFP+	8	67	94	3460935	61,2721476
TGFB1_IL6-48h-L-17A/GFP+	9	17	77	6316929	56,1096561
IL1B_IL6_IL23-48h-IL-17A/GFP+	8	69	90	3208148	61,2153719
IL1B_IL6_IL23-48h-IL-17A/GFP+	7	70	86	1936425	65,2173455

[00259] Table 2. Ranking of potential regulators of Th17 pathogenicity. Table 2: Potential regulators of Th17 pathogenicity (rows in Figure 4B) are ranked based on: (1) Correlation with the first principle component in the *in vitro* derived Th17 cells (using TGF-β1+IL-6; Figure 4C). (2, 3) Correlations with the first and second principle components in the *in vivo* derived Th17 cells (Figure 2A). (4) Correlation with immune-related genes in the columns of Figure 4B. (5) A Correlation with a curated pathogenicity signature (genes that are positively or negatively associated with pathogenic Th17 cells, (Lee et al., 2012)). The values in these respective columns indicate the rank (percentile) of the gene in the respective test, relative to all other candidate genes. Highly scoring genes are the ones that are bound by key Th17 transcription factors, and affected by perturbation of these factors during Th17 differentiation. The values in the respective column indicate the rank (percentile) of the gene, relative top all other candidate genes. Negative values indicate a negative correlation.

[00260]

Sources for single-cell score

```
Description Rank Attributes Known Profiled Score In-vivo PC1 rank In-vivo PC2 rank In-vitro (Tqfb1+IL6)PC1 rank Rank by correlation with single-cell
pathogenicity signature (Figure 4c) Rank by correlation with curate pathogenic signature (Lee
et al. 2012)
CTLA4 cytotoxic T-lymphocyte-associated protein 4 1 "ImmuneResponse, Known, CellSurface" 1 0 1 0 0.994565217 -0.804347826 0.777173913 0.913043478
GPR65 G-protein coupled receptor 65 1
                                                                                    0.967391304
       -0.369565217 0.586956522 0.777173913
       reticuloendotheliosis oncogene 1
                                                    "TF, Known, PathogenicSignature(pos)"
                            0.967391304 -0.804347826 0.722826087
                     0
                                                                            0.451086957
TMEM109 transmembrane protein 109
                                                                            -0.967391304
       -0.614130435 0.668478261 0.804347826
       1 CellSurface 0.695652174 0.777173913
                                    0 0 1 0 0.967391304 -0.423913043
CD226
                                                   0
                                                          0.994565217 -0.994565217 0.75
BCL2A1B
       0.913043478
                                             PathogenicSignature(pos)
                                                                                  0
GBP2
       guanylate binding protein 2
       0.967391304 0.831521739 0.777173913 0
       endothelin converting enzyme 1 1
ECE1
       0.967391304 - 0.47826087 0.668478261 0.885869565
```

RAMP1	receptor (cale	citonin) activi 1 0	ty modifying 0.967391304		1 652174		enicSigr 82609		
BCL2A1	D 1 0.722826087	ImmuneRespons 0.994565217	e 0 0	1	0	0.9945	65217	-0.994	565217
PLEK 0.8586	pleckstrin 95652 0.7228	1 TF 326087 0.9402	0 0 217391	1	0.9945	65217	0.8858	69565	-
BCL2A1	A 1 0.777173913	0 0.967391304	0 1	0.8586	95652	0.9945	65217	-0.994	565217
ABCG1		cassette, sub-f 891304 -0.913			1" -0.858	1 695652	-0.614	0 130435	0
IL2	interleukin 2 0.994565217	2 "Immui 0 0	neResponse,Knc -0.99456521			ine" 0.8858	1 69565	0	
FAIM3 0.9945	3 65217 -0.994	0 1565217	1 0.96	7391304	0	0	0.8858	69565	=
160001	4C10RIK RIKEN 0 0.9673	cDNA 1600014C1	-	40217391	0	0	0.9673	91304	0
PDCD1	programmed cei 0 0.9673		3 "Pat 0.777173913	hogenicSiq -0.967		neg),Cel 0.8586		e" 0.7228	0 26087
ID3	inhibitor of 1	DNA binding 3 0.967391304	3 "Imm 0 0	uneRespons -0.967	se,TF,Kn 391304			ignature 0.9945	
SLFN2	schlafen 2 0.777173913	3 0.641304348	0 0	0.9673	91304	0	0	-0.967	391304
ZBTB32	zinc finger an	nd BTB domain c -0.967391304			TF 65217	0	1	0.9673	91304
NFKBID	4 0.831521739	0 0.586956522	0 0.94	0217391	0	0.75	-0.994	565217	
IL16		6 4 "Knowi 0.913043478			1 34783	0	0.9402	17391	0
SLA	src-like adap 0 0.8043		PathogenicS 0.831521739			0	0	0.9402	17391
GM2792	4 0.967391304	0 0.967391304	0 0.94	0217391	0	0.8315	21739	-0.885	869565
MS4A4B	"membrane-span PathogenicSign 0.885869565		, subfamily A 0 0	, member 4 0.9130		5 0	0	-0.586	956522
TGTP2	5 0.695652174	PathogenicSig 0.913043478	nature(pos) 0.369565217	0 0.3967	0 3913	0.9130	43478	0.9130	43478
TGTP1	5 -0.559782609	0 -0.586956522	0 0.91	3043478	0.9402	17391	0.75	0.9130	43478
IL17A	interleukin 1 "ImmuneRespon: 0.885869565	7A 6 se,PathogenicSi 0 0	gnature(neg), -0.91304347			nokine" 0.8043		0	
ACSL4	acyl-CoA syntl 0 0 0.260869565	hetase long-cha 0.885869565	in family mem 0.885869565		6 69565		enicSigr 304348	nature(n 0	eg)
SOCS2	"PathogenicSig	cytokine signa gnature(neg),Kn 869565 -0.96			1	0	0.8858	69565	0
FOXP1	forkhead box 3	P1 6 -0.994565217	"ImmuneResp 0.206521739		0 43478	0 0	0.8858	69565	
SYTL3	synaptotagmin- 0.940217391	-like 3 6 -0.858695652	0 0.913043478	0 0.8586	0.8858 95652	69565	-0.858	695652	
Mapkapi	K3 0 0.9402		se,PathogenicS 5869565 0	ignature(r 0.1793		0	0	0.8858	69565

PRKCSH	protein kinase 0.885869565	e C substrate 80 0 -0.315		6 0.99456	55217	0 0.94021	0 17391	0.8858	69565	
GNG10	"guanine nucle 0.885869565	eotide binding p -0.940217391	rotein 0.8858		in), gar 0	mma 10" 0	6 0.42391	13043	0	0
GM2833	6 0.885869565	0 0.831521739	0	0.88586	59565	0	0.88586	69565	-0.804	347826
PPID	6 0.668478261	0 0.233695652	0	0.88586	59565	-0.8858	869565	0.75	-0.940	217391
CD5L	CD5 antigen-l: -0.858695652	ike 6 0.940217391	CellSu 0.9673		0	1	0.85869	95652	0	0
TNF	tumor necrosis 0.858695652	s factor 6 0.858695652	"Immun 0.8586	eRespons 95652		Cytokin 782609	eChemok: 0.39673		1 0.4239	0 13043
IFI47	interferon gar 0 0.9402	nma inducible pr 17391 –0.804		7 6 -0.6684	178261	0	0	0.8586	95652	0
CD44	CD44 antigen -0.804347826		rface 0.8586	0 95652	0	0.85869	95652	0	0.8586	95652
GADD451	3 growth arrest 0.858695652	and DNA-damage- 0.858695652	inducib 0.9130	le 45 be 43478	ta -0.5054	6 134783	0.64130	0 04348	0 0.5597	82609
SH2D1A	0 0	"ImmuneRespons -0.369565217		genicSig 65217			0	0	0.8586	95652
GATM	glycine amidin 0 0.8315	notransferase (I 21739 0	-argini: 0	ne:glyci: 0.83152		inotrans -0.8315		7 -0.858	695652	0
N4BP1	NEDD4 binding 0.722826087	protein 1 -0.913043478	7 -0.913	043478	0	0	0.83152	21739	0	0
NEK6	"Kinase, Patho	n mitosis gene a genicSignature(n			ssed kin 0	nase 6 0.83152	7 21739	0	0	_
0.83152										
SUSD3	0 7 0	0	0	0.83152	21739	-0.8315	521739	0.8586	95652	0.75
MOV10	Moloney leuker 0.75 -0.967	mia virus 10 391304 -0.831	7 521739		0	0	0.83152	21739	0	0
DUSP4	7 0.831521739	0 0.641304348	0	0.83152		0	0	-0.831	521739	
IER3	immediate ear 0.804347826	ly response 3 0.994565217	8 0.8043		enicSign 0	ature(ne 0	eg) 0.75	0	0	
EEA1	early endosome -0.940217391	0.804347826	8 0.3152		0	0	0.80434	17826	0	0
BCAT1		in aminotransfer 0 0		cytosoli 043478		8 3913	0.42391	0 13043	0	
Mapkapi	K2 MAP ki 0 0	nase-activated process nase-activated nase-activated process nase-activated nase-ac						enicSign		1eg) " -
0.80434	47826						-			
SASH3		omain containing -0.804347826	•		Immune 0.42391	Response 13043	0 0.45108		0.8043	47826
STAT4	"ImmuneRespons	ucer and activat se,TF,Known,Path -0.315217391	ogenics.	ignature	(pos)"	1	0	0.8043	47826	0
CTLA2B		ymphocyte-associ 0 0				9 369565	-0.7773	0 173913	0	
CCL20	chemokine (C-0	0.777173913		9 0		eRespons 326087		Cytokin 08696		
PDGFB	"platelet der: 0 0	ived growth fact 0.777173913	or, B p	olypepti 0		9 173913		enicSign 17391		

TNFSF9	"tumor necrosi "ImmuneRespons 0.777173913		CellSur			emokine"		9 0	0.77717	3913	0
IFI35	interferon-ind 0.804347826	uced pro 0.69565		9 -0.6956	TF 552174	0 -0.7771	0 73913	0.77717	3913	0	
1810029	9B16RIK RIKEN 0 -0.5326		0029B16 0.61413	_	9 0.91304	3478	0	0	0.77717	3913	0
GEM	GTP binding pr PathogenicSign 0.369565217			rexpress 0	ed in s	keletal 0.75	muscle) O	10 0.83152	1739	-0.4239	13043
IL4RA	"interleukin 4 "ImmuneRespons 0.75 0.88586	e,Surfac		or, Known	10 ,CellSu 0.45108		tokineCl		-0.6413	1 04348	0
INPP5B	inositol polyp 0.722826087					10 0.75		0	0	0.75	0
RHOF	10 0.559782609		0	0	0.75	0	0.75	-0.75	0.69565	2174	
PPAN	peter pan homo -0.940217391		sophila 0.17934		10		0	0	0.75	0	0
MAGOHB	_	olog B (0.53260		ila) 0.53260	10 18696		0	0	0.75	-0.9130	43478
TYW3	10 0.668478261		0	0	0.75	0	0	-0.7771	73913	0.77717	3913
IRF1	interferon reg "ImmuneRespons 0 0.88586	e,TF,Kno		ogenicSi	11 gnature 0	(pos)"	1	0	0.72282	6087	0
CD40LG	CD40 ligand 0.722826087	11 0	"Immune	Response		CellSuri 0.64130		okineChe		1	0
BCL2L1	BCL2-like 1 0.722826087	11 -0.8043		enicSigna 0.34239	ature(ne		0 5217	0	0.72282	6087	0
SLC35A1	1 11 0.614130435	0.31521	0 7391	0	0.72282	:6087	0	0	-0.7771	73913	
RPF2	11 0.206521739	0	0	0	0.72282	:6087	-0.8586	95652	0	-0.7228	26087
TM2D3	TM2 domain con -0.722826087	taining 0.77717		11 0.72282	:6087	0	0	0.72282	6087	0	0
IRF4	interferon reg "ImmuneRespons 0 0.55978		hogenic	Signatur		Known"	1	0	0.69565	2174	0
IL18R1	interleukin 18 "ImmuneRespons 0.695652174				ı,CellSu	rface,Cy 0.72282		nemokine 0.69565		1	0
ZFP36	zinc finger pr 0.695652174	otein 36 -0.5869		0.42391	0 .3043	0	0.69565	2174	0.99456	5217	0
ASRGL1	asparaginase l 0.695652174	ike 1 -0.5326		0.47826	0 5087	0	0.69565	2174	0	0	
CBWD1	COBW domain co -0.777173913	ntaining 0.50543		12 0.66847	8261	0	0	0.69565	2174	0	0
GTPBP4	GTP binding pr -0.695652174			0.20652	0 1739	0	0.69565	2174	0	-0.8858	69565
IRF2	interferon reg 0.913043478	ulatory -0.6956		2 0.23369	12 5652	TF 0.17934	0 7826	0 0.66847	0.69565 8261	2174	
HIVEP3	human immunode 0 0.6684		virus 0	type I e 0		binding 78261	protein 0.23369		13 0.20652	TF 1739	0

MS4A6B 0.6684	"PathogenicSiq	nning 4-domains gnature(pos),Ce 0.967391304		e"	nember 61 0	3 " 0	13 0.6684	78261	0	-
OLFM2	13 0.152173913	0	0	0.6684	78261	0	0	-0.668	178261	0
CCR6		C motif) receptor, Pathogenics.			own, Cell		e,Cytoki: 0	neChemok 0.3695		1
COG6	component of 0.641304348	oligomeric golg. 0 0		x 6 -0.559		"Immun- -0.641		e, Known	' 1	0
PIK3R1	"phosphatidyl: 0 0 0.315217391	inositol 3-kina 0.641304348	se, regu 0.8315		ubunit, 0			(p85 alp		13
IL21R	interleukin 23 "ImmuneRespons 0.641304348	1 receptor se,SurfaceRecep 0 0	13 tor,Know 0.6684		urface,C -0.804		Chemokin 0.2065		1	0
IMPA2	inositol (myo)	0.641304348	hosphata 0.1793		13 -0.668	478261	0	0	0.6413	04348
RSPH3A 0.9402		0 826087	0	0.6413	04348	0	0	0.5326	08696	_
CDS2	CDP-diacylglyo PathogenicSign -0.695652174		(phospha 0	tidate o	cytidylyi 0.6413		erase) 2 0	13 0	0.6413	04348
CD24A	CD24a antigen 0 0.6141		eRespons 0			nature() 0.5597		.lSurface 0.2336		0
IL24	interleukin 24 0.614130435	4 13 "Patho 0 0	genicSig 0.6141		neg),Kno -0.994				1	0
SLC15A	3 "solute carrie 0.614130435	er family 15, m 0 0.9130	ember 3" 43478	13 -0.478	Pathoge 26087	enicSign 0.2336	ature(n 95652	eg) 0.6141	0 30435	0
IKZF3 0.94023	13 17391 -0.858	TF 0 695652	0	0.6141	30435	0	0	0.5597	32609	-
HIST1H	4D 0.505434783	13 0.152173913	0 -0.614	0 130435	0.61413	30435	-0.994	565217	0	
ITGAV	integrin alpha 0.831521739	a V 13 -0.586956522	CellSu 0	rface 0.3423	0 91304	0	0.6141	30435	0	
PROCR	"protein C red	ceptor, endothe 0.614130435	lial" 0	13 0		eRespons 43478		ceRecept 043478		Surface" 521739
TPR		promoter region 0.614130435		30435	0	0	0.6141	30435	-0.967	391304
IL9	interleukin 9 1 0	14 "Immur 0.586956522	eRespons 0	se, Patho			neg),Knc		kineChem -0.967	
CD84 0.5869	CD84 antigen 56522 0.3152			0	0	0.5869	56522	0	0	_
TREML2 0.6684	14 78261 -0.804	0 347826	0	0.5869	56522	0	0	0.5326	08696	=
POLB		DNA directed), 1 478261 0.8586		14 0.2336	95652	0	0	0.5869	56522	0
SMAP1	stromal membra	ane-associated p		1 14 -0.641	304348	0	0	0.5597	32609	0
INSL6	insulin-like 6 0.451086957	6 14 0.559782609	0	0	0.5597	32609	0	0	-0.451	086957
CYLD	14 0.47826087	0 0.559782609	0	0.5597	82609	0	-0.858	695652	0	
MAPRE2	"microtubule-a	associated proto 0 0.9402	ein, RP/ 17391	EB famil		er 2" 0.5597		0.5326	0 08696	0

STK38L	15 0.423913043	Kinase 0 0.47826087	0	0.5326	08696	0	0	-0.858	695652	
DOT1L	15 0.260869565	0 0.260869565	0	0.5326	08696	0	0.7771	73913	-0.532	608696
BDH2	15 0.315217391	0 0.831521739	0	0.5326	08696	0	0	-0.451	086957	
ACAT3 0.58695	15 56522 -0.586	0 5956522	0	0.5326	08696	0	0	0.2336	95652	-
BTBD19	16 0.369565217	0 0.39673913	0	0.5054	34783	0	0	-0.505	434783	
BC03118		equence BC03118 -0.39673913	1 16 0	0.5054	0 34783	0	0.50543	34783	0	
SP3	trans-acting 0.967391304	transcription f	actor 3 -0.614		TF 0.5054	0 34783	0	0.5054	34783	
IRAK1	"ImmuneRespon	receptor-assoc se,Kinase,Known 0 -0.206				1 0.5054	0 34783	0.5054	34783	
EXOSC1 0.50543	exosome compo 34783 0.3152		56522	0	0	0.5054	34783	0	0	-
EBI3	Epstein-Barr 0.47826087	virus induced g 0 0	ene 3 -0.315	17 217391	"Known 0.8315		eChemok: 0.9673		1	0
ACIN1	apoptotic chr	omatin condensa 0.315217391			17 -0.75	TF	0	0	0.4782	6087
FASTKD2 0.85869	2 FAST kinase d 95652 0	omains 2 17 0		0	0	0.4782	6087	0	0	-
PPP1R8		phatase 1, regu -0.940217391		inhibito 0	r) subu: -0.586		17 0.4782	5087	0	0
MAF1		(S. cerevisiae) 0.342391304		TF 56522	0	0	0.4782	6087	0	0
TRMU	17 0.804347826	0 0.695652174	0	0.4782	6087	0	0	-0.451	086957	
STAT5B	signal transd 1 0	ucer and activa 0.451086957	tor of t	ranscrip 0	tion 5B 0.2880		"Immune 0.4239		se,TF,Kn 0.4510	
LTA	lymphotoxin A 0.451086957	18 "Immur 0 0.7228	eRespons 26087		Cytokir, 521739			1 0.4510	0 86957	
EGR2	early growth 0.451086957	response 2 0 0.6956	18 552174				re(neg)" 65217		0 3913	
SIRT6	18 0.233695652	TF 0	0	0.4510	36957	0	0	0.5597	82609	0
EXT1	exostoses (mu 0.39673913	ltiple) 119 0.423913043		0	0	0.4239	13043	0	0	0
NHEJ1		end-joining fa 313043 -0.478				0	0	0.4239	13043	0
SERPINI	F1 "serir 0 0	ne (or cysteine) 0.39673913					member 0.6956			21739
TGM2		nase 2, C polyp 73913 -0.885			369565	0	0	0.3967	3913	0
ADI1		dioxygenase 1 326087 -0.532			0	0	0.3967	3913	0	0
RNF181		rotein 181 0.179347826			0	0	0.3967	3913	0	0
METT101	20 0.586956522	0 0.532608696	0	0.3967	3913	0	0	-0.342	391304	

NIP7	nuclear import	7 homolog (S0.831521739	cerevis: 0.39673		20 0		0	0	0.3967	3913
PSRC1	proline/serine 0 0.3695	e-rich coiled-co 65217 0.2880		20	43478	0	0	0.36956	55217	0
TBL2	transducin (be 0.369565217	eta)-like 2 0.288043478	20 0.34239	91304	0	0	0.36956	55217	0	0
PQLC3	PQ loop repeat 0.641304348	containing -0.47826087	20 0.23369	95652	0	0	0.36956	55217	0	0
NIF3L1	Ngg1 interacti 0 0	ng factor 3-lik -0.586956522	se 1 (S. 0.34239		20 0.36956	65217	0	0	0.3695	65217
CYSLTR:	l cysteinyl leuk 0.342391304	otriene recepto 0 0	or 1 0.34239		Pathoge -0.8043	_	ature(ne 0.17934	3 .	0	0
PDLIM5	PDZ and LIM do	omain 5 21 -0.614130435	Pathoge 0	enicSign 0	ature(ne	∍g)	0	0	0.3423	91304
LAG3		tivation gene 3 se,PathogenicSic 73913 -0.260	gnature(p	os),Cel 0.94021		e" 0.31521	0 17391	0	0.3423	91304
SLC25A	13 "solute	e carrier famil 13" 21	y 25 (mi	tochond	rial car 0	rier, ac		ucleotio 0	de 0	_
0.3423		0.451086957								
GTF2E1	21 0.342391304	TF 0	0	0.34239	91304	0	0	-0.6141	130435	0
TSPAN6	tetraspanin 6 0 -0.5054		enicSign 0	ature(ne	eg)	0	0	0.31521	17391	0
CHD2	22 0.668478261	"TF,Pathogenic 0.179347826	Signatur 0.1521		0	0	0.31521	17391	0	0
ASB3	ankyrin repeat 0 0	and SOCS box-0 0.315217391	containin 0.23369	_	22 0.26086	69565	0	0	0.3152	17391
DAPL1	23 0.885869565	0	0	0.28804	43478	0	0	0	0.9130	43478
UBA3	ubiquitin-like	e modifier activ -0.288043478	ating er 0.23369		23 0.55978	32609	0	0	0.2880	43478
ZUFSP	zinc finger wi 0.288043478	th UFM1-specifi 0 0	-0.2880		ain 0.64130	23 04348	TF 0.31521	0 L7391	0	
MED21 0.83152	mediator compl 21739 0	ex subunit 21 0.260869565	23 0.2880	13478	0	0	0.28804	13478	0	_
NGDN		EIF4E binding p				0	0	0.28804	13478	0
PIN4	23 0.260869565	0	0	0.28804	43478	0	0	0.28804	13478	
BCDIN31	DBCDIN3 domain -0.342391304	containing 0.532608696	23 0.1521	73913	0	0	0.28804	13478	0	0
RIPK3	receptor-inter	cacting serine-t -0.940217391	hreonine 0	e kinase 0	3 0	24 0.26086	Kinase 69565	0	0	
CENPM	centromere pro			0	0	0.26086	69565	0	0	0
TACC3	"transforming, 0.260869565	acidic coiled- -0.994565217	-coil cor	ntaining 0.26086		n 3" 0.23369	24 95652	0	0	0
STAG1	24 0.505434783	TF 0	0	0.26086	69565	0	0	0	0.4510	86957
PDSS1	"prenyl (solan 0.260869565	nesyl) diphospha 0 0	ate synth		bunit 1'	'24 -0.5326	508696	0	0	
CEP57	24 0.315217391	0	0	0.26086	69565	0	0	0.39673	3913	

MRPS22	mitocho 0	ondrial -0.2608		al prote 0.47826		24		0	0	0.26086	59565	0
KIF5B	kinesi 0.2336	n family 95652	member 0	5B -0.6956	25 552174	_	enicSign 595652	ature(ne 0.42391		0 0	0	
BC0553	24 0.6956	52174	25		0	0	0.23369	95652	0	0	0	0.75
CAMTA1 0.5326	08696	25 0.47826	TF 5087	0	0	0.23369	95652	0	0	0.23369	95652	-
C2CD3	C2 calo	cium-dep 0	endent 0 0.34239	domain c 91304	ontainin 0.20652		26 0.20652	21739	0	0	0.20652	21739
NGLY1	N-glyca O	anase 1 0	27		0	0	0.17934	17826	0	0	0.4782	6087
DEGS1	degene: 0.1793		permatod 0	cyte hom 0	olog 1 (-0.4239		ila) 0.39673	27 3913	0	0	0	
GALK1	galacto 0	okinase 0.39673		28	Kinase	0	0	0.15217	73913	0	0	0
SPSB3	splA/ry 0.1521		recepto	or domai: 0	n and SC 0	CS box	containi 0.1521		28		0	0
CSNK1E	"caseir 0.3423		1, epsi 0.36956		29	Kinase	0	0	0.125	0	0	0
TTC27		ricopept 695652		eat doma 13478	in 27 0	29		0	0	0.125	0	0
LINS		29		0	0	0.125	0	0	-0.2065	521739	0	0
INO80C	INO80 0		subunit 0	C 0	30 0	_		ature(ne 0.28804	J.	0	0	
FDX1	ferredo 0.2608	oxin 1 69565	30 0.2880	13478	0	0	0.09782	26087	0	0	0	
ITM2A	integra 0	al membr 0.20652		ein 2A 0.20652			0	0	0.07065	52174	0	0
MTPAP	0.50543	31 34783	0	0	0	0.07065	52174	0	0.69565	52174	0	
DHX9	DEAH (A	Asp-Glu- 0		box po. 0.15217			32 73913		0	0	0.0434	78261
CEP55 0.4510	centro: 86957	omal pr 0.47826		5 33		0	0	0	0	0	0	-
FAM118	A "family O	y with s 0	equence 0	similar 0	ity 118, 0	member	A"	33		0	0	0
250000	3M10RIK 0	RIKEN o	DNA 250	0003M10	gene	33		0	0	0	0	0
ICAM1	interce 0	ellular O	adhesion 0	n molecu 0	le 1 0	33 0.36956		eRespons	e,CellSu	ırface"	0	0
GNPDA2	glucosa 0	amine-6- 0.34239		ce deami: 0	nase 2	33		0	0	0	0	0
MTA3	metasta 0	asis ass 0.26086		3	33	TF	0	0	0	0	0.72282	26087
CCDC9	coiled- 0	-coil do 0.20652		ntaining 0.17934		33		0	0	0	0	0
221001	6L21RIK 0	RIKEN 6		0016L21 0	gene	33		0	0	0	0	0

[00261] Table 3. Normalized data of lipidome analysis. WT and CD5L^{-/-} naïve T cells were differentiated. Cells and supernatant were harvested at 96 hours and subjected to MS/LC. Three independent mouse experiments were performed.

	TGFb1+I TGFb1+I	TGFb1+1 IL6_no c IL6_WT TGFb1+1	IL6+IL23 ells IL6+IL23	_WT	TGFb1+1	TGFb1+I TGFb1+I IL6_CD5L	L6_WT TGFb1+I L6+IL23 KO	IL6+IL23 _no cell	_CD5LKO .s	TGFb1+I	L6_CD5L	
Method	Compour 2_media 4a_medi 6b_medi 3_cells	nd	m/z	RT	HMDB II	Metabol 3_media 5a_medi 1b_cell 4_cells	ite 3a_medi a .s 4a_cell	1_media .a 5b_medi 2_cells	la_medi 3b_medi a 2a_cell 4b_cell	.a .a 6_media .s .s	lb_medi 4_media 6a_medi 2b_cell	_a l _a _s
C18-NEG	TF1 2681566 2681566	355.241 58 58 58 58	L7	10.85 58 58 58 58	Interna 2681566 2681566 2681566 3219023	al Stand 58 58 58 58 32	ard 2681566 2681566 2681566 3219023	PGE2-d4 58 58 58 58	2681566 2681566 2681566 3219023	58	2681566 2681566 2681566 3219023	58 58 58 32
C18-NEG	TF16	227.200)6	16.5	HMDB008	306	Myristi	c acid				
	3904	4592	5454		4734			6041	22362			4171
C18-NEG	TF18 5595	255.231	L9	17.6	HMDB002	220	Palmiti 6114	c acid	5120			6669
		16628	3937	4288		4660	4573	5688	5506			
C18-NEG	TF22 5586	283.263	32	18.45	HMDB008	327	Steario	c acid				
			25493		4119	3574		5192			5674	
C18-NEG		303.23	L9	16.95	HMDB010)43	Arachic	donic ac		214866	264314	172799
	212733 4403	190235										
C18-NEG		327.231	L9 4140	16.7	HMDB021	.83	Docosah	nexaenoi:		391793	411429	
	392193	415325										4137
C18-NEG	TF3		9756	5592	4821	5142		DDE 24376	32547			
	17816 20151	9894	27006	50636		57308	17034	17395	85814	41146	17985	63454
C18-NEG	TF5	319.226	58	15	HMDB111	.34	5-HETE 5686		13028	27430	17126	23621
C18-NEG	TF2	319.226	58	14.85	HMDB061	.11	12-HETE 605651	554051	571461	616076	556886	619527
C18-NEG	TF4	319.226	58	14.6	HMDB038	376	15-HETE 25361	7666	29546		49138	48717
C18-NEG	119832		156919	133633	105390	116751	100092	94502 113499 116128	92244	105953	97876	96506
C18-NEG	TF21 48562	378.240 4726	04	12.9	HMDB002	277 4961	Sphingo	osine 1-	Phosphat	:e	28965	9479

	17886 32157	24158 26314	12678 41178	86777	199953	50675		66831	42635	87122	55959	58936
C18-NEG	TF8 33842 73469 143146	391.284 66746 11419	3 129255 70604 26116	13.7 72931 67456 130107	HMDB006 24917 65810 5832	326 80429 87301 79792	Deoxych 57516 146975	olic ac: 30651 5174	id/Cheno 56847 61510	deoxycho 45052	olic aci 71388 28222	d 28804 72116
C18-NEG	945565				HMDB006 963595 45923		Cholic 915457 22873			973879		1060513 1083731 249696
C18-NEG	446981 464895		452405 599613		417936	453376	-			494639	474051	511277
C18-NEG	1673074 8790607	9130167		8925907 9130630	8566471 9973976	8185757	8624925	8045296	7872327	8373366	8707438	7584903 9173126 2726397
C18-NEG	1526275	1596115	8 1432269 1620654 214418		1434129	1344172	1235504		1399989		1530555	2895264 1537812 119858
C18-NEG	TF14 77979 28917	448.305 26688	8 14758 28088	11 6136 30834	HMDB007 9701	08 21662	Glycour 14785	sodeoxyo		cid 25134	27507 38008	25021 22933
C18-NEG	3555056 3631694		3325521 3897272			3182289		olic ac: 3266052 66765			3481738	6885427 3297525 58617
C18-NEG	3637940	3390069				3268503					3330871	6610292 3486687 43382
C18-NEG	2176541 1056992 1061526	0	1081414 9857044 1072168	1008520 6	1060101	1 1013570 1	1050013 1 1110621	1058833 8	1038792 9 3005206		1077499 9	
C18-NEG	TF25 1097889 1520099	498.288 1204800	1186702 1164120	11.65 1291165	HMDB008	96 1062944	Taurode	oxychol:	ic acid 1190853	1114176	1028242	2209563 1053480 564084
C18-NEG acid/Ta	uroursoo 347874	292734	4 lic acid 365255 700081	d 317061	607603 314646	277955	749503 320850	65618 281048	564781 216878	298726		
C18-NEG	4543412	4360551	4078206 4584683	3939955	3860197		3730889	3862014	4076709	4195791	4073666	8155464 3961542 474946
C8-pos			1087052			1 Standa 1023566			-	1012539 921771		996417 1006026
C8-pos		468.308 7902 5929 6158			HMDB103 6850 6353	79 5416 12478	7519	PC 6661 7275	3332 10608 7776	2679 9638 8962	5141 8547 5614	5977 9207 8336

C8-pos	1392 14635 42162 10960	494.3243 12487 7561 25977 7062 8711	4.75 10624 9879	HMDB10383 11967 11642 8556 13284	C16:1 LPC 13026 11105 10300 8166	7014 42413 10118	5646 43253 12133	8282 46059 7968	13214 39641 9734
C8-pos	602325	496.3400 316290 164849 451796 408232 287901			C16:0 LPC 316343 280511 378407 255703		185047 602681 344659	284161 657403 258328	
C8-pos	1536 3136 29300 1520	520.3412 1558 161 20841 1254 778	4.95 895 1762	HMDB10386 1467 2115 2827 1230	C18:2 LPC 1490 1991 1764 692	2120 29086 1771	1653 31806 1427	1606 28260 975	2623 27216 2009
C8-pos		522.3559 54998 37484 212335 74725 109496	5.31 53044 95810	HMDB02815 53484 58851 121857 138419	C18:1 LPC 60620 51574 3 130839 100262	37313 336070 116800	33235 323141 120798	47063 340550 109338	54536 305699 114039
C8-pos	156320 541318	524.3716 139282 78631 380513 515430 398060		HMDB10384 140446 115978 382528 305556	C18:0 LPC 3 144991 131814 5 425178 306964			150175 539919 341639	
C8-pos	1565 1078 45103	544.3408 957 341 25078	4.98 713	HMDB10395 386 1538	C20:4 LPC 1720 363	315 47160	546 48570	38948	2629 43474
C8-pos	273364	518.3222 140310 78814 205344 172119 138138			C20:3 LPC 2 147118 135523 7 169528 118266		79703 278500 154304	302446	127294 252437 147822
C8-pos	1543 207 13541	568.3409 363 8409	4.96	HMDB10404 399	C22:6 LPC 194	494 16424	16085	13036	584 13927
C8-pos	1716 365 22 3299	454.2916 25 48 290 6251 1874	5.15 114 3178	HMDB11503 310 357 2516 2983	C16:0 LPE 69 3 3123 2174	476 42 2481	111 213 4162	111 17 1790	799 50 3408
C8-pos	1843 1209 2302 10742	480.3093 2123 4672 1519 10950 9984	5.33 1704 10311	HMDB11506 1918 1684 12382 14075	C18:1 LPE 2263 1083 12409 8842	2218 2374 12639	1466 1885 9670	1394 1870 11071	1398 1811 13057
C8-pos	2057	482.3243	5.75	HMDB11130	C18:0 LPE				
	35416	30237 24614	20595	26391 19130	19611 31352	21418	24054	30243	25746
C8-pos	1516	502.2929	4.89	HMDB11517	C20:4 LPE				
	13129	9742 8024	7203	7444 6125	8659 8705	6801	7602	9012	7862
C8-pos	19814 1314	21383 57018	15177	13329 18092	C30:1 PC 17895 16663 33 2521297 276288	1456	2479	2480	1441
C8-pos	104080 19556	121173 263005 9024 239329	100045 12	97722 103152 13680597	C30:0 PC 2 103096 99173 9555005 114958 6 12883235	18413 72	22625 1128855	18592	15786
C8-pos	3094 619 41 1617004	26079 669 1602014 190772		328	C32:2 PC				1476 40 7 1740467
C8-pos					C32:1 PC 9 207147 203388			262106 90542	

	83548 2778416 2660531		5519496 2767036		3384833 2570612		2224680 2260230		3510721 3242467		2619377 2977666	
C8-pos			391822	9	HMDB078 324195 2570207 1937027	329510 3	C32:0 E 336354 1625625 1643160	318227 54		278414 7	393097 320104 1642618 2150586	264113 7
C8-pos	3164	756.553	0	8.49	HMDB080	06	C34:3 E	PC				
	875171	702 988856	673483	1023525	867319	827735	701311	723025	644826	323 810044	783009	740564
C8-pos		104600 .7	402369	3	HMDB079 177569 2695833 2209553	164380 2	C34:2 H 162867 2006783 2043668	167024 30		150595 5	214180 175966 2664116 2386985	139347 3
C8-pos	1558530) 1105535 354	2162247	91	HMDB079 1715862 1433353 1221525	1471713 74	C34:1 F 1477760 1091571 1097119) 1479214 14		1562252 48		65
C8-pos	102842 102705	762.600 109523 67949 55900373	108969 8968825			106010				106850	127626 122762 6142124	97715
C8-pos	173027 194530		191142 7160245			153635		PC 158580 5 8314128	199672	189187		175659
C8-pos	501205	327946 35	1132092	5	HMDB080 522166 9450772 8605424	430865 8	C36:2 F 451021 8918369 8627004	454155 97		02		427261 0
C8-pos	962494		1279105	58	HMDB080 1093301 7748984 7100250	915048	C36:1 F 916238 6173873 6017342	903430 37		1052607 1	1153888 1154069 5563753 6876928	4
C8-pos	124626 153478	806.568 127378 101856 475949	84574			107861		2C 114944 515978	186101	151302		127593 144477 556145
C8-pos	137341 161637		95753 1119481	129561	153570	119951	128201	PC 117325 3 1516861	162699	152936	176914	139421
C8-pos	385841 475247		299347 3239362	376452	428895		386432	2C 367059 3106003	523006	455579		426327
C8-pos	55413 64364		154969 9293840	58418 9520856	76390		52099	PC 57746 18421060			94939 72867 8578760	71994 48600 8643930
C8-pos	3148	826.535	6	8.45	HMDB085	11	C40:10	PC				
	17634	26748	5024	32216	9203	8120	8531	7348	1796	18414	3967	6035
C8-pos		828.551 59335		8.77 52676	НМDB087 56700	31 49452	C40:9 H 47562	2C 47608	42395 80225	52578 64631	58279 74621	50320 59199

	66559 152956	40590 141857	194698	287249	130844	220042	150639	144369	158304	133617	123826	183219
C8-pos	3540 29354 35893 347813	834.599 35209 28580 331729	22163	29520	HMDB080 41487 307629	25526	C40:6 27385 379342	PC 27412 413709	28677 43491 364802	40315 39109 296967	45841 46984 313224	42134 35182 412487
C8-pos	3518 11398	740.555 2515	2578 9752434	59001	HMDB112 1064 4965803	1221	3052	PC plasma 2890 25895548	466	4797 5421549	9848 4687022	5518 6946355
C8-pos		5478828 744.589 6210 6107 2	4 10566 3172	9.11 70877 1168698 7728070		8550 1167244	7945 8	PC plasma 6070 8025822 1	6583	12454 7207 7	22450 3521 8657446	18110 6094 9221373
C8-pos		80503 8		1134751 0		154211 7508128	145569	PC plasma 147135 5890642 08	140333	95137 5932072	84314	94238
C8-pos	3653 12744 2480 4063852	768.588 7914 3621 3774816	9 7883 953 3949412	30428	HMDB113 7626 7535900	6416	6726	PC plasma 4042 7 3908563	4683	5720 2645 4602133	15177 5287 3752765	13211 3711 3707617
C8-pos	4909 3912	770.605 6389 2784 2534783	1 3488 2092 2423949	8348	HMDB112 2732 3313974	1648	3257	PC plasma 2956 22665852	3199	3089 2696 3002241	7963 2295 2361016	6406 2585 2289667
C8-pos	3978 28970 6204 1021694	772.620 13453 5842 6	2 22793 4795 1168696	9.52 101233 1294991 5		19007 1179173	13005 0	PC plasma 9935 1016899 29810601	9837 7	16843 8362 1240853 9199747	30521 8253 5	33682 5283 9858472
C8-pos	4219 24992 2422 1131087 1228598		8 11869 2867 1117046 1148863	121498 2960641: 6		8920 1572604	6577	PC plasma 7868 1492339 46	8346	17902 2825 1039362 0	30859 3981 5 1168153	33665 5139 1
C8-pos	24637 15960	790.571 16221 22703 1741635	5 21351 16047 1798776	20049	HMDB112 20981 3170292	26327	19250	PC plasma 17832 11907951	21398	17836 15472 2111468	25239 19294 1714617	28831 24064 1634288
C8-pos	3752 7860 7786 898017	792.586 6572 6268 870846	9847 4227	9.26 3222 902722	HMDB113 4317 1142487	9704	8082	PC plasma 7415 0981880	1953	8525 11168 1041252	7806 7556 822009	7202 14587 812605
C8-pos	3909	796.620	2	9.43	HMDB112	52	C38:4	PC plasma	logen			
	768371	987283	1078238	776557	928342	837424	905446	843780	727237	736031	760104	798661
C8-pos	3912	818.602	4	9.44	HMDB112	94	C40:7	PC plasma	logen			
	262422	295190	373860	270756	338174	294254	315094	290149	247372	244937	273112	266929
C8-pos	3313	690.506	4	8.67	HMDB089	24	C32:1	PE				
	547852	447388	270517	356301	320563	333391	291585	317531	265621	360641	344883	322313
C8-pos	3061	692.522	3	8.25	HMDB089	23	C32:0	PE				
								100596		125078		
C8-pos	3342 6597	720.553 9271	8 8556	8.74 7874	HMDB089 9767	25 7340	C34:0 8328	PE 8680	7869 13062	11352 8673	12481 7546	11974 7099

	5861 558652	5549 509220	955429	1117347	458844	457968	495784	535348	383557	494401	421738	501847
C8-pos	3415	740.522	2	8.83	HMDB089	37	C36:4 H	PE				
	146129	218649	118460	142636	124663	131621	118010	129102	104233	149847	143295	130559
C8-pos	3484	742.537	6	8.95	HMDB090	60	C36:3 I	PE				
	340121	509273	450084	506655	416406	447064	416794	385030	424752	417774	438176	414984
C8-pos	5651 181	744.553 5681 319 3786859	52821 3395962	2602	HMDB089 5455 4122531	2245	C36:2 H 4945 3923968	PE 4081 3 4165180	12784 866 4448509	14671 541 3569714	13163 873 3960404	10983 1086 3807167
C8-pos	23969 19085	746.568 34287 16742 1744152	47783 2005824	20802	НМDB089 26522 1781099	19924		PE 19321 3 1754345	24108 18675 1592292	35440 13018 1947173	31141 18511 1688759	41722 11254 1726200
C8-pos	3357	764.522	2	8.77	HMDB091	02	C38:6 I	PΕ				
	51149	48056	25196	34992	23821	28201	19572	30478	21866	27910	26143	21786
C8-pos	3506	766.535	6	8.96	HMDB090	69	C38:5 H	PE				
	256395	514281	489954	539670	420889	472317	397375	396650	472420	403384	414368	435699
C8-pos	3765	768.553	0	9.28	HMDB090	03	C38:4 H	PE.				
	666081	903253	709029	539081	572674	633779	568470	699881	651459	591925	705578	672680
C8-pos	4080	772.584	.3	9.63	HMDB089	42	C38:2 I	PE.				
	61436	71717	68990	65029	53722	65347	50958	54137	62557	56708	51835	56264
C8-pos	3700	792.552	2	9.21	HMDB090	12	C40:6 H	PE				
	72994	96534	44341	26155	17398	47544	29885	41811	45483	47390	48158	42202
C8-pos	3508 313	700.526 1001 1566274	3435 1512152	10436	HMDB113 948 1416754	927	994	PE plasma 2013 1601491	1205	3268 315 1502688	4529 529 1403889	3581 1554480
C8-pos	67685 14565	702.542 44678 20190 7402199	8 59755 16468 7251904	129783 8486385		55681	47280	PE plasma 53175 67174122	41392	74128 14817 7111560	87657 18415 7030362	81951 15351 7049910
C8-pos	48563 13172	16303	40184	73760 3922581		34243	30355	PE plasma 34889 74841283	26915			52853 13544 4855766
C8-pos	3748	726.541	.9	9.26	HMDB114	42	C36:4 H	PE plasma	logen			
	1317246		1566291	1262383	1382156	1335926	1440304	1 1465597	1265627	1204243	1257516	1382164
C8-pos	3985	728.558	1	9.53	HMDB114	41	C36:3 I	PE plasma	logen			
	2039071		2110833	2005479	2351068	2067346	2197766	5 2208121	1976859	1969337	2019556	2059995
C8-pos	4193	730.574	.3	9.81	HMDB090	82	C36:2 H	PE plasma	logen			
	2973411		3190190	3372145	2458572	2732591	2758344	1 2800156	2969895	2947390	2717266	2933454
C8-pos	4416	732.589	0	10.09	HMDB090	16	C36:1 H	PE plasma	logen			
	8091	15518	11039	9973	3018	4934	6683	2890	10220	8834	1331	8348

C8-pos	5394 375	748.527 3730 211 2149232	0 5437 1235 2042178	9.05 16837 2187170	HMDB114 4405 2299552	6788	3101	PE plasma 5421 62006011	3898	4996 727 1979745	7387 904 1993973	4712 514 1841759
C8-pos	3673 5818 3498 2775695	750.542 5381 2401 3103546	4 4312 3124 3128792	9.17 15021 2584653	HMDB113 5771 3264803	3285	2400	PE plasma 3689 13055968	3794	2809 2585 3050214	6062 3186 2818721	4439 2475 2867826
C8-pos	3895 913 868 802626	752.558 1473 1119 863949	1931 1878	9.42 1042 728946	HMDB113 1224 900779	1391	1237	PE plasma 934 841931	1487	1511 564 821804	2365 798 762124	1670 1074 779000
C8-pos	4271	756.590	0	9.89	HMDB113	84	C38:3	PE plasma	logen			
	143403	173311	150214	188897	121355	136541	163291	113677	134051	161849	109697	151354
C8-pos	3669	796.523	1	9.16	n/a	C42:11	PE plas	smalogen				
	5289	29862	34910	47359	36147	36271	28431	25429	16635	21763	35286	40358
C8-pos	2944	772.546	2	7.88	n/a	C36:3 P	S plasm	nalogen				
	57141	39515	28147	24783	28719	20741	19626	33047	23444	28781	32426	30383
C8-pos	1809 5610 8009 5822	300.289 5986 7013 6297	5683 3544	5.30 5785 5081	HMDB002 6437 7277	52 5857 8406	sphing 5782 7569	osine 6186 6961	6279 5987 7978	6262 6595 5487	5717 5958 5982	5830 6481 7425
C8-pos	3317 5381 386 777682	538.519 2857 826322	2784	8.68 6412 935229	HMDB049 2148 2245895	2180	1640	Ceramide 1377 719654	2053	172	11317 202 704804	4392 545020
C8-pos		622.613		10.02	HMDB049	52	C22:0	Ceramide	(d18.1)			
								CELAIIITUE				
-										1/2025	167606	170750
-	141571							162430		143835	167696	179750
C8-pos	4556 7208 537		453439 4 2117 1163	152636 10.42 1429	145634 HMDB049 604	164607 56 1758	139831 C24:0 2579		182508 (d18:1) 2785	2098 866	9698 1150	5789 1290
-	4556 7208 537	278913 650.644 3892 461	453439 4 2117 1163 872705	152636 10.42 1429	145634 HMDB049 604	164607 56 1758 915488	139831 C24:0 2579 106629	162430 Ceramide 3121	182508 (d18:1) 2785 867055	2098 866	9698 1150	5789 1290
-	4556 7208 537 1097076	278913 650.644 3892 461 1074958 648.628	453439 4 2117 1163 872705	152636 10.42 1429 1809880 10.07	145634 HMDB049 604 2396651 HMDB049	164607 56 1758 915488	139831 C24:0 2579 106629 C24:1	162430 Ceramide 3121 8 985035	182508 (d18:1) 2785 867055 (d18:1)	2098 866 1032546	9698 1150 1083149	5789 1290 871600
-	4556 7208 537 1097076 4396 567193 3000	278913 650.644 3892 461 1074958 648.628 763334 675.543 11591 4828	453439 4 2117 1163 872705 7 1162889 4 12733	152636 10.42 1429 1809880 10.07 576791 8.04 9087	145634 HMDB049 604 2396651 HMDB049 515576 HMDB120 9217	164607 56 1758 915488 53 551942 97 7689	139831 C24:0 2579 106629 C24:1 603086 C14:0 7770	162430 Ceramide 3121 8 985035 Ceramide 578682	182508 (d18:1) 2785 867055 (d18:1) 548454 7959 12181	2098 866 1032546 518092 9559 11585	9698 1150 1083149 554878	5789 1290 871600 595973
C8-pos	4556 7208 537 1097076 4396 567193 3000 9142 11087 253549 3051	278913 650.644 3892 461 1074958 648.628 763334 675.543 11591 4828 237241 701.559 57057	453439 4 2117 1163 872705 7 1162889 4 12733 350938 1 57853	152636 10.42 1429 1809880 10.07 576791 8.04 9087 253737 8.20 62362	145634 HMDB049 604 2396651 HMDB049 515576 HMDB120 9217 254918 n/a 63926	164607 56 1758 915488 53 551942 97 7689 195241 C16:1 S 57874	139831 C24:0 2579 106629 C24:1 603086 C14:0 7770 214284 M 55303	162430 Ceramide 3121 8 985035 Ceramide 578682 SM 8883	182508 (d18:1) 2785 867055 (d18:1) 548454 7959 12181 228444 68168 77401	2098 866 1032546 518092 9559 11585 238444 67177 78069	9698 1150 1083149 554878 9222 9391 220909 64258 63207	5789 1290 871600 595973 10776 12347 230001 63072 69809
C8-pos	4556 7208 537 1097076 4396 567193 3000 9142 11087 253549 3051 65943 39520 499032 3204 667158 729767	278913 650.644 3892 461 1074958 648.628 763334 675.543 11591 4828 237241 701.559 57057 611116 703.575 695108 510351	453439 4 2117 1163 872705 7 1162889 4 12733 350938 1 57853 522262 0	152636 10.42 1429 1809880 10.07 576791 8.04 9087 253737 8.20 62362 517495 8.54 662029	145634 HMDB049 604 2396651 HMDB049 515576 HMDB120 9217 254918 n/a 63926 583006 HMDB101 730328	164607 56 1758 915488 53 551942 97 7689 195241 C16:1 S 57874 489869 69 664682	139831 C24:0 2579 106629 C24:1 603086 C14:0 7770 214284 M 55303 541404 C16:0 625295	162430 Ceramide 3121 8 985035 Ceramide 578682 SM 8883 227967 54686 70316 520994	182508 (d18:1) 2785 867055 (d18:1) 548454 7959 12181 228444 68168 77401 481286 620807 795200	2098 866 1032546 518092 9559 11585 238444 67177 78069 444595 740512 868058	9698 1150 1083149 554878 9222 9391 220909 64258 63207 509098 748856 821109	5789 1290 871600 595973 10776 12347 230001 63072 69809 535642 733877 673210
C8-pos C8-pos	4556 7208 537 1097076 4396 567193 3000 9142 11087 253549 3051 65943 39520 499032 3204 667158 729767 8195012 3328 41978 49478	278913 650.644 3892 461 1074958 648.628 763334 675.543 11591 4828 237241 701.559 57057 611116 703.575 695108 510351 7790921 729.590 44233	453439 4 2117 1163 872705 7 1162889 4 12733 350938 1 57853 522262 0 627640 1689648 7269105	152636 10.42 1429 1809880 10.07 576791 8.04 9087 253737 8.20 62362 517495 8.54 662029 5	145634 HMDB049 604 2396651 HMDB049 515576 HMDB120 9217 254918 n/a 63926 583006 HMDB101 730328 8378801 HMDB121 46620	164607 56 1758 915488 53 551942 97 7689 195241 C16:1 S 57874 489869 69 664682 6985095	139831 C24:0 2579 106629 C24:1 603086 C14:0 7770 214284 M 55303 541404 C16:0 625295 724278 C18:1 40347	162430 Ceramide 3121 8 985035 Ceramide 578682 SM 8883 227967 54686 70316 520994 SM 632621 67114819 SM 37361	182508 (d18:1) 2785 867055 (d18:1) 548454 7959 12181 228444 68168 77401 481286 620807 795200 7189596	2098 866 1032546 518092 9559 11585 238444 67177 78069 444595 740512 868058	9698 1150 1083149 554878 9222 9391 220909 64258 63207 509098 748856 821109	5789 1290 871600 595973 10776 12347 230001 63072 69809 535642 733877 673210

	153438 310293		855269	386046	297581	254760	241201	248992	256835	323721	305762	297472
C8-pos	3948 24083 35600 58215	759.637 28583 20834 49057	74 13444 201123	9.47 24970 86391	HMDB121 30886 61387	02 23770 59219	C20:0 : 22376 48140	SM 23359 39850	22951 39154 68887	27503 38233 67020	34023 38767 63427	26421 30489 58245
C8-pos	4071 92451 114689 63953	785.653 99558 68821 62029	31 60658 185260	9.62 83489 97669	HMDB121 107560 93334		C22:1 85549 51257	SM 89952 61902	73484 127628 72809	99878 106901 79917	106308 117027 86646	
C8-pos		140499	120739			175775		SM 178380 178482		226522	213210 242826 214210	198254
C8-pos	358027 439178		255992 4502687			347245		SM 344153 0 1625235	474535		462816	370610
C8-pos			73061			104885			97691 147764 1153685	136788	128094 140707 731189	
C8-pos	5101 24454 38303 19236	614.588 26809 13667 38826	35 12157 21564	11.99 25499 51135	HMDB067 32126 60333	25 21322 19828	C14:0 (25565) 32618	CE 20646 52552	20792 29756 33034	28098 26721 35727	35585 34784 67047	32731 23149 16887
C8-pos	637519	516247	443695			633693		CE 599442 172453		702793 826925 131617	913589	
C8-pos	455614	642.618 583547 361132 66424	310548		HMDB008 616083 94829	85 443440 51778	C16:0 (457486 72865			544473 582357 83747		456516 423166 54128
C8-pos	5059 115511 164341 2183	664.603 127138 91743 2988		11.88 106565 5216	HMDB103 131011 1989		C18:3 (111078 2797		103755 152048	106548 148947 1895	128366 160984 7354	
C8-pos		666.618 1592270 1209840 72046	1059467	12.17 1575118 131075			C18:2 (142910)	5 1453388			2161771	1542494 1526199 43174
C8-pos	2443677	1885560	1662052	2457691	2963070		228673	CE 3 2264956 1004224	2816063	2947078	3734819	
C8-pos	43456 73417	670.649 50426 42521 72789	22610	43185		68 40826 16117		CE 38444 93063	38324 62024 61185	46335 58531 73524	51370 81535 90995	
C8-pos			8 65609		HMDB067 106798		C20:5 6	CE 87704	81281 123068	94461 122341	100730 129070	
C8-pos		2087516	1416513	1930944	2369481		187883	0 1967259	2412243			2110729 2126271 20978
C8-pos		692.634 221011				36 210119		CE 200855		217622 246441		

	291995	184042										
C8-pos	227977	714.618 230159 166812 1674	150814	11.87 217444 5984	HMDB067 248072 693		C22:6 211038	CE 220477		226618 284378 2475		
C8-pos	5169 30010 47488	716.633 35279 16790	7 14882	12.11 27978	HMDB103 41248	375 21732	C22:5	CE 27832	23888 42449	31949 44796	36043 52757	36006 33758
C8-pos	1468 4748 5922 4284	318.264 5265 5192 4770	1 4819 2293	4.80 4187 3382	HMDB115 4631 4456	62 4910 5693	C14:1 1 5004 5288	MAG 4866 4732	4800 4967 5838	5000 4862 3899	4238 5080 4271	5011 4698 5093
C8-pos	1856 64680 74608 64817	346.295 64346 63049 67822	2 63207 35331	5.35 64010 52234	HMDB115 64584 69621	65 64508 82482	C16:1 1 65003 76327	MAG 63064 74667	61100 60145 85447	64093 67370 57468	67173 63131 60548	64524 61735 76804
C8-pos		376.342 884764 886238 842776						819586		887122 833236 767027	818196 906529 767494	894474 1174404 975103
C8-pos	2744 59809 64660 59466	430.389 68593 58310 61118	3 61639 29805	7.29 59519 52964	HMDB115 60572 64071	82 62221 74037	C22:1 1 58657 70243	MAG 62191 71688	60148 57795 73082	64987 61219 58127	69591 64238 56793	60714 57780 69763
C8-pos	3571 35039 29191 234491	558.509 39350 33609 177298	3 36322 315638	9.04 32217 239799	HMDB070 36286 152405	35543	C30:0 36335 217691	DAG 34588 165348	34891 31794 195972	39777 35529 205369	43685 34588 157756	42156 32658 264527
C8-pos	3436	582.509	3	8.86	HMDB071	.28	C32:2	DAG			195	
	7226	63790	6454	25430	21102	10618	11192	14884	3917	15268	15458	7174
C8-pos	3683 5628 4425 372323	584.524 8382 5182 265994	7167	9.18 6024 475015	HMDB070 6521 255061	5339	C32:1 5423 421645	DAG 4936 299463	6253 4288 413401	8049 6340 352685	6538 4953 265995	9031 5884 438176
C8-pos	240784 222946		224520 1026254			241661		DAG 222337 3 897664	215569		230259	237316
C8-pos	3796	610.540	4	9.31	HMDB071	.03	C34:2	DAG				
	144576	394267	156413	371997	294663	187924	241902	244659	172468	249012	254769	166382
C8-pos	7436 3612	612.556 7494 7475 1023250	16464 1506955	9.61 6012 1703845	HMDB071 7927 1119435	4042	C34:1: 7814 134623	DAG 6816 4 1007241	7545 7559 1440289	12588 5270 1389832	10737 4753 1097630	11297 2951 1433900

C8-pos	4292 257524 272960 1110093	614.572 265547 253428 775022	0 260852 1075007	9.91 242016 971688	HMDB071 275783 794560	00 263176 887137		AG 255239 702180	292394 274650 907993	280602 250588 1051245	287972 260634 826812	279073 305939 1019799
C8-pos	3921	636.555	6	9.44	HMDB072	19	C36:3 D	AG				
	18961	117295	29309	64187	50166	34538	35467	41778	36017	43252	43153	29550
C8-pos	4154 833 746 514261	638.571 961 382395	.6 6083 937563	9.73 1463 598305	HMDB072 1348 986304	18 3717 810333	C36:2 D 799 545140	AG 1588 695589	1320 273 656042	3629 798 574819	2047 336 708836	2802 258 689206

C8-pos	3661 514	640.5872 3542 4325 1164 816507 533043	10.03 848 968136	HMDB072 2312 567275	3559	C36:1 I 1843 643713	936	2121 2264 629550	6443 550 701081	2613 849 556750	3865 617 682088
C8-pos	370959	642.6030 342740 375734 338549 217481 353108			368085		328988	508832 403680 426119		387710 398580 332082	379161 566272 410756
C8-pos	4826 49632 36782 112682	740.6763 39459 34869 120722 130972	11.25 39625 98713	n/a 35874 105263	C42:0 T 38684 109815	'AG 35630 117394	37369 37042 97206	43923 43728 98394	48718 44105 112797	48554 39706 107826	40169 48263 98858
C8-pos	4806 4567 5851 17821	764.6759 5254 4893 20116 56884	11.16 5909 19471	n/a 5523 22108	C44:2 T 3516 16403	'AG 5324 20781	5545 3659 13182	8885 5314 13510	9390 5215 37054	6005 3754 12137	5122 4250 16879
C8-pos	4859 58227 56365 289403	766.6918 55775 55086 353201 388320	11.36 52502 265627	n/a 59302 225393	C44:1 T 55884 240562	57752	55147 51945 227513	64327 57483 257786	70035 57147 322758	61652 53991 239002	54715 64503 254194
C8-pos	211935 217189	768.7075 209117 192809 180753 825264 673130			198534 588998			178738 186303 556458		227900 186566 703949	226558 170578 610664
C8-pos	86670 102817	792.7073 94319 91863 90730 349382 363068	11.51 81370 529890	HMDB104 103115 351965		C46:2 1 86713 332568	89858	83651 80248 318760	101588 99211 316671	86847	102028 88469 315919
C8-pos	249655 277546	794.7231 275855 246132 225823 302270 2164580			240293		228513	227298	259268		236908
C8-pos	580670	796.7388 560364 477913 456426 314331 22296616			489897		467858	479370	518846		458390
C8-pos	4923 489 971 133041	818.7228 1360 523 1147 142780 153543	11.54 540 225768	HMDB054 1054 160536	1419	C48:3 1 1253 139403	FAG 160147	209 104767	1494 594 130187	1534 868 175511	1958 476 110337
C8-pos	287917	820.7387 284240 243054 227809 309212 2257235			241095		235775	230134			220812
C8-pos	472862	822.7547 532438 449152 421709 146909 22 111955	472466	565226 1158695	475726 53	459583 9809551	447573 L 5813923	476449	531643	540101	450695
C8-pos	518976 625044	824.7697 597758 524206 537950 539634 4259963	571423	606066	544968	519445	511523	512039	543511	630404	498694
C8-pos	4954	844.7386	11.65	HMDB054	135	C50:4 T	ГAG				
	133168	218410 126176	81132	94366	100328	76652	102834	152575	69267	100758	104266
C8-pos	90772 119449	846.7542 111913 78272 70843 165749 51592102	83616		76652		85939		89680		77011

C8-pos	289828	291410	291285 1808582	332783	1636960	287345	138210	275109 58	284678	1042372	371907	275917
C8-pos	344924	314618 3		7	HMDB053 445769 2038759 2240122	338992 1	C50:1 317759 195904 221046	341316 63		0		324123 8
C8-pos	195689 213253		188776 4613212			192575		TAG 156692 9 3622921	201973		208102	160029
C8-pos	5038 408 1401 76295	870.753 2955 429 82395	_	11.84 2501 264436	HMDB053 2131 117707	688	C52:5 1184 59933	TAG 622 80698	675 789 45008	1873 90787	1754 915 126888	2272 5 38998
C8-pos	5088 5167 22401 749902	872.769 10729 4405 804516	3 3154 933225	11.98 4424 1264170	HMDB053 15324 984175	5887	C52:4 4181 756166	TAG 3576 822231	4663 5854 572291	14837 9360 868565	15257 8703 1129926	11073 4635 546278
C8-pos	5239 87433 109895 5293073	874.785 99840 90060 5677924	75256 6147894	12.23 94645 7074262	HMDB053 101753 6815650	83664	C52:3 62681 536915	TAG 74607 0 5624709	76035 86090 3934292	80429	123729 103045 7482990	81090
C8-pos	251983	186873 1		9	HMDB053 307597 2603956 2857489	227753 8	C52:2 217432 299118 315157	220341 70		8		214528 5
C8-pos	5500	878.816	7	12.75	HMDB053	67	C52:1	TAG	93308	143165	145841	121055
1		104117	110988 1593416 8874614		1549733		106406 167093	106518 33	101216	1336558	105375 8 1378412	
C8-pos	120885 1242625 5614 84875 104111	104117 4 880.832 98707	1593416 8874614 7 82840 2169808	9 1919477 13.06 92627	1549733 3 HMDB053 104488	5 1854907 65 86197	106406 167093 7 C52:0 78099	106518 33 9938402	101216 7202164 1508475 77655 89258	1336558 9 101915 94413	8 1378412 100396 99162	3 108753 82382
-	120885 1242625 5614 84875 104111 2370374	104117 4 880.832 98707 90553	1593416 8874614 7 82840 2169808	9 1919477 13.06 92627	1549733 3 HMDB053 104488 2209777 HMDB054 1581	5 1854907 65 86197 1073673	106406 167093 7 C52:0 78099	106518 33 9938402 TAG 75535 4 1672756	101216 7202164 1508475 77655 89258	1336558 9 101915 94413	8 1378412 100396 99162	3 108753 82382
C8-pos	120885 1242625 5614 84875 104111 2370374 5013 1988 565 30312 5102 29072 8941	104117 4 880.832 98707 90553 1835281 894.756 1532 566 30120 896.768 14490	1593416 8874614 7 82840 2169808 2 1964 61911 2 30686	9 1919477 13.06 92627 2086724 11.76 1943 107826 11.99 26757	1549733 3 HMDB053 104488 2209777 HMDB054 1581 51498 HMDB053 18124	5 1854907 65 86197 1073673 47 1614 28755 91 17973	106406 167093 7 C52:0 78099 169196 C54:7 1304 23372 C54:6 33584	106518 33 9938402 TAG 75535 4 1672756 TAG 1258	101216 7202164 1508475 77655 89258 1480353 1712 1922 23504 24726 30347	1336558 9 101915 94413 3157899 1612 1279 37626 11704 14979	8 1378412 100396 99162 2529786 1835 1163	3 108753 82382 1446319 1508 1361 20679 12277 24966
C8-pos	120885 1242625 5614 84875 104111 2370374 5013 1988 565 30312 5102 29072 8941 150105 5168 41779	104117 4 880.832 98707 90553 1835281 894.756 1532 566 30120 896.768 14490 27157 158620 898.785 46111 33745	1593416 8874614 7 82840 2169808 2 1964 61911 2 30686 268344 1 35255	9 1919477 13.06 92627 2086724 11.76 1943 107826 11.99 26757 465398 12.10 40502	1549733 3 HMDB053 104488 2209777 HMDB054 1581 51498 HMDB053 18124 226361 HMDB053 47315	5 1854907 65 86197 1073673 47 1614 28755 91 17973 103193 85 40648	106406 167093 7 C52:0 78099 169196 C54:7 1304 23372 C54:6 33584 126192 C54:5 52340	106518 33 9938402 TAG 75535 4 1672756 TAG 1258 41171 TAG 25938	101216 7202164 1508475 77655 89258 1480353 1712 1922 23504 24726 30347 77425 45839 57529	1336558 9 101915 94413 3157899 1612 1279 37626 11704 14979 187077 47637 56038	8 1378412 100396 99162 2529786 1835 1163 50395 19208 24544 272371 41436 52330	3 108753 82382 1446319 1508 1361 20679 12277 24966 73058 50813 51168
C8-pos C8-pos C8-pos	120885 1242625 5614 84875 104111 2370374 5013 1988 565 30312 5102 29072 8941 150105 5168 41779 46560 710805 5284 3407822 2975426	104117 4 880.832 98707 90553 1835281 894.756 1532 566 30120 896.768 14490 27157 158620 898.785 46111 33745 753468 900.807	1593416 8874614 7 82840 2169808 2 1964 61911 2 30686 268344 1 35255 852825 8 3377080 3452580	9 1919477 13.06 92627 2086724 11.76 1943 107826 11.99 26757 465398 12.10 40502 1402450 12.32 3209017	1549733 3 HMDB053 104488 2209777 HMDB054 1581 51498 HMDB053 18124 226361 HMDB053 47315 902521 HMDB053 3024770	5 1854907 65 86197 1073673 47 1614 28755 91 17973 103193 85 40648 539037 70 3348597	106406 167093 7 C52:0 78099 169196 C54:7 1304 23372 C54:6 33584 126192 C54:5 52340 696995 C54:4 332964	106518 33 9938402 TAG 75535 4 1672756 TAG 1258 41171 TAG 25938 175891 TAG 38500	101216 7202164 1508475 77655 89258 1480353 1712 1922 23504 24726 30347 77425 45839 57529 543680 3186895 3163787	1336558 9 101915 94413 3157899 1612 1279 37626 11704 14979 187077 47637 56038 785829 2931103 3168891	8 1378412 100396 99162 2529786 1835 1163 50395 19208 24544 272371 41436 52330 1014925 2937012 3207740	3 108753 82382 1446319 1508 1361 20679 12277 24966 73058 50813 51168 496383 2912884 3323080
C8-pos C8-pos C8-pos	120885 1242625 5614 84875 104111 2370374 5013 1988 565 30312 5102 29072 8941 150105 5168 41779 46560 710805 5284 3407822 2975426 5044262 5437 1095589	104117 4 880.832 98707 90553 1835281 894.756 1532 566 30120 896.768 14490 27157 158620 898.785 46111 33745 753468 900.807 22822252 3077615 5404865 902.816 887826 1072922	1593416 8874614 7 82840 2169808 22 1964 61911 2 30686 268344 1 35255 852825 8 3377080 3452580	9 1919477 13.06 92627 2086724 11.76 1943 107826 11.99 26757 465398 12.10 40502 1402450 12.32 3209017 4694005 12.58 1049941	15497333 HMDB053 104488 2209777 HMDB054 1581 51498 HMDB053 18124 226361 HMDB053 47315 902521 HMDB053 3024770 5560806 HMDB054 1004249 1201445	5 1854907 65 86197 1073673 47 1614 28755 91 17973 103193 85 40648 539037 70 3348597 4623356 05 1114526 9	106406 167093 7 C52:0 78099 169196 C54:7 1304 23372 C54:6 33584 126192 C54:5 52340 696995 C54:4 332964 517696 C54:3 107960 150642	106518 33 9938402 TAG 75535 4 1672756 TAG 1258 41171 TAG 25938 175891 TAG 38500 746485 TAG 3 3340020 6 5203833 TAG 2 1120857	101216 7202164 1508475 77655 89258 1480353 1712 1922 23504 24726 30347 77425 45839 57529 543680 3186895 3163787 5224874 1015086 1061604 7882052	1336558 9 101915 94413 3157899 1612 1279 37626 11704 14979 187077 47637 56038 785829 2931103 3168891 5238530 916038 1060923 1110000	8 1378412 100396 99162 2529786 1835 1163 50395 19208 24544 272371 41436 52330 1014925 2937012 3207740 5881843 957776 1084945	3 108753 82382 1446319 1508 1361 20679 12277 24966 73058 50813 51168 496383 2912884 3323080 4977277 914912 1050798

	576931 1175335	593008 5		7 1623061	1244900 2	9 1629139	1506018 9	81 8645345		1140276 5	9 1245125	1
C8-pos	399533 387199		421354 4527640	384306		413574		FAG 428456 3109555	384376		406145	426703
C8-pos	5045	920.769	6	11.85	HMDB053	92	C56:8 1	ΓAG				
	29238	81933	34039	17018	21029	25236	6251	19036	37027	13212	13406	24675
C8-pos	5165	922.784	6	12.09	HMDB054	62	C56:7 1	ΓAG				
	427333	639806	391359	159598	223479	246039	177444	304798	396523	161746	252993	287899
C8-pos	5292	924.801	0	12.34	HMDB054	56	C56:6 1	TAG				
	624616	973633	720460	385051	520191	582461	372169	607606	769519	366005	526222	555357
C8-pos	5362	926.815	5	12.45	HMDB054	06	C56:5 1	TAG				
	1207940	1599057	1528301	681656	922026	1162332	738401	1295519	1617719	692806	1041186	1160337
C8-pos	5478	928.831	8	12.69	HMDB053	98	C56:4 T	ľAG				
	1472214	1396382	1611175	620597	1073538	1154684	706598	1513989	1684181	752946	1147682	1249745
C8-pos	5575	930.847	8	12.94	HMDB054	10	C56:3 1	ľAG				
	2460671	1936380	2567613	989546	1570627	1843540	1292129	9 2484273	2674311	1211022	1728121	2008602
C8-pos	5674	932.863	6	13.24	HMDB054	04	C56:2 1	TAG				
		1739238	2119900	905634	1458441	1649493	1327623	3 2392210	2259069	1385794	1616184	1710332
C8-pos	5784	934.879	2	13.60	HMDB053	96	C56:1 1	TAG				
		862836						1122804	954629	673128	921504	754286
C8-pos	5219	948.801	1	12.18	HMDB054	13	C58:8 T	ľAG				
		308720						196049	287264	128092	164740	187556
C8-pos	5274	950.816		12.30	HMDB054		C58:7 1					
	87442		115307		69912				131536	46198	59664	79383
C8-pos		952.831		12.56	HMDB054		C58:6 1					
								261118	315760	116415	209967	221993
C8-pos		887.559		8.94	HMDB098		C38:4 E					
								272264				
C8-pos		706.465 54468 36694 45056		3.8 39993 36204	HMDB123 47442 44207	48893	41921	40982	39816 43167 59917	47219 38690 32869	42692 45510 41585	48479 42707 46242
C8-pos		764.543	1	8.5	HMDB123	56	C34:0 E	?s				
	182478	218389	103411	220445	162547	154758	151109	139892	111202	175856	167202	144916
C8-pos		808.509	2	8.50	HMDB123	62	C38:6 E	?S				
	94649	100121	67324	125913	79702	84159	102703	73505	60471	110177	82964	81884
C8-pos	3134 9208 17050 630754	808.507 10603 8731 590984	14548	8.41 13971 646047		12764	8192	PS 11421 557435	11597 19682 614265	17160 14296 577272	15134 16584 496869	12448 14854 663441

[00262] Table 4. Lipidomics data showing all lipids detected except those shown in Figure 21A. Data shown are normalized to WT (TGFb1+IL-6) condition showing average of 3 independent biological experiments.

Lipids that are not significantly different or have a fold change less than 1.	5 Mitt P value	WT (TGFb1+it-6)	CD5L-/- (TGFb1+IL-6)	WT (TGFb1+it-6-iL-23)	CDSL-/- (TGFb1+IL-6+IL-23)
12.HETE	N/A	undetected	N/A	N/A	N/A
13-5-MODE	0.212	1	ნ.849	1.649	1.151
15-44676	84/A	undetected	N/A	N/A	N/A
5 HETE	N/A	undetected	N/A	N/A	N/A
Assobidoric solit	8/A	undetected	N/A	N/A	N/A
G14:6 GE	0.096	1	0.789	1 021	0.563
C14/0 LPC	0,124		1.269	0.957	1.016
0.14:0.08%	0.039	1	0.742	008.0	0.839
Oreo CE	0.043	1	0.937	1.086	0.807
CHECLEC	9.277	1 1	0.960	0.922	0.991
CHROLPE	5.181	1	0.693	0,706 0,547	0.718 0.721
0/60/56	9,052	1	0.665		
C16 1 C5	9.197	ļ	1.064	1.135 1.185	0.836
018 4 LPC 018 4 SM	0.140	1	1.245 0.978	0.876	1.153 0.995
018:0 0E	0.083	1	6.710	0.976	0.641
018.0 LFC	0.111	1	0.806	0.868	0.988
018:01PE	0.052	 	0.732	9,892	0.857
C18/1 CE	0.183	1	1.154	1.174	5.958
018/1 L90	0.113	1	1.253	1.187	1.184
C18:1 LPE	0.366	1	1.050	0.982	1.054
018:1 8%	0.059	1	0.658	0.704	0.687
C16/2 CE	0.165		1.185	0.971	0,800
©16.2 LPC	0.133	1	0.531	0.734	0.737
C/80 CS	0.204	1	1.046	1,5\$0	0.886
020 3 GE	N/A	undetected	N/A	N/A	N/A
CEC 3 LPC	0.141	1	1.000	0.944	1.080
020 A CE	0.276	1	1.495	0.977	0.857
OROW FAC	N/A	undstepted	N/A	N/A	N/A
CICALPE	0.048	1	0.672	6.782	0.792
CZO:S CS	84/A	undetected	N/A	N/A	N/A
022:0 Cararrida (d18:1)	0.986	1	0.509	0.552	0.553
OZE:O SM	0.063	1	0.469	9.592	0.529
0208 08	88/A	undetected	N/A	N/A	N/A
ଦେଅନ୍ତ ଦଳ	N/A	1	1.613	0.594	0.758
0208 LPC	N/A	undetected	N/A	₹6/A	N/A
034:0 Ceromeia (638:1)	0.083	1	0.570	0.583	0.594
C24% SR	0.153	1	0.366	0.900	0.362
524:1 Caranida (d18:1)	9.088	1	0,667	0.857	0.686
CSO/O DAG	9.128	1	0.886	0.799	0.985
<u> 630 0 PC </u>	0.015	1	6,726	0,504	0.780
038 1 PC	0.121	11	1.162	0.868	1,010
osa o dala	0.078	1	1.183	1.153	1.337
CS2 0 PE	0.008	11	9.675	0.580	0.717
032.4 DAG	0.194	1	1.212	0.969	1.011
032/1 PC	0.064	1	0.800	0.683	9,798
032:) PE	0.026	1	0.758	0.691	5.812
032/2 DAG	0.086	1	0.738	0.387	0.489
0399 PC	0.072	1	1.358	0.993	1.153
COMO PC	0.179 0.045	1	0.884	0.381 0.784	1.022 5.860
<u>}</u>	<u>~~~</u>	1	1.066	0.798	4
C34,5 P3	0.065 0.222	1	0.893	0.907	0.968 0.876
C84:1 DAG C84:1 PC	9.002	1	0,743	0.907	0.847
 	9.112	1		0.728	0.739
C34:1 PC glasmologer-A	9.153	-	0,715 1,229	0.945	0.752
C34 2 JD43 C34 2 PC plasmadogon	5.157	i	0.929	0.946 E88.0	0.888
CS4.2 PE plasmotogen	0.020	1	0.905	0.887	0.924
084.3 PC	0.014	<u>i</u>	1.071	0.897 0.815	0.926
034.3 PE plasmologen	0.303	1	1.007	0.992	1.020
OSHA PC pissmatogen	0.150	1	0.900	0.767	0.845
C08:7 DAG	0.090	1	0.737	5.852	5.813
C36:1 PC	0.949	1 1	0.679	0.783	0.797
C38:1 P6	0.043	1	0.797	0.850	388.0
CORC DAG	0.178	3.	1.223	1.004	0.997
C362 PC	0.056	1	1.084	0.998	0.967
COBIT PC plasmatigen	0.037	1	0.930	0.906	0.828
CORG PE	0,073	3	1.121	3.021	0.951
C30:2 PE plaemalogen	0.022	1	0.740	0.812	£08,0
C30:2 DAG	0.124	1	0,899	0.584	0,700
csera PC	0.046	1	1.012	0.898	0.934
CSEID PC plasmologen	9.056	1	0,987	0.853	0,829
C38 3 PE	0.088	1	1.054	0.934	0.975

Fazz a ap	0,658	r	1.098		1 2012
C38/3 PE plasmakogen	0.058	1	0.829	1.019 0.748	1.013 5.791
C36/4 PC plantiatogen C36/4 PC	0.029	1	0.826	0.727	0.877
C36/4 PE plasmakigen	0.113	1	0.978	0.925	0.930
CSGS PE plasmalagen	0.280	1	1.051	1,034	1.029
CORS PC	0.005	1	0.902	0.386	0.863
C382 PE	8.013	1	0.931	0.825	0.835
C363 PC	0.053	1	0.901	0.843	0.877
C35:5 PE pleamstogen	0.051	1	0.822	0.799	0.789
CSE4 PC	6.068	1	1.152	1.809	1.027
OSEA FD plannakapen	5.009	1	0.940	0.812	0.819
CSB:4 FS	5.043		0.766	0.843	0.865
CSE 4 Pl	5.140	1	0.775	0.871	0.975
CS8 5 PS	0.084	i	1.237	1.008	0.994
C38.5 PE piasmatogen	0.044	<u> </u>	1.085	0.969	1.034
C38:6 PC	0.084	1	0.847	9.663	0.745
C36:6 PC pissenalogies	0.038	1	1.059	0.90\$	0.897
036;6 PE	0.659	1	0.699	0.578	0.610
C38:6 PE plasmaligen	0.025	1	1.090	0.987	1.018
C38/8 P3	0,206	1	1.156	0.903	1.049
Q38/7 PC bisamsingan	0.645	1	0.931	0.778	0.775
C38/7 PE pisansiogen	0.055	1	0.978	0,908	0.964
OAK(10 PC	890.9	1	1.903	0.358	0.575
C466 PC	0.056	1	1.152	0.818	0.916
C40/6 PS	0.019	1	0.887	0.886	0.990
C40/7 PO plasmalagen	6.010	1	1.008	0.835	0.854
040.9 PC	5.116	1	0,840	0.678	0,786
042.0 Y4G	5.130	1	0.949	0.880	0.911
044 6 TWS	5.091	1	0.872	0.880	0.888
C44, (TA/3	0.056	1	0.730	0.802	0.277
C44.2 TA/3	0.084	1	0.815	0.661	0.486
C46.0 TAG	0,947	1	0.758	6.823	9.890
C46; 1 TAB	0,029	1	0.685	5.779	5.759
C46:2 TAG	0.136	1	0.859	0.882	0.808
C460786	0.022	1	0.740	0.893	0.813
C48:2 TAG	0.015	1	0.768	0.784	0.738
C48/3 TAG	0.096	1	0.824	0.776	0.750
CNOW TAG	880.0	1	0.742	0.987	0.873
050/3 TAG	9,038	1	0.783	0.849	0.745
CSZ-0 TAG	0.015	1	0.586	1.109	0.874
C82:1 TAG	5.030	1	0,585	0.985	0,806
052.3 YAG	5.020	1	0.783	0.875	0.735
osak Ykg	6.025	1	0.589	0.808	0.586
CS4.2 TWS	5.046	11	0.599	0.959	0.793
054 2 TA/S	0.053	1	0.768	0.982	0.788
CSAIX TAIG	0,098	1 1	1.095 0.528	1.192 0.742	1,325
CS4:8 7403	~~~~~~	1	0.528 0.436	<u>0.479</u>	0.523 0.353
CSE:8 TAIG	0.072	1	 		9.555 9.650
CS8:8 TAG	0.065	1	0.822 0.335	0.842 1.193	1.213
Choin zek: Decoyahnic eudiCherrodecoyahnic eud	0.204	1	0.470	0.846	1.010
Contraparature and	8/A	undetected	8/A	A/W	N/A
Glychehenodeoxychelic acid	0.128	1	0.208	1.078	1.122
Glysocholic acid	0.317	1	0.199	1.253	1.371
Grycodentycholo acid	0.332	1	0.204	1,099	1.113
Stysolithosholic anid	9.314	1	0.551	0,986	0.871
***************************************	N/A	:indetected	N/A	N/A	N/A
Objectoreordeoxycholic acid Promitic acid	6.058	1	0.372	0.450	0.600
P0E2	5.083	1	0.912	0.872	0.982
Sopration	6.057	1	1,442	1.223	1.229
				6.204	0.223
Stearin seri		1	1 10,000		
Steanin acid Fauraninerodesassebatic acid	0.208	1	0,453 0,436		010.1
Tsuracherrodissaxyahsiic said	0,208 0,100	1 1	0.436	1.013	1.010
Tauracherodissonycholic acid Tauracholic acid	5,308 5,100 5,080	1	0.436 0.516	1.011 0.940	1.019 0.811
Tsuracherrodissaxyahsiic said	0,208 0,100		0.436	1.013	1.010

[00263] Table 5. PUFA/SFA treatment recapitulates the transcriptome (restricted) of WT versus CD5L-/- Th17 cells. Data used to generate heatmap shown in WO2015130968 Figure 50. Nanostring data are shown using a Th17 cell codeset Applicants previously generated containing 312 genes. 3 independent experiments were performed and the median values are normalized to

WT. Only genes that show differential expression (1.5 fold) among any of the four groups are included.

	CD5LKO.PUFA	WT	CDSLKO	WT.SFA
Cor4	1.69	1.00	0.33	8.61
Lgais3bp	1.34	1.00	0.34	9.58
B12rb1	0.80	1.00	0.35	0.39
Vav3	1.20	1.00	0.41	8,56
Ifng	0.93	1.00	0.43	9.55
1110	1.01	1.00	0.44	9.12
3L-33	0.66	1.00	0,44	1.33
Kird1	0.63	1.88	0.46	9.92
Elk3	1.94	1.00	0.47	9.58
Itga3	0.76	1.00	0.47	9.50
กกตุ1	0.90	1.66	9.47	0.74
Sult2b1	0.61	1,80	0.48	0.38
Tmem229b	1.52	1.00	0.51	9,69
Cxcr3	1,44	1.00	8,52	0.48
Kif9	9.75	1.00	9.55	0.68
Peli2	0.83	1.00	0.55	0.88
AcvrZa	1.32	1.00	0.55	0.66
Cd28	0.84	1,80	8,55	0.31
Gusb	0.94	1.98	9.56	1.02
Spp1	0.88	1.00	0.56	1.10
Maf	0.84	1.00	8,58	0.79
Tcf4	1.29	1.00	0.59	0.72
Rasgrp1	1.21	1.00	0.60	9.75
Cxer5	1,42	1.00	0.60	1,17
Reia	0.96	1.00	0.60	9.70
Stat6	1.13	1,80	0.60	0.73
Hipir	0.89	1.00	0.60	8.78
Tafb1	0.68	1.00	0.62	8,83
Gm	1.18	1.00	0.62	9.78
Ubiad1	1.16	1.66	0.62	9.94
Bd11b	1.03	1.00	0.62	9,82
1:54	0.65	1.00	0.62	0.68
Car8	0.71	1.00	9.63	0.74
Trat1	0.85	1.66	0.63	9.61
ifihi	1.25	1.88	0.63	9,87
Map3k5	1,49	1.00	0.64	0.80
Foxo1	1,03	1.00	8.64	0.79
8ai2i11	9.71	1.80	0.64	0.82
li6st	0.89	1.00	0.64	9,87
Ski	0.88	1.00	0.64	0.66
3 3 78	1.37	1.00	9.64	0.85
H2ra	0.99	1.80	0.65	0.71
Serpinbla	9.77	1.00	0.65	9.56
Bilora	0.95	1.80	0.65	0.71
Litaf	0.61	1,00	9,65	1.48
Rfk.	1.97	1.00	0.66	0.79
Sic6a6	1.93	1.00	0.68	0.79
Socs3	1.38	1.00	0.68	9.78

c

Smad3	1.03	1.00	0.66	0.81
Ladi	1.18	1.00	0.66	0.91
Tnip2	9.78	1,00	9.66	0.90
Tgfbr3	0.94	1.00	0.68	0.58
Ahr	1.98	1.88	0.68	0.83
Mina	1.08	1.00	0.68	9.72
Stat4	1.21	1.00	0.68	0.77
Il27ra	1.55	1.00	0.68	0.70
Mbni3	1.30	1.88	0.69	0.71
Jak3	1.27	1.80	0.69	0.91
Tai2	1.52	1,00	0.69	1,15
Gmfg	0.76	1.00	0.78	9.62
I3\$7	1.17	1.00	0.78	0.54
Abog2	1.20	1.80	0.79	9.77
Il4ra	1.13	1.00	0.72	0.75
Notch2	1.20	1.00	0.72	8.78
Clcf1	1.25	1.00	0.72	9.74
Faxp1	1.25	1.00	0.72	0.77
Stat5b	1.19	1.00	0.73	9.82
Bd3	1.13	1.00	0.73	0.85
Ikzf3	1.06	1.00	0.74	0.82
1112xb2	1.60	1.00	0.74	0.88
Tgfb3	1.67	1.00	0.75	0.88
I: 1 8	1.29	1.88	0.75	0.99
Nfkbie	1.52	1,00	0.76	0.69
Trps1	1,44	1,00	0.77	0.84
Trim25	1.17	1.00	0.77	0.89
Tgm2	1.51	1.00	0.78	9.78
Ercc5	0.66	1.00	0.79	0.90
Etv6	1.70	1,00	0.79	0.94
Xroe5	1.27	1.88	0.88	0.93
Miri	1.36	1.80	0.82	0.61
Csf2	1.20	1.88	0.83	0.97
Fiii	1.35	1.00	0.83	0.84
K#10	1.30	1.00	0.83	0.91
Arl5a	1.33	1.00	0.84	0.93
วิยก	0.64	1.88	0.84	1.11
Fina	1.10	1.00	0.84	0.65
Foxp3	1.22	1.80	0.85	0.71
Inhba	0.81	1,88	0.86	0.60
Cd247	1.32	1.00	0.88	8.81
Faim3	1.31	1.00	0.89	0.61
Pstpip1	1.24	1.00	0.90	1.16
Kat2b	1.22	1,00	0.90	0.69
Gjai	0.56	1.00	0.93	0.94
Cd86	1.73	1.00	0.94	0.99
Lpxn	1.39	1.00	0.94	0.85
Cal 1	0.67	1.98	0.95	0.58
Plagi1	1.07	1.00	0.95	2.19

Ctia4	1.63	1.00	0.96	18.0
Cd9	1.27	1.00	0.97	9.84
PouZaf1	0.86	1.00	1.00	1.30
Prmepai	1.19	1.00	1.00	0.74
Prkd3	1.51	1.00	1.80	8.73
I)17f	0.71	1.00	1.04	98.9
EBF1	1.54	1.80	1.11	8.51
Gimap5	1.58	1.00	1.18	1.05
Tsc22d3	0.66	1.00	1.18	1.06
Gem	0.73	1.00	1.18	1.00
Gap43	0. 6 8	1.80	1,21	1.30
Maff	0.77	1.00	1.22	8,99
pou2f1	0.66	1.00	1.23	1,34
Atf4	0.73	1.00	1.23	1.11
Rei	9.73	1.00	1.23	1.20
Frmd4b	1.28	1.00	1.26	1.05
Nkg7	1.40	1.00	1.31	9.62
Casp4	1.52	1.00	1.32	0.95
Mt2	0.84	1.08	1.33	1.33
BC021614	1.04	1.00	1.34	0.96
ATF2	0.89	1.00	1.38	1.18
Cxcr4	8.87	1.88	1.39	1.00
Bhihe40	9.79	1.00	1.43	1.22
I)17a	1.11	1.00	1.44	9.96
Casp3	0.71	1.00	1,45	1.21
Sap30	0.81	1.88	1.47	1.23
Tnfrsf4	1.05	1.00	1.51	1.28
Piac8	0.85	1.00	1.51	1.04
Il23r	1.11	1.00	1,51	1.12
aceda,	1.50	1.88	1.55	1.23
Sema7a	1.04	1.00	1.60	1 'यंयं
1121	0.97	1.00	1.65	1.64
Oas2	0.82	1.00	1.66	1.28
Fzd7	0.72	1.00	1.71	1.07
Ronc	1.52	1.00	1.80	1,25
Mti	0.79	1.00	1.85	1.56
Spry1	1.02	1.00	2.04	1.57
Egr2	1.64	1.00	2.21	1.53
113	1,45	1.00	2.24	2,11
Cd83	0.88	1.00	2.33	1.23
Cd70	9.77	1.80	2.51	0.89
Cxd18	1.64	1.00	3.85	3.83
				

Table 6. Shown are genes that are significantly up or down regulated in different sections of the Voronoi diagram (subpopulations) (corresponding to Figure 2C).

			Diff	erential	ly expres	sed gene	es in in-v	ivo sub-	populat	ions			
	//Th1- emory	like ettector-		Th17/Th1-like effector-CNS		Th17/Th1-like effector		Th17/pre- Th1-like effector		Th17 self- renewing		Th17 Dysfunctional /senescent	
STMN		STMN							RPS8-				AC127
1	OSTF1	1	PSPH	STMN1	RAB1	STMN1	ATOX1	CKS2	PS1	TOP2A	EZR	STMN1	419.1
												28104	48334
	BCL2A		CCDC2		TNFSF			FIGNL			GM10	17H13	20G17
RRM2	1B	RRM2	1	RRM2	11	RRM2	LYAR	1	XAF1	UBE2C	237	RIK	RIK

		ı		CICIICIAI	ià exhie:	iseu geni	es in in-v			IOHA.		I .	
	/Th1- emory	like ef	/Th1- fector- N	1 -	h1-like or-CNS		h1-like ctor	Th1	/pre- -like ctor		self- wing	Dysfun	17 Ictional Iscent
28104 17H13 RIK	AA467 197	28104 17H13 RIK	PRDX4	28104 17H13 RIK	PAPOL	28104 17H13 RIK	GNG5	CIT	TXLNG	BIRC5	LEF1	HMGN 2	SNRNP 200
HMGN 2	UBE2F	HMGN 2	XPO1	HMGN 2	A CNOT6	HMGN 2	RWDD 1	MRPL2	NCK2	NDUF A5	FAM6	TOP2A	FTH1
TOP2A	TMEM 128	TOP2A	NOL12	TOP2A	HIST2H 2AA2	TOP2A	D9300 14E17 RIK	DOK2	CDK7	CCNB2	HK1	SMC2	SYT11
SMC2	GIT2	SMC2	SNRNP 25	SMC2	DHRS3	SMC2	EIF4H	PPP1R 8	MGA	NME1	EMB	GM71 25	GM51 48
GM71 25	GM10 247	GM71 25	CAB39 L	GM71 25	HIST2H 2AA1	GM71 25	NUCKS 1	HSPE1	ISCA1	TIPIN	20101 11101R IK	NUTF2 -PS1	58304 05N20 RIK
SSNA1	IFITM3	SSNA1	MRPL1 5	NUTF2 -PS1	AC131 675.1	NUTF2 -PS1	APIP	CDC26	POM1 21	SNRPB	MED2 1	SSNA1	MYSM 1
BIRC5	RGS1	HIST1 H4D	CLDND 1	SSNA1	VAMP 4	SSNA1	RIF1	IL22	LARP4 B	NDUF A4	COMT 1	HIST1H 4D	WAS
PCNA	BHLHE 40	SNRPA 1	ILF2	HIST1H 4D	NUBP1	HIST1H 4D	EIF2S3	YARS	POLR3 C	NSMC E2	23100 04N24 RIK	SNRPA 1	RNF5
H2AFV	GOT1	UBE2C	H2- KE2	SNRPA 1	USP1	SNRPA 1	LNP	IFNG	TNFRS F26	FAM3 6A	THAD A	CKS1B	AGXT2 L2
NDUF A5	RAB11 A	BIRC5	UCHL5	UBE2C	STK39	UBE2C	DHX15	TBL3	TCF7	SNRPD 2	SDF2	MRPL4 2	IRGM1
ACE1D	54304 21N21	CVC1D	PPP1R	DIDCE	AD201	DIRCE	EXOSC	ALDOA	MRPS	CALIFE	CADCD	ANP32	RP23- 71J17.
ASF1B	RIK	CKS1B	8	BIRC5	AP3S1	BIRC5	26100 39C10	ALDOA	7 RASSF	DUT SEC11	FARSB	E	1 AC120
NME1 BCAP3	SELL	CDCA3 MRPS	UCHL3	CKS1B MRPL4	RAB4B	CKS1B MRPL4	RIK	CD7	1	C	H2-Q7 THEMI	PCNA MRPS1	410.1 HNRP
1 27000	PTPRS	16	POLE4	2	GPS1	2	CD3E 24000	CCR8	CPNE8	KIF23	S	6	DL
94K13 RIK	GGH	H2AFV	HSP90 B1	AC161 456.1	RIOK1	AC161 456.1	01E08 RIK	MICAL 1	TTC5	COM MD1	NUCB1	H2AFV	GM10 155
TYMS	PGAM 1	ASF1B	SNRPB 2	ANP32 E	CASP3	ANP32 E	SYNCRI P	SDHC	GPR68	STRA1	S1PR1	NDUFA 5	FXR1
TACC3	GM25 74	CCNB2	NUP21 4	PCNA	PPME1	PCNA	HIST1H 2BG	RPS15 A	GRIPA P1	H2AFZ	BRP44 L	ASF1B	GM10 358
SNRPB	GPR17 1	TIPIN	PDLIM 1	CDCA3	PDLIM 2	CDCA3	POLR2 B	TNFSF 11	SFI1	TAGLN 2	OSBPL 3	RANBP 1	SF3B3
GM11 276	RAMP 1	27000 94K13 RIK	MRPL5	MRPS1	IPO7	MRPS1	HSPA4	CCR6	LITAF	EMG1	B2M	NME1	USP50
HIST1 H2AO	ITK	TIMM 17A	RPAIN	H2AFV	ACTR1	H2AFV	MRPS3 6-PS1	ASRGL	AC151 275.1	18100 27010 RIK	TTC39 C	ВСАР3	GM52 20
				NDUFA	НМОХ	NDUFA	AKR1A	1			20100 02N04	PSMD1	RPS19-
HIST1 H2AE	H13 GM51 38	TYMS TACC3	BZW2 WDR1 2	5 ASF1B	2 NEDD1	5 ASF1B	WDYH V1	DHRS3 MDP1	BRAP GM55 61	CISD3 SRP19	RIK NDFIP 2	4 GM10 349	GPSM 3
HMGB	30		4	RANBP	MEDDI	RANBP	28104 07C02	IVIDET	01			TIMM1	ATP2B
MRPS1	P2RX7	GMNN GM11	VRK1	1	NUDC	1	RIK	GGPS1	ADO WBP1	LIG1 MPHO	RPS12 APOL7	7A EXOSC	4
MRPS1 4	RPL31	GM11 276	PHPT1	CCNB2	CSDA	CCNB2	CENPL	POT1A	WBP1 1	MPHO SPH6	APOL7 E	EXOSC 8	CN

	/Th1- emory	like ef L	/Th1- fector- N	1	h1-like or-CNS		h1-like ctor	Th1	/pre- -like ctor	200000000000000000000000000000000000000	self- wing	Th Dysfun /sene	
BANF1	HIF1A	HIST1 H2AO	UFC1	NME1	LARP7	NME1	UFSP2	ORC3	EZH1	UHRF1	DDX18	GMNN	EXOC1
CDCA8	SMAR CC1	NUF2	C3300 27C09 RIK	CDK1	COPB2	CDK1	LGTN	ODF2	GM10 054	ERGIC 2	NSD1	SNRPB	SERBP
MRPL1 8	PDHA1	HIST1 H2AE	NFU1	BCAP3 1	GM93 96	BCAP3	KPNB1	TMEM 154	GM39 40	TXN2	BCL2L 1	NUF2	ZC3HC 1
DDX39	HIGD2 A	HMGB 2	DPH3	PSMD1 4	TSPAN 32	PSMD1 4	DCTN3	LSG1	GM75 89	MRPS1 7	SATB1	TUBA1 B	YTHDC 1
NDUF	RPL30-		MRPL1						RPL12-	TNFRS		MRPS1	RPL27
A4	PS8	CDCA8	1	TIPIN 27000	SEPW1	TIPIN 27000	DKKL1	UTP23	PS1	F4	SFPQ	4	А
MDH2	ARHGA P4	DDX39	ATP6V 1H	94K13 RIK	GM10 036	94K13 RIK	HIST1H 2BC	PMPC A	EXOC4	HMMR	CAR5B	MRPL1 8	GM11 273
SNRPD		NDUF		CDC12	GM10	CDC12			HSD3B				AC151
2	RGS16	A4	NUP93	3	071	3	CCNC	SYPL	2	MANE	OSTF1	DPY30	275.1
SDHB	NDUFS 1	RRM1	GABAR APL2	GM10 349	PPP2R 4	GM10 349	FAIM	CDKAL 1	SOCS2	LGALS 1	BCL2A 1B	PSMB6	GM55 61
TK1	GM32 72	MAD2 L1	MKKS	TIMM1 7A	RPS23	TIMM1 7A	UBE2S	ERMN	23100 16C08 RIK	CISD1	UBAP2	PSMC2	28104 74019 RIK
SPC25	LGALS 3	SPC25	GNG5	TYMS	ARMC 1	TYMS	CTCF	TRAF2	KPNA1	TMEM 49	AA467 197	FAM36 A	GM61 39
CDK4	ANXA5	PSMB 7	DHX15	TACC3	GM90 00	TACC3	RPL12	CTSW	IL10RB	PLP2	AC134 548.2	ССТ5	FRMD 4B
		DCTPP	PRKAG	EXOSC	GM78	EXOSC		AGTPB					GM10
PMF1	STK38 ITGB1	1	1	8	08	8	AP2S1 FAM11	P1	HK2	EMP3	UBE2F LY6G5	CDK4 DCTPP	054 RPL13
KIF23	BP1 25100	FBXO5	TRAT1	GMNN	RSRC1	GMNN	1A	DEGS1	REL	SRSF7	В	1	PS3
AURKB	02D24 RIK	PMF1	NGDN	DBI	NDFIP1	DBI	RAB1	SIKE1	GM61 80	ACOT7	ACADL	MRPS1 8C	GM58 05
HIST1	SERPIN				RPS27				RPL21-		GM10		
H2AG	E2	KIF23 HIST1	CCNC HMGN	SNRPB GM11	А	SNRPB GM11	ACP1 PAPOL	PFKL	PS3 CDKN1	NOP56	247	HPRT YWHA	SMG7 GM75
PSAT1	ECE1	H2AG	1	276	UBAP2	276	Α	PIGU	Α	TXN1	IFITM3	Н	89
ERH	GM27 92	NDUF B7	PTCD2	HIST1H 2AO	GM75 36	HIST1H 2AO	CNOT6	MUM1	IL4RA	CD48	RGS1	H2AFZ	QSOX:
TAGLN 2	MED1 3	PSAT1	CCDC6	SNRPD 1	HIST1H 1C	SNRPD 1	SNX4	TAF1	ZBTB2 0	TXNDC 17	BHLHE 40	NDC80	SAMH D1
	MAPK	IJAII	FAM1		10	1 *	ANAPC	MAP2	D14AB	#.#	170	NDUFB	RPS2-
BUB3	APK3	CDKN3	11A	NUF2	SMC6	NUF2	1	K3	B1E	CKS2	HDLBP	2	PS6
NUSAP 1	GIMAP 3	ERH	CCR6	HIST1H 2AE	CD2BP 2	HIST1H 2AE	ANAPC 11	DNPEP	GM88 15	RBBP4	PFDN2	EMG1	GM61 80
	_		49304				<u> </u>						
NDC80	GPR65	MRPL5 4	53N24 RIK	LSM6	RPL10 A	LSM6	TRNT1	RINT1	GM10 012	SEC61 B	FAM1 29A	MED1 0	NSA2
EMG1	RPS13	H2AFZ	BAD	HMGB 2	SF1	HMGB 2	HIST2H 2AA2	SLC3A 2	HERC2	COX17	WDR4 3	SEC13	AL844 854.1
	MAP3			TUBA1		TUBA1	AGPAT		GM10	KRTCA		NDUFV	49215 17L17
SEC13	K8	BUB3	ELP2	В	RPL19	В	3	NSF	154	P2	SELL	2	RIK
TPX2	EIF4EB P1	NUSAP 1	PPP2R 5A	MRPS1 4	MAP2K 3	MRPS1 4	BAD	FAM6 5B	IFNGR 2	HP1BP 3	GGH	HMGB 3	SRP54 A
CCNB1	RCSD1	RFC3	PMPC B	BANF1	SETD8	BANF1	HIST2H 2AA1	WIBG	49304 12F15 RIK	TMEM 208	PGAM	TAF9	GM68 07

			Diff	erential	ly expres	sed gen	es in in-v	ivo sub-	populat	ions			
	/Th1- emory	like ef	/Th1- fector- N		h1-like or-CNS	100000000000000000000000000000000000000	Th1-like ector	Th1	/pre- -like ctor		self- wing	Dysfun	17 ectional escent
LIMAGE	DDI 15		DNIACE		HOCDE		AC121		CNA10		DAAAD	06100	
HMGB 3	RPL15- PS2	TPX2	RNASE K	RAN	UQCRF S1	RAN	AC131 675.1	UBR1	GM10 063	TFF1	RAMP 1	10K14 RIK	WTAP
HINT1	OSBPL 9	CCNB1	MAPK SP1	CDCA8	ELK3	CDCA8	VAMP 4	UPF3B	GABA RAPL1	GM30 90	ITK	EIF4A3	GM10 695
RBBP7	BPTF	HMGB 3	IL16	DPY30	RPL27	MRPL1	NUBP1	ARPC5 L	KDM6 A	сст8	MTA3	THOC7	GCNT2
	PBRM					29000 10M23			LRRC5				GM88
TUBB5	1	HINT1	DEDD	PSMB6	NOL7	RIK	USP1	IL27RA	8	RPS17	BAX	TUBB5	15
CLSPN	MGST2	TUBB5	TNFRS F25	DDX39	HAVCR 2	DPY30	STK39	AHCYL 2	RPL36- PS3	GNG1 0	EIF4G1	MRPL5 1	MEX3 C
DTYM	GM98	MRPL5	C\$ \$ \$ 1.1	KIESS	GM98	DCM 4DC	40001	ZFP82	AD1D1	EEF1B	PRKAC	DA264	GM10
K	58	1	GPATC	NDUFA	46	PSMB6	AP3S1	5 GM51	AP1B1	2	В	PA2G4 NDUFB	012
BAT1A	TRPC4	DTYM	H8 PSMG	NSMC	TUBB6	DDX39	RAB4B	60	15000 12F01	SPC24 31-	RPL31	6	GM10
ETFA TUBB2	AP	K	4	E2	NCBP1	KIF22 NDUFA	SRSF1	MIIP CLEC2	RIK	Aug NDUF	HIF1A KHDRB	SSR2 POLR2	154 AC117
С	FTH1	UHRF1 06100	NAA15	MDH2	DGAT1	4	GPS1	D D	NR4A1	A1	\$1	G	259.1
CASC5	ARHGA P1	07P14 RIK	NUDT 3	LSMD1	AC119 211.2	NSMC E2	ELP2	AA467 197	CREBL 2	IMMT	ALKBH 4	UHRF1	GM89 91
SNRPE	UBE2G 1	CASC5	DLD	REXO2	GM10 237	MDH2	тнос6	POGLU T1	H2- GS10	NKG7	DNAJB 6	PCMT1	49304 12F15 RIK
PSMC1	COTL1	D2ERT D750E	PRPF4	FAM36 A	FAM65 B	LSMD1	RIOK1	HAUS8	CSRNP 1	HSD17 B10	PDS5A	CBX5	GM54 53
CDCA2	UBE2J 1	ERGIC 2	DDRG K1	RRM1	ATAD2	REXO2	CASP3	IFITM3	GADL1	\$100A 4	RPS27	HAT1	GM10 063
17000								24100					
29F09 RIK	GM46 09	CDCA2	PIN1	MAD2 L1	RPL10	PSMC2	ZCRB1	02022 RIK	ISCU	GM10 120	RPL30- PS8	MRPS2 1	GM59 08
						FAM36	PPP2R		UBXN		MAGT	18100 06K21	AC155
RPP21	CMC1	LBR	E2F4	TK1	MED21	А	5A	MTPN	11	CRIP1	1	RIK	816.1
WBP5	PDE4B	SLBP	TNFRS F9	ССТ5	EIF4A1	RPS27L	PDLIM 2	COX10	PLAC8	SRPK1	GOLM 1	ORC6	RPL36- PS3
LDD	TNFRS	*****	cun	CDC2E	OSBPL	200444	1007	ccnna	RPL21-	e e e e	GTPBP	NDUFB	
LBR	F9	MCM7	CKB	SPC25	20100	RRM1	IPO7	SSBP2	PS10	SET	4	11	MT1
TUBG1	тох	POLD3	GM31 50	CDK4	02N04 RIK	SDHB	PMPCB	PHKG2	RPS6- PS1	\$100A 10	DHX9	LGALS 1	ZMYN D8
SLBP	FAM11 0A	MNS1	ARF6	DCTPP 1	RPS12	MAD2 L1	SMC3	TEX26 1	MS4A 6C	CIT	RGS16	LAT	GM80 54
TNFRS F4	HNRPL L	TUBA4 A	PIM1	FBXO5	STX11	TK1	DDOST	BCAT2	TPD52	ZWINT	DDRG K1	ANXA6	MAPK APK2
мсм7	D16ER TD472 E	мсмз	ZFP48 8	RFC4	TSPO	CCT5	MRPL3	PLDN	TTF1	FKBP2	MRP6	POLR2 F	AC142 450.1
HMMR	CSF2	FH1	RGS10	MRPS1 8C	SMARC A4	SPC25	UBE2B	PDHA1	ATN1	NAP1L 4	LGALS 3	MRPL2 1	AC117 184.1
ANP32							ACTR1	MAGT			LMAN	TRAPP	GM38
Α	RFC1	KPNA2	NR4A1	PMF1	SFPQ	PSMB7	A	1	LY6I C3300	CXCR6	2	C1	39
ORC6	TMEM 87A	RPA1	GM35 50	HPRT	AA467 197	DCTPP 1	SNRPC	RGS16	21F23 RIK	GM61 69	ANXA5	CWC1 5	GM10 916

	/Th1-	Th17 like ef	/Th1- fector-		h1-like		Th1-like		//pre- -like		self-	Th Dysfun	
like m	emory	L	N	ептест	Dr-CNS	етте	ctor	effe	ctor	rene	wing	/sene	scent
													A2300
LGALS					AC134				NKIRA	MRPL4			46K03
1	BSCL2	KIF2C	PAN3	DUT	548.2	FBXO5	DDB1	TAF13	S1	1	WBP2	MCM6	RIK
								25100					
GTF2A	AGXT2			YWHA	TMEM			02D24	ABHD			GTF2H	GM91
2	L2	AAAS	JUND	Н	128	RFC4	CENPQ	RIK	2	AIP	STK38	5	04
		MRPS	TNFRS		GM16	MRPS1		GM47		UQCR			
CD3G	H2-K1	33	F1B	PSMA1	477	8C	RECQL	59	BAZ2B	11	RPL17	GLO1	LARS2
TMEM		ANAPC	IFI27L				HMOX	MAPK	RPL21-		RBM3	ANAPC	HNRN
49	LARS	5	2B	LSM5	ACADL	PMF1	2	APK3	PS11	FABP5	8	5	PUL1
		ACTL6			GM87		RPL9-		RPL21-	RPL22		HMGB	
PLP2	REEP5	Α	ATN1	KIF23	30	HPRT	PS4	GPR65	PS6	L1	ACTN2	1	KHSRP
		HMGB			GM10		RNASE	EIF4EB	RPL29-				
МСМ3	LZTR1	1	KIF24	AURKB	247	DUT	K	P1	PS2	10-Sep	ORC5	PSMD7	IRAK1
			RABGA	HIST1H		SEC11		ARHG					GM11
KPNA2	DHX40	PTMA	P1L	2AG	IFITM3	C	DDX27	AP1	LILRB4	ZAP70	RPL5	PTMA	167
ATP5G	GM76	GM61	GM10			YWHA	STARD		KLHL2		FAM4		
3	65	04	313	NHP2	TMED9	Н	3NL	COTL1	4	POP4	9B	VPS25	RAD9
								47324					
NDUF	HNRN			сомм	SCAND			18C07			AC127		H2-
V3	PA3	SPC24	BTG2	D1	3	PSMA1	NEDD1	RIK	FOSL2	EIF5A	419.1	EIF3L	GS10
											48334		
									GM63	PTPRC	20G17	TMEM	
RPA1	STK24	MRPL4	IGF2R	FKBP3	SELL	LSM5	SSR4	TOX	16	AP	RIK	208	RC3H1
		AC087			PGAM			MYD8	GM61	HNRN		GM61	
ACOT7	DDX42	117.1	SKIL	PSAT1	1	KIF23	PDCL3	8	09	PA2B1	EIF4A2	04	GADL1
WDR6	ZNHIT				CCDC5			DDHD				PPP1C	GM10
1	1	ATP5K	RAB10	CDKN3	9	AURKB	FTSJ3	2	LY6C2	ANXA2	ECE1	Α	566
GM10			RPL21-	STRA1		HIST1H			GM89	TNFRS	GM27	ARHG	GM10
108	PRKCH	IMMT	P57	3	EIF2S2	2AG	SMS	ARL5C	09	F18	92	DIA	293
			RPL21-		GTPBP	NDUFB				PSMG	ATP6V		AC159
CKS2	ELF2	RFC2	PS11	ERH	1	7	NUDC		CTSH	2	OB	SRPR	008.1
												27000	
	OBFC2		SRRM	сомм					GM11		MAPK	29M09	GM35
RBBP4	A	CIT	2	D3	STAG1	NHP2	CSDA		127	DKC1	APK3	RIK	50
141500	6640		RPL29-	MRPL5	DD1.24	COMM			5004		PIK3C	1 4 D D L 4	10011
KIF2C	SS18	ZWINT	PS2	4	RPL31	D1	GOT2		EGR1	VIM	D	MRPL4	ISCU
00147	RBPSU	CCDC3	GM10		DID CO							DUD	RPL7A-
COX17	H-RS3	4	291	H2AFZ	BIRC2	FKBP3	RPL37		NR4A3	CCT7	GPR65	PHB	PS3
ANAPC			GM10	TAGLN					GM70	4		GM10	UBXN1
5	EHD1	MKI67	327	2	RPS27	PSAT1	LARP7		30	CNIH	TAP1	120	1
HP1BP	SAMS	NUDT	GM55	DUDA	RPL30-	CDIMIO	CCDC4		CDC4	HNRN	BDC43	DDIE	PICAL
3	N1	1	07	BUB3	PS8	CDKN3	1		SDC4	PF	RPS13	PPIE	M
HMGB	VDNO	EXOSC	GM63	NUSAP	DEDNIE	STRA1	COBBO		H2-	TOUT	MAP3	VDACO	MYO1
1	XRN2	9	16	1	PFDN5	3	COPB2		AB1	TPI1	K8	VDAC2	E
DTAGG	HNRPD	BUTTA	ALKBH	NDCCC	DCC16	EDIT	CEDITA.		C1 OD	ENIO	CTIVA.	NAP1L	PPIP5K
PTMA	L	PHF5A	5	NDC80	RGS16	ERH	SEPW1		C1QB	ENO1	STK4	4	1
BC021	GM10	MMIT	Adi 10	DECS	CNOTS	COMM	GM10			DUA-1	RPL15-	CNAC1 A	חבאס
614	155	22	MLL2	RFC3	CNOT2	D3	071			DDX47	PS2	SMC1A	HEXDC
	7504.4			23100		**DOLE	Donas.			15000		CM10	
CNIDDO	ZFP14	ALA ADD	TRICION	28011	MDDC3	MRPL5	PPP2R			32L24	HIBCAL	GM10	CLINITA
SNRPG	8	NAA38	INSIG1	RIK	MRP63	4	4			RIK	HBS1L	123	CLINT1
CNACC				32000								C1 13 4 C	
GM61	CVDED		GM89	02M19			KCNAB			BAP"	11.4.0.4	SUMO	DANIA
04	CYB5B	HELLS	09 CM11	RIK	FAU	H2AFZ	2			PARK7	IL1R1	3	PAN3
	I	NGFRA	GM11	i	RPL27-	TAGLN	4.0000000000000000000000000000000000000		1	HSP90	PRDM	CCDC3	MFSD

		TL17					*	o sub-popula			TL	17
	//Th1- emory	like ef	/Th1- fector- N	1 -	Th1-like or-CNS		Fh1-like ector	Th17/pre- Th1-like effector	000000000000000000000000000000000000000	self- wing	Dysfun	17 Ictional Iscent
RPS17	NFKBI	RNASE H2B	H2-Q2	TPX2	RPL17	BI IB3	CHCT4		TIGIT	GM98 58	VIDAC	RPL21- PS10
MEAF 6	A ITM2B	1120	CDKN1	18100 27010 RIK	ORC5	BUB3 NUSAP	PRPF1 8		GNG2	APPL1	MRPL3	RPS6- PS1
GNG1 0	BNIP3		NOTC H2	CCNB1	TSHZ1	NDC80	TARS		CAMK 4	FTH1	PTTG1	GM59 21
EEF1B 2	GM55 18		SGIP1	HMGB 3	RPL5	NDUFB 2	RPS23		CORO 1A	RBM5	PPP6C	RNF14 9
BRD8	GM10 358		NR4A3	HINT1	AC127 419.1	MED1 0	ARMC 1		IL18RA P	LIN7C	DCTN6	LRRC8 D
SPC24	IFITM2		GVIN1	TAF9	VAMP 3	NDUFV 2	GM90 00		DNAJC 15	ARHG AP1	TIMM8 B	RPL7A- PS10
DRG1	NEDD9			RBBP7	ING1	RFC3	RSRC1		TCEB2	CNP	PQBP1	JUND
ANAPC 13	SF3B3			CDC45	SHISA5	23100 28011 RIK	UBAP2		SUSD3	GM51 48	HELLS	TMEM 123
AC087 117.1	CHSY1			06100 10K14 RIK	RAP2C	32000 02M19 RIK	GM75 36		GM55 06	UBE2J	SARNP	MXD1
FIGNL 1	CDK7			TUBB5	GPR65	PSMA4	HIST1H 1C		ISY1	SERIN C3	NUTF2	GAS2L 3
NKG7	TCOF1			MRPL5 1	TAP1	TPX2	SIN3A		EEF1G	RNGTT	OLA1	TTF1
S100A 4	FOXN2			CISD3	RPS13	18100 27010 RIK	SUZ12		HSD17 B12	LRRFIP	PCIF1	TGFBR 2
					RPL15-					58304 05N20	NSMC	ANKFY
SRPK1 CIT	TAGAP CCPG1			CLSPN NDUFC 2	PS2 GM98 58	CCNB1 HMGB 3	SMC6 MAP4K 1		BCAS2 CTLA4	RIK CMC1	E1 EIF3C	DNAJB 14
ZWINT	MGA			CENPA	GM51 48	HINT1	SF1		PKP3	TULP4	PTPN2	CAMK 2G
CXCR6	MAST4			NDUFB 6	HSPH1	TAF9	RPL19		29000 73G15 RIK	PDE4B	UBE2V 2	GM10 362
GM61 69	GM52 20			RP23- 378I13 .5	FTL1	RBBP7	SETD8		ADSL	TNFRS F9	GIMAP 4	TLCD1
MRPL4 1	RPS19- PS2			BAT1A	APOL7 B	CDC45	UQCRF S1		PSMC4	MYSM 1	ANAPC 16	RAP2B
CCDC3	POLR2 A			ETFA	тох	EIF4A3	GM83 94		18100 37117R IK	APOL7 B	ADSL	DDX6
GM69 84	GPSM 3			LIG1	FAM11 0A	CHCHD 1	IK		LPXN	TEX2	TRMT1 12	PYHIN 1
MKI67	CREM			MPHO SPH6	RFC1	THOC7	RPL27		SDF4	YME1L 1	CST7	TRAFD 1
26100 29G23 RIK	POLR3			UHRF1	RAPGE F6	TUBB5	ITGAV		CAPG	тох	BRIX1	CAPN1 2
RPL22 L1	TCF7			TUBB2 C	GM76 65	MRPL5	NOL7		SNX3	FAM1 10A	TPD52 L2	SYNRG
BZW1	EPS15			NRM	RALBP 1	TMEM 14C	GPX1		ADK	17001 23020 RIK	UFD1L	BAT2L

		Th17	/Th1-					Th17/pre-			Th	17
	//Th1- emory	like ef	fector- N	1	h1-like or-CNS		h1-like ctor	Th1-like effector	000000000000000000000000000000000000000	self- wing	Dysfun	ctional
FAM6	CCDC5				SLC24		GM98		PRKAR	RBMS	DCAF1	
0A EXOSC	0 ATP2B			CASC5	A5	PA2G4	46		1A	1 D16ER TD472	3 MRPS1	ATN1 TRPM
9	4			SNRPE D2ERT	EHD1 RPS8-	CLSPN NDUFC	MSL3 DNAJC		RPLP0 PDLIM	E E	8B	2 GM32
CD2	P4HA1 FBXO4			D750E	PS1 AC120	2	2		1 CSNK2	CSF2	ESF1	22 MAP3
ECH1	6			ATP5B	410.1	DTYMK	NCBP1		B 28104	RFC1	EIF3D	K14 C3300
СВХ3	IKBKB			ERGIC2	XRN2	CENPA	GPATC H8		28115R IK	TMEM 87A	PSIP1	21F23 RIK
HNRN PA2B1	CCR2			CBX5	GM10 155	NDUFB 6	EIF1AD		ACTG1	SNX2	BZW2	MLL3
CDCA7	PLIN2			SUMO 2	SEC61 G	RP23- 378l13 .5	ARGLU 1		CALM 1	DNAJB	WDR1	ELMO D2
ANXA2	ISG20			CDCA2	CYB5B	BAT1A	CCDC1 07		YARS	H2-K1	KIF15	ABHD2
NAA38	ZYX			RBM3	RUNX2	ETFA	AC119 211.2		EIF3K	FAM9 8B	UFC1	ADIPO R1
PRC1	UBASH 3B			WBP5	GM55 18	SRP19	GM10 237		IFNG	TMEM 149	C3300 27C09 RIK	GM10 313
DNAJC 9	RORA			TCP1	GM12 666	POLR2 G	ATAD2		S100A 13	REEP5	WDR3 3	DTX3L
TNFRS F18	GEM			LBR	GM10 358	LIG1	TPT1		TMEM 1768	GM76 65	24100 01C21 RIK	PPM1 K
DKC1	SLC15 A3			TUBG1	NKAP	MPHO SPH6	OSBPL 3		GSTP2	MPHO SPH10	MRPL4 8	GM82 25
DNAJC 8	PSD4			NAP1L 1	CHSY1	UHRF1	UCP2		FAM1 62A	26101 01N10 RIK	ZCCHC 17	MYCB P2
HNRN PF	11100 07A13 RIK			MRPS1	ZRANB 2	TUBB2 C	20100 02N04 RIK		GTF2E 2	STK24	GABPB 2	SMG1
TPI1	SFT2D 1			TNFRS F4	GM52 20	06100 07P14 RIK	A4300 93F15 RIK		PSMD 2	ZNHIT 1	NOP58	RAB10
ENO1	ZC3HC 1			мсм7	DYNLT 1C	NRM	RPS12		CPSF3 L	CNOT1	PNRC2	AL732 476.1
CCDC2	YTHDC 1			HMMR	DDX21	PCMT1	TSPO		CDC42	F2R	26100 30H06 RIK	RPL21- PS7
DDX47	IFNGR 1			MRPL2 3-PS1	RPS19- PS2	NDUFS 8	SMARC A4		RP520	5518	ACADV L	NPC2
NSMC E1	GOLGA 7			POLD3	POM1 21	CASC5	SFPQ		BZW2	RBPSU H-RS3	TMED2	RPL21- PS11
TIGIT	IL18R1			PHGD H	GABAR AP	SNRPE	GATAD 1		SLAMF 1	EHD1	CLP1	SIK1
TMEM 50A	LITAF			NUDT2 1	HNRNP L	D2ERT D750E	AC134 548.2		RPSA- PS10	GNL3	RIF1	AC163 269.1
GNG2	ATF6			ORC6	TCF7	ATP5B	NAA15		ATP5L	RPS8- PS1	SDHC	TNRC6 C
CORO 1A	DOT1L			MNS1	CCND2	ERGIC2	GM16 477		HAX1	NSG2	SCAMP 4	49304 70H14 RIK

	/Th1- emory	like ef	/Th1- fector- N	1 -	h1-like or-CNS	0.0000000000000000000000000000000000000	h1-like ector	Th17/pre- Th1-like effector		self- wing	Dysfun	117 Ictional Escent
CAB39 L	TAB2			LGALS 1	UAP1	CBX5	ACADL		CD226	SAMS N1	BIN2	GM10 718
DNAJC 15	USP4			HIST1H 1E	A8300 10M20 RIK	UQCR1	GM87 30		HSP90 AB1	AC120 410.1	СРМ	IFI203
GM55 06	AC151 275.1			LCK	RPL7A- PS5	AURKA IP1	SF3A1		PSMB 8	XRN2	GM10 250	RPL21- PS6
EZH2	INPP5F			SSB	SERBP 1	NDUFB 9	TMED9		NASP	GLUL	ARAF	MED1 3L
APOBE							SCAND			GM10		RPL29-
C3	CD44			LAT	GM10	VDAC3 SUMO	3		SYTL3	155	CCR6 GIMAP	PS2 RASSF
ISY1	KLF6			CISD1	136	2	MTPN		OXCT1	FASL	6 49304	2
DLGAP 5	PTP4A 1			TMEM 49	WDR9 2	HAT1	KIF2A		RPL36 A	XAF1	53N24 RIK	STAT1
CENPE	ZFP29 5			PLP2	U2AF1	FXC1	PUM2		RPL8	RASA3	RPL18	AHNA K
BCAS2	GM55 61			мсм3	RPL27 A	CDCA2	GTPBP		GM87 59	RUNX2	AC131 675.1	ARID5 B
H2- KE2	RASGR P1			FH1	LITAF	17000 29F09 RIK	STAG1		TBCB	NFKBI A	RRP1B	FMO1
SLC25 A5	ATXN1			KPNA2	MDN1	RBM3	MED29		RPS8	НОРХ	LONP2	GM10 291
PSMD 6	CD27			ATP5G 3	YY1	WBP5	SMN1		RPSA	ITM2B	EEF1E1	RPL17- PS3
COX6C	SLC2A 3			RPA1	TACC1	DEK	SREK1		RPL7	GM55 18	ENY2	SLC39 A1
PPP1R					AC151				24100 01C21	PLEKH	GM10	TAX1B
8	ZFML TNFAIP			ACOT7	275.1 GM55	TCP1	RPL31 HMGA		RIK	B2 GM10	257 PRPF1	P3 GM10
UCHL3	3 CORO2			TXN1 NDUFA	61 GM61	LBR	1 KHDRB		PRR13	358	8 GM78	327
UBL4	Α			B1	39 CORO2	TUBG1 NAP1L	51		RPLP1 YWHA	PUM1	08 PPP1R	BIRC6 IRF2BP
CCL1	RPRD2			MCM6 GTF2H	A PRPF3	1	BIRC2		Z	NXF1	7	2 GM55
XRCC6	NRIP1			5	9 SLAMF	SLBP MRPS1	RPS27		DDT PPP1C	ELK4 ARHGE	YIF1A	07 GM10
CTLA4 29000	CCR1			ASNS	6	7	FMR1		С	F3	INTS7	800
73G15 RIK	VPS54 PRPF3			GM10 108	GM10 054	MCM7	RPL30- PS8		ZCCHC 17 MRPS3	IFITM2	TPT1 PSME2	GM63 16 KDM6
NDE1	9			CKS2	SON	HMMR	PFDN5		6	NEDD9	B-PS	В
GLRX	SPIN1			GM10 053	RPL13- PS3	POLD3	RGS16		CALM 3	CH5Y1	GM92 34	GM61 09
HNRN PR	SLAMF 6			KIF2C	ZGPAT	сст2	28100 08M24 RIK		SLC35 D1	CDK7	ATP6V 1F	PNRC1
LPXN	EIF2C2			HN1	GM58 05	PSMA6	MRP63		SLA2	ZRANB 2	TSPO	ZFP36L 1
SDF4	UBL3			AAAS	GM39 40	PHGD H	PIN1		PIH1D 1	CHD4	RAB27 A	ALKBH 5

Th17	//Th1-	Th17,		Th17/1	h1-like	Th17/7	h1-like	Th17/pre-	Th17	'self-		17
	emory	like ef L	fector- N	1	or-CNS		ctor	Th1-like effector	100000000000000000000000000000000000000	wing		ictional escent
	60000			23100	61.475					00044	C1.425	
CAPG	CD200 R1			61C15 RIK	GM75 89	NUDT2	GNL3L		ALDOA	PPP1C B	GM25 74	MLL2
NUP21	INPP4			MIX	WDR7	1	ONESE		TSG10	U	GM51	IVILLZ
4	A			COX17	0	ORC6	FAU		1	TCOF1	38	JUNB
PRKAR				ANAPC	RPL12-		RPL27-		NDUF			
1A	SON			5	PS1	MNS1	PS1		A13	NOL8	SREK1	PDCD4
	RPL13-					LGALS						
CST7	PS3			CKAP5	QSOX1	1	RPL17		L7RN6	MDM4	ING5	INSIG1
PDLIM 1	ADAM			MCNAA	HSD3B	HIST1H	ODCC		1.7.43	TDSC1	DEDNIE	GM89
1	19			MCM4	2	1E	ORC5		LXN	TRPS1	PFDN5	09 C0300
SERPI	GM58			RANG	AC156				CRMP	AL732	GTPBP	46E11
NB1A	05			AP1	282.1	PSMC3	TSHZ1		1	569.1	4	RIK
				TUBA1	GM10				SH3BG		-	
CDC26	GRINA			С	481	SSB	RPL5		RL3	ZFP91	DHX9	PSAP
				HMGB	TNRC6		FAM49		5100A		GM32	ARID1
DERL2	ARAP2			1	В	LAT	В		6	AKNA	72	В
					RPS2-		AC127		GABAR		RPL27-	GM11
YARS	СКВ			PTMA	PS6	CISD1	419.1		APL2	MGA	PS1	127
					23100							
66114	SQSTM			ccpp4	16C08	TUBA4	VAMP		55756	GM52	DDI E	
GCLM	1			SSBP1	RIK	A	3		RPLP2	20	RPL5	H2-Q2
IFNG	GM75 89			EIF3L	GM56 19	PLP2	ING1		RAD21	RPS19- PS2		CDKN1
SNRNP	WDR7			BC021	GM31	FLFZ	INOT		TBC1D	ZFP10		NOTC
70	0			614	50	мсмз	KRCC1		10C	6		H2
,,,	BCL2A			017	30	i i i citi s	-		GM42	BCL2A		112
PPIL2	1A			SNRPG	REL	FH1	SHISA5		94	1C		SLFN5
FAM3					GM89				SEC22	DYRK1		
3A	VGLL4			TFF1	10	KPNA2	GPR65		В	Α		SGIP1
FAM1	RPL12-			GM61	GM61	ATP5G						
62A	PS1			04	80	3	TAP1		RPS15	CREM		NR4A3
PSMD				PPP1C						TNFSF		GM40
2	ARIH1			Α	UTRN	SRSF7	RPS13		NCL	10		70
49334	754110			CMAC	CCDNIA	0,0004	DDI4E			##A A A		DAADO
34E20	ZFAND 5			GM30 90	CCRN4	CWC1	RPL15- PS2		G3BP1	SEMA 4A		BMP2
RIK CAPZA	HSD3B			90	BC005	3	GM98		MRPS2	4A		K GM70
2	2			ELOF1	537	RPA1	58		4	SRSF5		30
SUPT1				LLOIT	TRIM1	· · · · · · · · · · · · · · · · · · ·	GM51		ATP5G	SHOL		1 30
6H	TEX10			MEAF6	2A	ACOT7	48		2	CASP8		GVIN1
				MTHF	RPL21-		GM46			TSC22		
OGDH	CTSD			D2	PS3	TXN1	09		NPTN	D4		ZFP36
	GM10			ANP32		NDUFA				GLTSC		
RPS20	481			В	NSA2	B1	HSPH1		CISH	R2		LYZ2
	23100											
D-04:0	16C08			ana.					PRPF3			
BZW2	RIK			GNG10	ACSL4	CD48	FTL1		8A	TCF7		GRN
					11044	TVMDC			CM20	16000		
SFXN1	KPNA1			SPC24	AL844 854.1	TXNDC 17	WBP4		GM20 00	14C10 RIK		
RPSA-	KI: INAT			C7940	CDKN1	1.7	VV-DC-44		- OU	ATP2B		
PS10	RUNX1			7	A	MCM6	RFC1		RPL3	4		
				27000	49215		 					
				29M09	17L17R	GTF2H	GM67			CDK11		
ATP5L	RNF13			RIK	I IK	5	36		RPS29	В		1

		Th17	/Th1-	_				Th17/pre-			Th17
	/Th1- emory	5,555,555,555,555,555,555	fector-	1 -	h1-like or-CNS		h1-like ector	Th1-like effector	100000000000000000000000000000000000000	self- wing	Dysfunctiona /senescent
	DENN			CHCHD	GM68		GM10			PSMD	
VRK1	D4A			3	07	ASN5	116		RPL28	9	
						WDR6			TMSB4		
CD226	DCTN4			COPS6	FURIN	1	REEP5		Х	CCND2	
							D19B				
					COQ10	GM10	WG13				
SF3A3	HK2			RQCD1	В	108	57E		RPL7A	LAG3	
				AC087			GM76			PTPN1	
NASP	REL			117.1	KLF13	CKS2	65		RPL38	8	
CVTLO	GM89			FICNI 1	LIDEA	TOOFS	RALBP		ccno	CCR2	
SYTL3 HERPU	10			FIGNL1	UPF1	TRP53 GM10	1		CCR8 TIMM	TMEM	
D1	CD81			NKG7	RAB8B	053	DDX42		17B	66	
DI	CDS1			NKG7	NADOD	033	RP23-		17.0	00	
TXNDC							71,117.				
9	HSF2			CD6	ARF5	KIF2C	1		RPS3A	PLIN2	
	WDFY				PRKAC		RPS8-				
RPL8	1			RFC2	Α	GLO1	PS1		SLA	ERO1L	
CSNK2	TRIM1				СТ033		AC120				
A1	2A			PRDX1	780.1	HN1	410.1		ATOX1	UAP1	
MRPL1				GOLT1		MRPL3					
0	TOB1			В	WTAP	3	XRN2		RPS25	COX16	
							HNRPD				
PRR13	ZBP1			LSM2	CAPS2	AAAS	L		RPS18	GPR68	
DDI D4	FAM10			DEDNIA	GM88	MRPS3	GM10				
RPLP1	2A			PFDN1	15	3 23100	155		LLPH	NVL	
					TSC22	61C15				ARHG	
DDT	ACSL4			CUTA	D3	RIK	PCBP1		RPS3	AP26	
LUC7L	CDKN1			00	BAT2L		, , , , , ,		RWDD		
3	A			ТМРО	2	COX17	BRD9		1	ZYX	
						18100					
ZCCHC	SRSF2I					09A15	SEC61			GIMAP	
17	Р			SMC4	ARF6	RIK	G		EIF4H	7	
									17000		
BC031	GM68				GM10	ANAPC			12B07	PMAIP	
181	07			6-Sep	012	5	CYB5B		RIK	1	
23100 36022					CM10	ACTIC			TMSB1	UBASH	
RIK	FURIN			SSRP1	GM10 154	ACTL6 A	RUNX2		0	3B	
MIK	FURIN			ZC3H1	AC117	rt.	NOWAZ			JU	
HJURP	IL4RA			5	259.1	CKAP5	ітм2в		RIF1	RORA	
	COQ10			_	TGOLN		GM55			W.Z	
MTIF2	В			SET	1	MCM4	18		IL1R2	APAF1	
					49304	T					
					12F15	RANG	GM10				
ALDOA	TNF			MCM5	RIK	AP1	358		RPL35	PIAS1	
TSG10					GM54	TUBA1			SNRNP		
1	PDE4D			CLIC1	53	С	USP50		27	RNF20	
DEKD	D14AB			CIT	GM10	HMGB	NFATC		BC016	SLC15	
PFKP	B1E CM89			CIT	063 CME0	1	2 GM52		495	A3	
TAF6	GM88 15			PDZD1 1	GM59 08	PSMD7	20		RPL22	PSD4	
IAIO	13			1	00	r.J.(VII)	20		GF LZZ	11100	
					AC155	DNAJC	DYNLT			07A13	
LXN	ARF6			FKBP2	816.1	19	1C		LASS2	RIK	
CD40L	İ				LRRC5	1	RPS19-		GM11	WDR4	
G	PHC3			SMC1A	8	PTMA	PS2	[353	5L	

		Th17/Th1-					Th17/pre-			Th17
	/Th1- emory	like effector- LN	-	Th1-like or-CNS		Th1-like ector	Th1-like effector		self- wing	Dysfunctiona /senescent
CDK5R	RALGP		GM10	RPL36-		GABAR			YTHDC	,
AP2	S2		123	PS3	SSBP1	AP		RPL14	1	
			GM61			LARP4		POLR2		
SKP1A	ANXA1		69	AMD1	EIF3L	В		E	RHOH	
S100A	JMJD1				BC021	HNRNP			GM10	
6	С		PSMA5	CFLAR	614	L		NACA	136	
GABAR	GABAR		SUMO						IFNGR	
APL2	APL1		3	MACF1	SNRPG	TCF7		RPS19	1	
	SMPDL				YWHA	GRCC1			DNAJC	
RPLP2	3A		AIP	FOXP1	Q	0		RPL39	1	
TBC1D	RPL36-			PPP1R	UQCRC			GM10		
10C	PS3		FDPS	12A	2	CCND2		073	IL18R1	
HNRN			CCDC3			<u> </u>		POLR2	RPL27	
PM	SEC62		4	MLL5	TFF1	TLN1		В	Α	
DCMAD	EAN447		CNCO			A8300		DOLAR		
PSMD	FAM17		GM69	CD110	GM61	10M20		BCLAF	1100-7	
5	7A		84	SP110	04	RIK		1	USP7	
				CDC42	PPP1C	GIMAP		AC124	C3300 19G07	
RPS15	FOXP1		FABP5	SE2	A	7		742.1	RIK	
111 313	CAMK		IADIO	ZMYN	GM30	RPL7A-		MRPS3	DNAJB	
NCL	2D		MKI67	D8	90	PS5		6-PS1	4	
IVCL	20		26100	50				0,131		
	ZMYN		29G23			SERBP		сом		
CISH	D8		RIK	KRR1	NAA10	1		MD6	LITAF	
GM20	ANKRD		MRPL3	ANKRD		WDR4			GNGT	
00	12		4	12	SRPR	5L		SP1	2	
			SLC29	GM80		GM10		GM55		
RPS29	NFKBIZ		A1	54	ELOF1	136		59	MDN1	
	GM80					WDR9		GM64		
RPL28	54		POP4	AMD2	PPIG	2		72	DDX46	
TMSB4					MRPL2	RPL27				
Х	LARP4		TFDP1	GSK3B	8	Α		RPS9	1F135	
	MAPK			AC108				RPS18-		
CCR8	APK2		TTC1	412.1	MEAF6	MDN1		PS3	TAB2	
					MTHF				DMTF	
RPS25	SLFN1		ECH1	SPOPL	D2	DDX46		5-Sep	1	
			25.42	GM75	ANP32	AC151		RPL35	AC151	
LLPH	RBPJ		CBX3	92	В	275.1		A	275.1	
псст	RNF19		MVC1	MNDA	CNC10	GM55		GM12 033	CDD	
HCST	A 15000		MYG1	L	GNG10	61 28104		U33	CPD	
WBSC	12F01		GM47		COX7A	74019				
R22	RIK		37	ZFP488	2	RIK		TRAT1	CD44	
NUCKS	CTNNA		, ,	AC142	-	GM61		1107111	DD44	
1	1		UBE2A	450.1	PPIB	39		NGDN	KLF6	
-	_			AC117	†	UBQLN			GM55	
RIF1	RGS10		CALM2	184.1	SPC24	1		IL2RA	61	
								MRPL3		
IL1R2	CHD7		RDM1	JARID2	DRG1	WBP11		2	SPARC	
	SEMA4			TMEM	C7940	PRPF3			EHMT	
CD69	В		HELLS	71	7	9		GNA15	1	
					27000					
				SEMA4	29M09				NMNA	
RPL35	NR4A1		PRC1	В	RIK	EZH1		SPAG7	T1	
								28104		
BC016			DNAJC	GM20		GM10		07C02		
495	KLRD1		9	26	ICT1	054		RIK	PION	

	//Th1- nemory	Th17/ like eff Li	ector-	1 -	Th1-like or-CNS		h1-like ector	Th17/pre- Th1-like effector	100000000000000000000000000000000000000	'self- wing	Th17 Dysfunction /senesce	onal
GM11	GM38				GM76	CHCHD			TMEM			
353	39			NUTF2	09	3	SON		179B	ATXN1		
					AMD-		RPL13-					
CBX1	RBM47			PPIA	PS3	COPS6	PS3		CENPL	CD27		
POLR2	ZFP18				GM14					SLC2A		
E	7			PCIF1	305	CS	ZGPAT		RPS24	3		
GM10	GM91				GM14		GM58		GM10	GM61		
073	04			RPP30	434	MRPL4	05		020	39		
	RABGE			HSPA1			GM39					
SSU72	F1			4	EMD	RQCD1	40		DCTN3	CASP4		
DOM	1			6,,,,,	11/004	AC087	GM75		10000	TNFAL		
PGK1	ASAH1			CNIH	LY6C1	117.1	89		ACOT9	P3		
POLR2	GPR13			MRPS1	GM38	ATDEK	WDR7		BDCTO	CORO		
BCLAF	2			1	39	ATP5K	0		RPS10	2A		
BCLAF	CTSB			HDGF	GM10 916	DEBA	RPL12- PS1		RPS7	MAG		
1	CISB			HUGF	A2300	DERA	Lot		RF3/	MAF		
AC124					1							
AC124 742.1	ECM1			STIP1	46K03 RIK	PDCD5	QSOX1		RPL21	SOAT1		
GM55	CSRNP			NSMC	GM91	PUCUS	HSD3B		N. F. T. T.	SUATE		
59	1			E1	04	FIGNL1	2		RPS21	BIRC3		
33	1			L L L	04	CHONLA	AC110		HIST1	DINCS		
5-Sep	ZEB2			AHSA1	LARS2	CD6	247.1		H2BC	NRIP1		
RPS15	GM10			Alloni	B4GAL	CDU	AC156		RPS13-			
Α	293			GARS	T1	RFC2	282.1		PS1	CCR1		
GM12	ANKRD			G, III.O	HNRNP		GM10		TTC39			
033	17			TIGIT	UL1	PRDX1	481		В	VPS54		
	AI8481					GOLT1	TNRC6		HMGN	PRPF3		
TRAT1	00			XPO1	KHSRP	В	В		1	9		
	SMAD			СНМР	GM14		RPS2-		CCDC5			
NGDN	7			2A	391	LSM2	PS6		5	RELL1		
ELOVL					GM11	NDUFA	GM56					
1	CCL4			CD160	167	9	19		RPS16	SPIN1		
				PTGES			GM31		GM10	FRMD		
TPRKB	GP49A			3	RAD9	PFDN1	50		119	4B		
				SNRNP	H2-				AC154	RBM2		
IL2RA	PELI1			25	GS10	PSMB3	RBM15		908.2	6		
					06100							
PSMD				IL18RA	31J06R	21000	GM89					
4	XRN1			P	IK	CUTA	10		RPL12	AIM1		
				TMEM			GM61		CTLA2	SLAMF		
KPNB1	PLAC8			109	SPNA2	TMPO	80		A	6		
DDI 24	NDD4			146143	CADIA	CRACA	SLC38		TNFSF	11513		
RPL21	NRP1			MCM2	GADL1	SMC4	A6		11	UBL3		
TTC39	RPL21-			NUP21	FAM11	pair	LCTCAC		COMO	INPP4		
B	PS10 RAB11			0	3B GPBP1	PPIE	UTRN CCRN4		SPNB2 ERGIC	A GM10		
HMGN 1	FIP1			RPA3	L1	SSRP1	L CCKN4		3	054		
CCDC5	GADD4			NEAS		BC056	BC005		د	UJ4		
5	5B			EZH2	PTEN	474	537		RPL30	SON		
	30			D17W	, , L.IN	7/7	1 22/		IN EOU	2011		
PPP1R				SU104	GM10	ZC3H1	TRIM1			ANKR		
16B	BTG1			E E	566	5	2A		DENR	D44		
TNFSF				-	GM10	<u> </u>	RPL21-			ADAM		
11	CHD1			NXT1	293	SET	P53		PECI	19		
PAPOL	LGALS				<u></u>	†			RPL7L			
	3BP			ISY1	ACOT2	MCM5	NSA2		1	FRYL		

	/Th1- emory	500000000000000000000000000000000000000	/Th1- fector- N	-	Th1-like or-CNS		Th1-like	Th17/pre- Th1-like effector	88888888888888	self- wing	Th17 Dysfunctiona /senescent
GM10				DLGAP	AC159				GAPD		
250	JUND			5	008.1	ICOS	ACSL4		Ħ	ARAP2	
GAPD	TNFRS				GM35		AL844				
Н	F1B			PSMB1	50	CLIC1	854.1		CCR6	CKB	
					RPL7A-		CDKN1		HNRN	SQST	
CCR6	PLD3			CENPE	PS3	CIT	A		PA0	M1	
							49215				
ANAPC				SLC25		PDZD1	17L17R			WDR7	
11	CTSC			A5	RALB	1	IK		P4HB	0	
DUDCO				CVC1	NIDDI	70.677.6177	GM68		MED1	BCL2A	
DHRS3	TTF1 ANKFY			CYC1	NIPBL UBXN1	ZWINT	07		1 AGPAT	1A	
MIER1	1			COX6C	1	FKBP2	FURIN		3	QSOX1	
FXYD5									DHRS3		
	ANXA4			UCHL5	LNPEP	COPS3	KLF13			CTSD	
S100A 11	EFHD2			АСТВ	RRM2B	SMC1A	UPF1		GIMAP 6	CLIC4	
11	LEHUZ			HMGN	PSMB1	GM10	UFII		U	ULIU4	
CD4	HEXB			5	0	123	ARF5		FXYD5	CCR7	
	TIEAD				PRPF4	CCDC1	PRKAC		DGUO	cen	
SRGN	ATN1			LSM4	B	01	Α		K	AP1S2	
GM10	GM32			201111	PPIP5K		CT033		RPS27	RPS2-	
359	22			ADH5	1	PSMD1	780.1		A-PS2	PS6	
	SLAMF			DPYSL		USMG					
ORC3	7			2	HEXDC	5	WTAP		RPL18	SOCS2	
				29000						23100	
				73G15	KDM5				S100A	16C08	
IL2RB	GBP7			RIK	В	PSMA5	PDE4D		11	RIK	
	H2-					CCDC5	GM10		GM10		
SRSF1	DMA			RNPS1	PAN3	6	695		159	RUNX1	
	C3300										
ABLIM	21F23			NEVE	RPL21-	SUMO	CAPS2		VAMP	ALEATE	
1	RIK			NFYB MRPS2	PS10 RPS6-	3	GM88		4	NFAT5	
KLRC1	SP3			5 NIKP32	PS1	AIP	15		SRGN	IGTP	
KLINCI	313			EFTUD	GM59	extt	*~		GM10	1011	
ID2	NFIL3			2	21	FDPS	EDEM1		359	RNF13	
GM49					RPGRI	CCDC3	BAT2L			DENN	
63	DUSP5			GTL3	P1	4	2		PIGX	D4A	
PPP2R	GM10			Al3149		GM69			TRAF3I	KBTBD	
5A	313			76	BTG1	84	ARF6		P3	11	
					CLASP		GM10				
SNX5	BTG2			SNX3	2	FABP5	012		ACTR2	DCTN4	
BCL2A					LRRC8	NDUFB					
1D	PPM1K			PDHB	D	3	ZZEF1		AEBP2	HK2	
GM10				SNRPB			GM10				
263	IGF2R			2	CAP1	PRPS1	154		IL2RB	REL	
AC129	TCTC4			NDUFA	RSBN1	Factor→	AC117		يد سرمون و	GM89	
078.1	TGTP1			F2	L	MKI67	259.1		LAGE3	10	
				SNAPC	RPL7A-	26100 29G23	TGOLN		GM10		
RPL15	SKIL			5	PS10	RIK	1 GOLN		335	ARL15	
UNC13	JILL			HNRN	1310	19999	GM89		ABLIM	7.1175-2-2	
D	RAB10			PAB	JUND	IMPA1	91		1	HSF2	
	10.1010			17.0	30,40	PRICE CLA	49304		4	11014	
				PRKAR		MRPL3	12F15			WDFY	
CENPQ	GBP2			1A	AP2A2	4	RIK		KLRC1	1	
-	RPL21-				DYNC1		GM54			CCRN4	
RECQL	PS7			AHCY	H1	ZFP207	53		H2-Q8	L	

Differentially expressed genes in in-vivo sub-populations											
Th17/Th1- like memory		Th17/Th1- like effector- LN		Th17/Th1-like effector-CNS		Th17/Th1-like effector		Th17/pre- Th1-like effector	Th17 self- renewing		Th17 Dysfunctional /senescent
09100					46324						
01L09	6464			V/D 4.64	28N05	SLC29	GM10		GGNB	TRIM1	
RIK	C1QA			VDAC1	RIK IFI27L2	A1	063 GM59		P2 CDC42	2A ENTPD	
EIF3A	IER3			AP1S1	B B	10-Sep	08		SE1	7 - T	
GM26	TENO			711101	GAS2L	MRPL4	AC155		RPL9-	,	
06	IFRD1			PPID	3	0	816.1		PS6	ZBP1	
	RPL21-					CACYB	LRRC5			FAM1	
FOLR4	PS11			BLMH	TTF1	Р	8		1D2	02A	
LICDAE	CIV1			TPD52	ANKFY	0004	reco.		70001	A.CCL A	
HSPA5	SIK1			L2 28104	1	POP4	ESCO1		ZCRB1	ACSL4	
GM66				28104 28115R	DNAJB	EXOSC	RPL36-		GM49	CDKN1	
36	TET2			IK	14	9	PS3		63	Α	
				FAM12	GM10					SRSF21	
LONP2	GBP6			5A	362	TFDP1	FNBP1		CD37	P	
FTSJ3	SPTY2								PPP2R	GM68	
	D1			HAUS3	TLCD1	PSMB4	UBR4		5A	07	
7FD	RPL21-			A CTC4	DADAD		*****		CANCE	ELIDIA	
ZFR EXOSC	PS6			ACTG1	RAP2B	TTC1	AMD1		SNX5 BCL2A	FURIN COQ1	
2	NR4A2			CALM1	DDX6	CD5	SEC62		1D	OB OB	
GM93	MED1			CALIVII	PYHIN	TIMM2	JEC02		GM10	VCPIP	
96	3L			YARS	1	2	CFLAR		263	1	
				06100							
TSPAN				37P05	CAPN1					PRKAC	
32	RRBP1			RIK	2	ECH1	MACF1		DDOST	Α	
GM10	RASSF			60000	6,410.6				AC129	ATPBD	
036	2			CRBN	SYNRG	СВХЗ	TXNIP		078.1	4	
				GM10			PPP1R			11100 07C09	
SYPL	LILRB4			076	ATN1	SMU1	12A		RPL15	RIK	
SUCLG					711112	HNRN					
2	AHNAK			IFNG	TRPM2	PA2B1	MLL5		RPL6	TNF	
				UBASH	GM32						
LTA	RGS2			3A	22	CDCA7	SP110		CYLD	PDE4D	
IL16	5. 5.				MTMR		ZMYN				
	PLEK			TSN	2	MYG1	D8		EEF2	GCNT2	
				FAM33		GM47			18100 46J19	BAT2L	
TRA2B	FOSL2			A	KIF24	37	KRR1		RIK	2	
					C3300						
					21F23		TNRC6				
VPS35	DUSP1			POLA1	RIK	PPP6C	Α		CCM2	UPF2	
GM28							GM80			RALGP	
33	PER1			PSIP1	IL7R	UBE2A	54		SNRPC	S2	
GM10 240	GM10 327			OGDH	MS4A4 C	BLVRA	AMD2		GM58 79	GM10 012	
240	IRF2BP			ОООП		DEVEN	MIVIOZ		RPL9-	GATA	
ERMN	2			ARL1	MLL3	SRP9	G5K3B		PS4	D2A	
					28104				09100		
DENN	GM55				22J05R		AC108		01L09		
D2D	07			ABCF2	IK	CNIH4	412.1		RIK	AP2B1	
FAM1										GM10	
65B	TOB2 GM63			KIF15	PBXIP1	CALM2	SPOPL		EIF3A	154	
	1 1-1/16-3	Percentago de la prima del la prima del la prima de la prima de la prima	Procession and the second of t	i	GM20	TIMM8		ı	poposes/66666666666666666666666666666666666	AC117	ı I

	<i></i>					ssed genes in in-viv		Th17/nre-	0.0000000000000000000000000000000000000		Th17	
-	/Th1- emory	like ef	/Th1- fector- N	Th17/Th1-like effector-CNS			h1-like ector	Th17/pre- Th1-like effector	200000000000000000000000000000000000000	self- wing	Th17 Dysfunctiona /senescent	
							23100					
CTCLL	KDM6			A CTNIA	JHDM1	MAADO	35C23		GM26	TGOLN		
CTSW	B GM61			ACTN4 CORO1	D	NAA38	RIK GM75		06	1 GM89		
AQR	09			C	KTN1	RDM1	92		FKBP5	91		
TMEM	0.5				ELMO	10000	MNDA		MYO1	GM54		
147	JUN			SYTL3	D2	HELLS	L		G	53		
NDFIP	ALKBH									GM10		
1	5			OXCT1	ABHD2	PRC1	SLFN1		FOLR4	063		
DDC27				C3300	CM10	NOTES			(5133)	CNICO		
RPS27 A	JUNB			27C09 RIK	GM10 313	NGFRA P1	RBPJ		IFI27L 2A	GM59 08		
SAP30	JOIND			WDR3	313	DNAJC	NUFJ		28	KDM6		
BP	CD63			3	DTX3L	9	ZFP488		RPS6	A		
UTP14						ITPRIP	AC142		GM66			
Α	MNDA			SNRPA	PPM1K	L1	450.1		36	FOXO1		
				HIST1H	GM82		AC117		STARD			
SIN3A	INSIG1			41	25	NUTF2	184.1		3NL	ESCO1		
DCC	RNF21			4.001.5	BUNIVA	*******	SEMA4		CHMP	*****		
BSG	3			ACSL5 FAM96	RUNX3	ATP5J2	B GM20		5	AMD1		
SUZ12	FOSB			B	IGF2R	PPIA	26		ZFR	AP1B1		
06100	1035			91304	IOIZI	L. L. R. C.			2-110	/W.1D1		
11F06				01M01	МҮСВР		GM76		RPL23	MFSD		
RIK	PSAP			RIK	2	VIM	09		Α	4		
	99301											
RPL10	11J21R						AMD-			MACF		
A	IK2			BAZ1B	SKIL	PCIF1	P53		RPL37	1		
MAP4 K1	CCL5			ZCCHC 17	SMG1	RNASE H2B	GM14 434		GM93 96	SAMD 9L		
KI	GM11			1/	SIVIGI	FIZD	434		TSPAN	ЭL		
GATA3	127			THOC4	ABCG1	RPP30	EMD		32	FOXP1		
				23100								
PTPN2				36022	AL732					CAMK		
2	EGR1			RIK	476.1	PSPH	IRAK2		SEPW1	2D		
					RPL21-					PPP1R		
YIF1A	APOE			HJURP	PS7	AK2	LY6C1		RPL9	12A		
MUM1	NOTCH 2			IFT27	NPC2	HSPA1 4	GM38 39		RPL18	SP110		
MOM				SLC35	RPL21-	4	GM10		RPL37	3F110		
СМАН	CCRL2			D1	PS11	NUDT5	916		A	MT1		
YTHDF				EXOSC			7.7.7		GM10	PDCD1		
2	NR4A3			5	SIK1	CNIH	NBR1		036	1		
	GM40			SLC1A	AC163	HNRN				H2-		
GBA	70			5	269.1	PF	ZFP187		SYPL	T10		
							A2300					
LIMDO	GM70			MITIDOS	TNRC6	MRPS1	46K03		GM10	ZMYN		
LIMD2	30			NUP93	C 49304	1	RIK		071	D8		
MAP2				PPP1R	70H14		GM91					
K3	GVIN1			11	RIK	HDGF	04		SIRT2	FOXN3		
						MRPS1				NFKBI		
SETD8	CD86			L7RN6	SRRM2	8A	LARS2		IL16	Z		
				RNASE	GM10		B4GAL		TSPAN	TNRC6		
DDX5	PRDX5			H2C	718	STIP1	T1		31	Α		
						CCDC2	HNRNP			GM80		

		Th17	/Th1-		**********			Th17/pre-			Th1	7
	/Th1- emory	like ef	fector- N	-	Th1-like or-CNS		h1-like ctor	Th1-like effector		self- wing	Dysfunc /senes	tional
LAPTM	H2-			CDK5R	RPL21-							
5	AB1			AP2	PS6	H3F3A 15000	H2-Q6		TRA2B	AMD2		
	H2-			SH3BG	НМНА	32L24						
DGKA	EB1			RL3	1	RIK	KHSRP		FKBP8	ACTN1		
				CDKN2	MED13	NSMC	GM14					
HAUS2	LYZ2			AIPNL	L	E1	391		RPS23	HELZ		
CCTO	CDN			DNMT	RPL29-	ALTEAA	GM11		GM10	cnvia		
CST3	GRN			1	PS2	AHSA1	167		268	CDK13 23100		
					RASSF	MRPL4			GM28	35C23		
ITGAV	C1QB			RAD21	2	6	RAD9		33	RIK		
HAVCR				МЕМО			H2-		AKAP1			
2	LY86			1	NCOA3	PRDX4	GS10		3	RBPJ		
SLC3A	FCER1			MRPS2		NUDC	06100 31J06R		GM10	ZFP48		
2 2	G			4	STAT1	D2	IK STROOK		240	8		
MAPR	TYROB					<u> </u>	TECPR		AC124	CTNN		
E2	Р			CISH	FMO1	GARS	1		399.1	A1		
				PRPF3	GM10					TMEM		
CLK3				8A	291	XPO1	SPNA2		ERMN	71		
GPATC H8				CCDC1 24	RPL17- PS3	MRPL4 5	RC3H1		GM90 00	SEMA 4B		
ATP6V				24	SLC39	<u> </u>	MC3H1		DENN	AMD-		
1G1				MRPS6	A1	CD160	GADL1		D2D	PS3		
SH2D2					GM10	PTGES	FAM11					
Α				UBB	327	3	3B		RPS28	EMD		
DC AT1				GTF2A	DIDGG	NOLIA	GPBP1		nni ac	NDAAA		
DGAT1 EIF1A				1	BIRC6 IRF2BP	NOL12	L1		RPL36	NR4A1		
D				MKKS	2	GDI2	PTEN		CTSW	IRF2		
MRPS2				TRIM2	GM55	SNRNP	GM10		ADRBK	GM10		
6				8	07	25	566		1	916		
AW11					MAP3K	TUBA1			MAT2	RBM4		
2010				CCR8	1	59304	SETD2		A	7		
FAM6					GM10	16l19R				ZFP18		
5B				PUF60	800	IK	UBN2		ODC1	7		
NUMA						IL18RA	GM10		PPP1R	ARHG		
1				TMED2	TOB2	р	293		7	AP31		
					GM63					A2300 46K03		
ЕМВ				NEBL	16	SIVA1	ACOT2		CSTB	RIK		
20101				HEDE	10	0,7,0	110012		0010			
11I01R					KDM6	TMEM	AC159		AC114			
IK				HCFC1	В	109	008.1		007.1	CD9		
14500				D9300	CN4C4				THE AIT A. R.	C1404		
MED2 1				14E17 RIK	GM61 09	мсм2	GM35 50		147	GM91 04		
23100				- max	"				+17	~ !		
04N24						NUP21	BRWD		NDFIP			
RIK				EIF4H	LY6C2	0	1		1	ASAH1		
ARPC5				NUCKS	ZFP36L		RPL7A-		RPS27	mr		
AC114				1	1	RPA3	PS3		Α	RBBP6		
AC114 648.1				LNP	JUN	EZH2	Al8481 00		RBMX	KHSRP		
2.0.1				SCAMP	ALKBH		TRIM2		2.001777.1			
SDF2				2	5	TAF12	4		PFKL	CTSB		

-1 4 - 1-1 4	Th17	/Th1-		-1 4 1	_,		Th17/pre-		. 10	Th17	
Th17/Th1- like memory	like ef	fector- N	Th17/Th1-like effector-CNS			Th1-like ector	Th1-like effector	200000000000000000000000000000000000000	self- wing	Dysfuncti /senesco	onal
THEMI					CLDND			GM75			
S			GALM	MLL2	1	NIPBL		36	PTEN		
			28104 07C02			RNASE					
S1PR1			RIK	PDCD4	GLTP	T2A		BSG	ZEB2		
IL12RB					NT5C3	UBXN1					
2			CENPL	INSIG1	L	1		RPL26	ACOT2		
GM92 34			UFSP2	RNF21 3	NXT1	LNPEP		RPL10 A	ISCU		
34			01362	GM89	1471.1	LIVELE		MRPL5	SMAD		
в2М			DCTN3	09	ILF2	RRM2B		5	7		
				C0300							
ZFP82				46E11	DLGAP	PRPF4		MAP4	UBXN1		
5			DKKL1	RIK	5	B		K1	1		
GM51 60			RPS21	PSAP	PSMB1	RNASE T2B		RPL19	GP49A		
			521	99301					i <i>st</i> 1		
			HIST1H	11J21R		PPIP5K					
MIIP			2BC	IK2	CENPE	1		СМАН	KIF21B		
				ARID1	HSD17				RRM2		
NSD1			UBE2S	B GM11	B12	HEXDC KDM5		LIMD2	B PRPF4		
SATB1			RPL12	127	H2-KE2	B		SETD8	B B		
5,1151			111 222	127	SLC25			TMEM			
			AP2S1	H2-Q2	A5	PAN3		176A	PLAC8		
				CDKN1							
				В	HAUS1	NRP1		BTLA	CLINT1		
				NOTCH 2	FGFR1 OP2	RPL21- PS10		GM54 51	PAN3		
					UFZ	RPS6-		34	MFSD		
				SLFN5	CYC1	PS1		DGKA	11		
						GM59					
				SGIP1	COX6C	21		CST3	NRP1		
				GM40	UCHL5	RPGRI P1		66).37	RPL21- PS10		
				70	PPP1R	F1		RPL27	RAB11		
				BMP2K	8	BTG1		ITGAV	FIP1		
				GM70		CLASP		HAVCR	GADD		
				30	UCHL3	2		2	45B		
						LRRC8		GM98			
				GVIN1	UBL4	D		46 MAPR	BTG1 RNF14		
				ZFP36	XRCC6	CAP1		E2	9 9		
				21130	YWHA	LGALS			LGALS		
				LYZ2	E	3BP		TUBB6	3BP		
					HMGN	RSBN1		U2AF1	TNFRS		
				H2-AA	5	L		L4	F1B		
				CTSS	CIAPIN 1	RPL7A- PS10		VAMP 8	SKI		
				CD74	LSM4	JUND		DGAT1	SSH2		
				CD/4	L3IVI4	שאיטנ		RPS6K	33AZ		
					PFDN4	DOCK8		A1	MXD1		
								AC119	IFI27L		
					POLE4	AP2A2		211.2	2B		
						DYNC1		AW11	GAS2L		
				1	ADH5	H1		2010	3		

			ssed gene	s in in-vi	vo sub-popula	tions		
Th17/Th1- like memory	Th17/Th1- like effector- LN	Th17/Th1-like effector-CNS	Th17/Th		Th17/pre- Th1-like effector	300000000000000000000000000000000000000	self- wing	Th17 Dysfunctiona /senescent
			DPYSL	46324 28N05 RIK			стѕс	
			29000 73G15	MIX			ANKFY	
			RIK	GBP10 IFI27L2			1	
			DCPS	B GAS2L			ANXA4 GM10	
			M6PR RNPS1	TTF1			362 TLCD1	
			NFYB	ANKFY 1			SYNRG	
			5	DNAJB 14			ATN1	
			2	GM10 362			LY6I	
				TLCD1 RAP2B			GBP7	
			MFF	DDX6			C3300 21F23 RIK	
				SYNRG			IL7R	
			76	CYTH4 ATN1			KTN1 PPT1	
			ATP5C	TRPM2			ASH1L	
				GM32 22			NFIL3	
			H47	MTMR 2			ADIPO R1	
			SNRPB 2 NDUFA	SOD2			BTG2 PPM1	
			F2	KIF24 C3300			K	
			NUP21	21F23 RIK			GM82 25	
			SNAPC 5	IL7R			H2-OA	
				MS4A4 C			RUNX3	
			***************************************	MLL3			MYCB P2	
				28104 22J05R IK			SKIL	
			PAK1IP	GBP8			SMG1	
				PBXIP1			ABCG1	
			3	GM20 58			RAB10	
			VDAC1	JHDM1 D			AL732 476.1	
			AP1S1	KTN1			IFRD1	

	Th17/Th1-				Th17/pre-			Th17
Th17/Th1- like memory	like effector- LN	Th17/Th1-like effector-CNS		h1-like ctor	Th1-like effector	100000000000000000000000000000000000000	self- wing	Dysfunction: /senescent
	E		MAD2		Circuit		RPL21-	/ Jeneseerk
			L2	MLL1			P511	
				ELMO				
			PPID	D2			SEPP1	
			UBA1	ASH1L			SIK1	
			BLMH	ABHD2			TET2	
			TPD52	GM10			49304 70H14	
			12	313			RIK	
			MAGO	ZCCHC			SRRM	
			HB	6			2	
			28104					
			28115R IK	BTG2			CD38	
			RUVBL	0102			SPTY2	
			2	DTX3L			D1	
			FAM12				RPL21-	
			5A	PPM1K			P56	
			HAUS3	GM82 25			NR4A2	
			паозэ	ZJ			HMHA	
			CALM1	RUNX3			1	
							RPL29-	
			YARS	IGF2R			PS2	
				МҮСВР				
			VBP1 06100	2			RRBP1	
			37P05				RASSF	
			RIK	SKIL			2	
				TRP531				
			CRBN	NP1			LILRB4	
			GM10	c.rev			AHNA	
			076 UBASH	SMG1			K	
			3A	ABCG1			PLEK	
			TSN	RAB10			FMO1	
			FAM33	AL732				
			A	476.1			FOSL2	
				RPL21-			TAX1B	
			POLA1	PS7			P3 MS4A	
			SBDS	NPC2			6D	
			3003	RPL21-			OD.	
			PSIP1	PS11			BIRC6	
							MAP3	
			OGDH	SIK1			K1	
			ARL1	AC163 269.1			GM10 800	
			MALL	PPP1R			GM61	
			PPIH	15A			09	
				TNRC6				
			ABCF2	С			JUN	
				26100				
			KIF15	36A22 RIK			MLL2	
			CNPY4	TET2			JUNB	
			TIPRL	GBP6			INSIG1	

		•	ssed genes in in-vit			TL47
Th17/Th1- like memory	Th17/Th1- like effector- LN	Th17/Th1-like effector-CNS	Th17/Th1-like effector	Th17/pre- Th1-like effector	Th17 self- renewing	Th17 Dysfunctiona /senescent
			E4300			
			29J22R			
			ACTN4 IK 49304		FOSB	
			POLR3 70H14			
			K RIK		CCL5	
			CORO1			
			C SRRM2		LGMN	
			SSSCA GM10		ABOL	
			1 718		APOE NOTC	
			SF3A3 IFI2O3		H2	
			RPL21-			
			SYTL3 PS6		SGIP1	
			HMHA		xima	
			OXCT1 1 C3300		NR4A3	
			27C09 MED13		GM40	
			RIK L		70	
			WDR3 RPL29-		BMP2	
			3 PS2		K	
			SNRPA CD274		SDC4	
			RASSF		AUCA	
			ORC4 2 HIST1H		AlF1	
			4I NCOA3		LYZ2	
			ACSL5 KLHL24		H2-AA	
			NRF1 STAT1		GRN	
			91304			
			01M01			
			RIK AHNAK		C1QB	
			MRPL1 ARID5		FCER1 G	
			CINP FMO1		9	
			GM10			
			BAZ1B 291			
			LUC7L RPL17-			
			3 PS3			
			ZCCHC SLC39			
			17 A1 GM10			
			PPIL1 327			
			MRPS3			
			6 BIRC6			
			GABPB IRF2BP			
			2 2			
			GM55 THOC4 07			
			23100			
			36022 MAP3K			
			RIK 1			
			GM10			
			HJURP 800			
			IFT27 TOB2			
			GM63 NOP58 16			

_	Th17/Th1-	_		Th17/pre-		Th17	
Th17/Th1- like memory	like effector-	Th17/Th1-like effector-CNS	Th17/Th1-like effector	Th1-like	Th17 self- renewing	Dysfunctiona	
	LN		SLC9A KDM6	effector		/senescent	
			3R1 B				
			SLC35 GM61				
			D1 09				
			SLA2 LY6C2 EXOSC ZFP36L				
			5 1				
			SLC1A				
			5 JUN ALKBH				
			NUP93 5				
			PPP1R				
			11 MLL2				
			IMPDH 2 JUNB				
			L7RN6 PDCD4				
			PSMD1				
			3 MNDA				
			RNASE H2C INSIG1				
			RNF21				
			CRMP1 3				
			GM89 UTP3 09				
			C0300				
			46E11				
			UXT RIK				
			CDK5R AP2 PARP4				
			CDKN2				
			AIPNL PSAP				
			99301 DNMT 11J21R				
			1 K2				
			ARID1				
			RAD21 B				
			GM11 ADPRH 127				
			MEMO				
			1 H2-Q2				
			CDKN1 ITPA B				
			NOTCH				
			RNF7 2				
			EXOSC SLFN5				
			PRPF3				
			8A SGIP1				
			CCDC1 GM40				
			24 70 MRPS6 PCF11				
			MKKS BMP2K				
		-	TRIM2 GM70				
			8 30				
			CCR8 GVIN1				
			POLR2 ZFP36				

Th17/Th1- like memory	Th17/Th1- like effector- LN	Th17/Th1-like effector-CNS	Th17/Th1-like effector	Th17/pre- Th1-like effector	Th17 self- renewing	Th17 Dysfunctiona /senescent
			PUF60 LYZ2			
			LTA4H H2-AA			
			TMED2 CTSS			
			FCER1 NEBL G			
			HCFC1			

[00265] Table 7. Listed is the fold change (defined as the expression level of the knock out cells divided by the expression level of corresponding wild type or littermate controls) of all significantly differentially expressed genes (Experimental Procedures) for a given experimental condition. Experimental condition information includes; the knockout mouse (GPR65^{-/-}, PLZP^{-/-} or TOSO^{-/-}), differentiation condition (TGF-β1+IL-6 or Il-1β+IL-6+IL-23), and the duration of differentiation before harvesting for RNA-seq analysis (48h or 96h). All differentiations were conducted as for the single cell *in vitro* data.

		Differenti	ally expr	essed gene	s for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	17 cells		
GPR65		GPR65		PLZP- IL1B+IL6		PLZP- TGFB1+II		TOSO- IL1B+IL6		TOSO	
96h	-1	1		48h	-1	1		96	h	96	h
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
CT025533	638.96		72.060	CR478112	4828.9	AC11297	997.83	AC09043	19.461		20.502
.1	3	LY6G	1	.1	7	0.1	2	2.1	3	LY6G	7
GM11042	219.40 3	CD3G	35.799 3	AC16309 4.2	705.83 6	AC16333 0.1	0.0010 0217	GM10999	17.161 7	GM10139	0.0744 158
AC16333	57.645		20,213		469.25	AC11801	691.52		0.0731		12.722
0.1	4	H2-Q8	9	GM11035	7	7.2	1	FAM132A	972	CCDC56	7
GM10695	52.955 7	ROMO1	18.407 7	AC09056 3.1	181.83 6	GM10974	0.0017 7299	NDUFC1	12.632 1	GM10192	12.327 1
IL17F	20.810 4	ATP5J	16.485 6	GM10774	127.09 3	GM10774	0.0078 6822	IL24	0.0840 608	IL24	0.0852 024
IL1/F	15.204	Airoi	15.717		86.571	GWITO774	0822		9.9900		0.0870
GM11035	9	MPP1	6	GM11074	9	GM11074	120.52	A2LD1	9	PAM16	993
2210012 G02RIK	14.137	UFM1	14.939 5	GM11032	0.0235 315	SND1	114.79	2010107 H07RIK	9.6457 6	HMGA1- RS1	0.0887 043
CM10222	12.777	LY6i	14.408 8	CISD3	0.0267 441	DEDD	0.0095 7397	NHEJ1	9.4085	UCKL1	0.0925
GM10222	0.0863	LY01	14.246	CISDS	29.738	กะกก	59.204	MHEJI	7.9678	UCKLI	3
S100A1	747	LY6C2	14.240	IFI27L2A	29.738	NUDT1	33.204	RNF121	7.3078	PIH1D1	8.8086
	11.441		13.935		0.0363		0.0172		7.4344		8.7542
SLC15A3	8	GM10774	1	TBC1D17	317	GM10222	64	GM10495	2	GNAQ	3
	10.835		12.777	AL732569	0.0430		0.0203		0.1521		8,6502
MUTYH	3	LY6C1	4	.1	873	GM6293	867	NTAN1	27	CCDC9	2

			·			R65-/-, PLZ	· / · · · · · ·				
GPR65	-KO-	GPR65	-KO-	PLZP-	KO-	PLZP-	KO-	TOSO-	-KO-	TOSO	-KO-
IL1B+IL6	+ IL23-	TGFB1+II	L6-96h-	IL1B+IL6	5+IL23-	TGFB1+II	.6-48h-	IL1B+IL6	+IL23-	IL1B+IL6	5+1L23-
96h	-1	1		48h	-1	1		961	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	bene	(KO/W	Gene	(KO/W	Gene	(KO/W
	T)		T)		T)		T)		T)		T)
TE 4 DO	10.306		12.222	514/004	21.717		48.684	161454	0.1534		0.1285
TEAD2	8	IL17F	0.0027	EWSR1	7	H2-Q8	7	LSMD1	23	MYCBP	3
GM10490	9.7123 3	CCL5	0.0827 434	AC12156 6.1	0.0476 118	GM11032	47.012 7	MED6	6.4984	FRG1	0.1323 68
GIVI10450	8.8569	CCLA	11.441	0.1	0.0520	GWIIIO32	45.851	IVILDO	6.4343	TROI	7,4609
IFFO2	9	SGK1	7	LIN37	81	ATOX1	4	MED7	9	BCCIP	8
	8.7494	2010107E			19.005	AC12156	44.855		6.3707	0610037L	0.1415
TBCB	1	04RIK	11.366	FAM36A	6	6.1	5	CTSE	5	13RIK	92
AC10260	8.6917		11.166		18.987		37.312		0.1601		6.6624
9.1	5	BANF1	6	GM10721	3	PFN1	9	TM2D3	32	RABL3	6
CATSPER	8.3068		11.064	AC13239	0.0537	AL845291	0.0348	005 515	6.2414		6.6346
4	9	TIMM8B	7	1.1	352	.1	296	CCDC101	6.0404	COX6B2	6 4500
CCDLO	8.2769	Macae	10.743	AC16399	0.0554	23100041	0.0365	CLC1244	6.0404	AXDDCTO	0.1509
CCBL2	7 8.1972	VPS36	9.8603	3.1 2310030	745	24RIK	274 0.0369	SLC12A4	7 5 001 <i>6</i>	MRPS30	18
GM11074	8.1972	GAA	9.8603 5	N02RIK	18.000	SNX14	612	SAP30BP	5.9016 9	E130306 D19RIK	6.5327
GIVITIO74	8.1661	uan.	9.6894	NOZINIK	17.814	3147.14	26.800	3AI 30DI	5.8236	DIJIIK	6.4834
LINS	8	COX7A1	2	GM11167	7	STRA13	7	UBASH3B	3.0230	KLHDC1	2
1700029F	8.1232	AC08754	9,6707			1700054	25.035	8430419L	5.7891		6.3245
09RIK	9	0.1	7	GM10106	17.065	O19RIK	7	09RIK	5	FBXO9	7
	0.1235		9.6660		16.960	4930423	24.974	CT030170	5.4563	TMEM20	6.1585
MCFD2	05	NDUFC1	5	CCDC34	1	O20RIK	9	.2	2	9	5
	7.7363		9.6414	AC13178	16.680	1110051	0.0422				0.1649
TMEM33	5	PPP2R5C	3	0.4	1	M20RIK	463	GOLGA1	5.358	FAM189B	- 08
4930425F	7.5647	LVCA	9.6198	LVDNAO	0.0603	cenu	0.0422	CDCEO	5.3136	CCTOA	6.0359
17RIK	7.5294	LY6A	9.5300	LYRM2	34 16.535	GCDH	702 22.439	SRSF9 ZMPSTE2	7	SETD4	5.8952
CLEC12A	7.5254	IFI27L2A	3.3300	WBP11	6	ARRDC1	22.433	4	5.2634	H2-Q8	9.0332
CLLCILA		11127.227.1	9.3818	WD111	16.164		22.190	'	0.1903	iic qo	5.8808
MCTS1	7.4317	LSMD1	3	CES5A	3	PAM	4	томм5	38	GM7367	7
2010107	7.3884		9.3704		16.052		0.0482				5.8391
G23RIK	4	NGFRAP1	5	MLLT10	2	MED27	159	TSC22D1	5.2077	MRP\$36	7
				AC12540	15.721		0.0485		5.1676		5,7701
UQCC	7.377	COX5B	9.302	5.1	7	NMNAT3	37	PGLYRP1	3	LEPREL1	1
D.C.CID	7.0493		9.1809	6144666	15.394		0.0489	DA CCINIO	5.1326		0.1773
BCCIP	7 0200	GIMAP3	0.1712	GM10800	3	NDUFS5	343	PACSIN3	5 0000	ATF7IP	48
XPA	7.0299 8	SPAG7	9.1713	RWDD1	0.0660 117	PSENEN	20,109 8	ZFP688	5.0900 8	WARS	0.1805 46
λι Α	7.0280	JI AG	9.1187	AC13178	15.000	D8ERTD7	0.0512	211000	0.1965	WANG	5.5031
RAB34	5	GMFG	2	0.2	9	38E	351	PPAN	14	ZCCHC17	8
	6.9677		8.7184		14.789		18.142	1700120B		A530032	0.1827
DFFA	3	TFG	2	GM10720	9	MRPS23	6	22RIK	5.073	D15RIK	43
	6.9405		0.1170				17.818		5.0485		5.4397
GNG12	2	XPA	77	FANCE	14.53	POLR1D	8	ZFP523	4	HINT2	3
	0.1467		8.4740		0.0707		17.518		0.1988		
ARL3	97	MRPL2	1	UBE2A	408	GMFG	8	BSDC1	72	GM1968	5.3797
TDD1	6.7664	CR97446	8.4712	CVIE	13.725	KADDEE	17.181	M/DEV4	5.0218	CTROPA	0.1891
TDP1	1	6.3 AC11801	0.1186	CKLF	12 667	MRP\$5	0.0585	WDFY1	4 9040	GTPBP6	5.2319
SPG20	6.7321	7.2	0.1186	PRNP	13.667 6	GM10311	203	MUP11	4.9040 5	TMUB1	5.2319
31 020	0.7521	7.14	0.1190	t IMM!	 	CHVILOUIT	16.954	MICHT	0.2055	1(4)(-1)2	5.0999
CYTH1	94	RPS6KA3	74	LYRM7	13.446	RNASEK	3	DIABLO	42	BCL2L12	J.0333 4
	6.6296		8.3895		13.441	2410015	0.0598		4.8184		0.1969
GM10238	9	PAICS	8	GM10718	8	M20RIK	462	NUMB	5	DOK2	29

	•••				• • • • • • • • • • • • • • • • • • • •						
GPR65	-KO-	GPR65		PLZP-		PLZP-		TOSO		TOSO	
IL1B+IL6	+ IL23-	TGFB1+II	_6-96h-	IL1B+IL6	5+IL23-	TGFB1+II	_6-48h-	IL1B+IL6	5+IL23-	IL1B+IL6	ı+IL23-
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	dene	(KO/W	Gene	(KO/W
	T)		T)		T)		T)		T)		T)
	6.5962		8.3523	A830010	13.436		16.549		4.7937		5.0517
HNRNPR	7	TSPO	9	M20RIK	12.262	42256	45.033	HMGN3	1 2102	GM10416	8
DRAM2	0.1535 94	GM10416	8.2616	GM10719	13.362	MRPS18A	15.832 2	FBXO6	0.2102 89	ACER2	5.0403
1810020	0.1544	GW110410	8.1148	GIVI10713	13.090	WINT SIGN	15.709	HMGA1-	0.2133	ACCINZ	0.1984
D17RIK	15	GM5215	9	AEN	9	RFC5	5	RS1	47	PYGO2	35
	0.1595		7.9045				0.0640		4.6693		5.0246
CHCHD8	84	NRBP1	4	GM6396	12.781	LSM12	507	LACTB2	9	CLEC16A	5
	6.2263		7.8669		12.334	1810035L	0.0643	1110051	4.6548		4.9527
LZIC	3	GM7713	7	GM10717	2	17RIK	269	M20RIK	4	ACSL1	6
	6.1456		7.8590	2010107	11.890				4.6546		0.2042
PSMD13	9	ATRX	5	H07RIK	8	SPC25	15.407	SERTAD3	7	MLEC	93
DDDDE	C 07C0	CCDC109	7.8549	CCLO	11.803	ODCE	15.306	LIDCD12	4.6466	ATDATA	0.2060
PPDPF	6.0768	В	0.1284	CCL3	0.0856	ORC5	0.0660	HRSP12	4.6058	ATPAF2	4.8479
TCF4	0.1647 42	PAPOLA	81	ZFP668	954	GM11011	117	HIAT1	4.6036	FBXW20	4.0473
TCIT	6.0311	1741 0074	7.7599	211 000	11.505	OMILIDIA	0.0670	111/412	0.2174	9430002	4.8361
FASTK	4	FUNDC2	6	DPH3	7	IPO9	124	IL17A	19	A10RIK	6
	5.9382		7.7145		11.430		14.853		4.5732		0.2068
SAFB2	4	LEPREL1	1	MRPL52	6	ANAPC13	8	UBAP1	8	AKAP9	32
	5.7724		7.6651		0.0878	2810021J	0.0687		4.5661		0.2083
WDR54	2	DBI	4	POLR2H	308	22RIK	575	CIC	2	CBX5	48
	5.7036		7.5405		0.0898		0.0696		4.5657		4.7955
MED28	3	PSMG4	7	PIK3R1	843	PDCD2	- 8	MMP16	7	TULP4	9
MOCDDO	5.6831	ncc10	7.5377	AC02578	0.0900	DAE1	14.270	DODD1	4.5522	DOCK2	4.7908
MOSPD3	5.6508	RGS19 AC11297	0.1328	6.1	0.0902	PAF1	0.0702	PQBP1	4.5413	DOCK7	4.7753
RENBP	2.0308	0.1	69	MAPK3	236	CKLF	488	SEC61A2	4.3413	CRTC1	3
REIVE	5.6385	0.1	7,4374	Wir KS	11.051	CAL	14.059	SECOTAL	4.4954	AC15463	4.7557
ALDOB	8	GM5830	9	HMGXB4	6	SLC39A14	4	RRP8	9	1.1	9
	5.4809		7.3578		0.0906	AC13283	13.991		4.4895	2310003F	4.7487
HELLS	4	POLR2J	4	MRPL54	724	7.1	4	IFT140	3	16RIK	1
	5.4507				0.0941		0,0716	CCDC109	0.2249		4.7254
GM11444	8	TARBP2	7.2882	FBXL12	317	EXOSC3	036	В	15	DEB1	1
	5.4140		7.2537	4930431F	10.576		13.832		4.4398		4.6637
TNFRSF22	5 2720	RSRC1	7 2160	12RIK	5	ZCCHC7	3	DSN1	5	DFFA	3 4 0000
AC11462 5.1	5.3739 1	HSCB	7.2168 9	AC12759 0.1	10.531	2310061C 15RIK	13.817 1	PHF20	4.4352 2	4930431F 12RIK	4,6608
J.1	5.3333	0610037L	7.1960	0.1	0.0952	1311117	0.0726	FIIFZO	4.3889	12MK	4.6026
GM6003	7	13RIK	7.1200	SEMA4F	178	BDH1	258	NPM3	2	LHPP	T.0020
	5.2503		7.1684		0.0956		13.725		4.3787		0.2179
GALE	6	NOP56	4	MPND	693	HACL1	6	RCAN3	2	CSNK1G1	73
	5.2153		7.1626		0.0961		13.667			BC04934	4.5719
GTDC1	7	PIGK	1	SLCO3A1	635	CCNE2	6	MKNK1	4.3396	9	4
	0.1924	RPL21-					0.0731		4.3100		0.2198
PHF21A	06	PS6	7.16	OPCML	10.354	GM9758	656	EXOC6B	7	DRAM2	53
ADUCAD4	5.1768	ANIADOAG	7.0529	7000010	0.0984	TMEM10	13.540	ENIDDO	0.2333	DOMO	A (10.46
ARHGAP4	5 1602	ANAPC13	7.0033	ZCCHC10	483	7	3 13.446	ENPP2	4 2629	PCID2	4.5141
DLC1	5.1693 4	PDRG1	7.0033 4	AC15564 6.1	0.0995	CCDC55	13.446	ZC3H10	4.2628	GRAMD1 B	4.5070
PLCI	0.1993	1 101101	6.9492	0.1	017	CCGCGG	13,386	2031110	0.2367	, c	0.2221
FMNL1	25	ARRDC1	8	PPP2R2B	9.89	GRCC10	2	PIGF	4	RUNX2	2
	4.9807		6.9459		9.8392		13.190		4.2130		4.5007
PUSL1	1	NAP1L4	1	PDIK1L	3	SCP2	2	LY6C2	1	GM5900	1

GPR65 IL1B+IL6		GPR65 TGFB1+II		PLZP- IL1B+IL6		PLZP- TGFB1+II		TOSO- IL1B+IL6		TOSO-	
96h		1		48h		1		96		96	
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
2610030	4.9400		6.9145		9.7958		0.0762	TRNAU1A	0.2376	1200016B	4.4998
H06RIK	4.8987	POP5 0610037P	6,9008	EMP3	9.7399	GM16372	153 0.0768	Р	4.2047	10RIK	9 0.2225
MECR	1	05100371 05RIK	9	MRPS12	6	RDM1	956	TRMU	2	GM16380	13
TALEALDO	0.2045	CKEAD	6.8876	CM10102	9.6750	MRPL23-	12.919	LUDIDA	4.1848	TDAEDA	4,4928
TNFAIP8	12	CKS1B A930005	4 6.8705	GM10192	9.6221	PS1	6 12.824	HIRIP3 2210016L	7 4.1607	TRAFD1	4.4542
HRSP12	4.8833	H10RIK	2	GM10801	9	ENTPD1	9	21RIK	3	FAM165B	8
RHOQ	0.2072 77	GM10506	0.1455 68	GM10715	9.3501 8	INSL6	0.0791 878	MDN1	4.1550 4	TMEMS	4.4487 2
KHOQ	0.2073	GIVITUOUG	6.8009	1700026	9.2987	AC12540	12.618	IVIDINI	0.2420	LIMETALD	4.4153
GPATCH8	5	CLK1	9	D08RIK	7	5.1	4	SELK	08	AIM1L	9
IFNAR1	4.8210 6	PRDX4	6.7843 4	GM10842	0.1076 07	MRPL19	12.606 6	FBXL12	4.0657 4	FAM129B	0.2276 32
ILIVANI	0.2075	FNDA4	6.7828	GIVI10842	0.1076	WHAF LLD	12.444	FDALIZ	4	TAMILES	4.3660
TAF12	62	WDR75	1	XRCC4	1	GNGT2	5	LLGL2	4.0643	NUP85	4
RASAL3	0.2075 98	SMEK2	6.7656 3	IL9	0.1095 36	AW11201 0	12.382 8	MZT2	4.0357 3	HIST2H3B	4.3390 5
NAJALJ	4.7848	JIMENZ	2	A630001	0.1096	AC10260	12.288	IVIZIZ	0.2478	1113121130	0.2310
CCL4	1	TMEM85	6.7621	G21RIK	16	9.1	7	MAD1L1	78	FAM175A	44
FAM69A	0.2094 02	DPM2	6.6864	ENTPD1	9.0764 2	ATP8B2	0.0822 643	ZCRB1	0.2479 73	YAF2	0.2329 74
TAIVIOJA	02	DT 1VIZ	6.6763	LINIFDI	2	HITODZ	12.112	ZCNDI	4.0209	IAIZ	0.2334
ME3	4.7724	UBL4	9	IER3IP1	9.0603	GNG12	7	DEB1	4	GM10355	9
MPND	4.7719 1	CLEC16A	0.1510 24	AC12200 6.1	8.8707	TMEM22	0.0832 766	KLRC1	3.9857 6	NAB1	0.2335 85
IVII IVID	4.6790	MPHOSP	6.5891	0.1	0.1144	-	11.981	KENCI	3.9773	14.101	0.2338
NMB	7	Н8	7	MED7	6	EDF1	5	HIBCH	9	ADCK3	26
SLC1A5	0.2167 52	PCMTD1	0.1524 72	MMADHC	0.1150 59	TIMM10	11.933 3	A530032 D15RIK	3.9648 6	PEX11B	0.2343 31
52017.65			6.5572	141141110	8.6064		11.898	DISTAN	0.2529	1 2/11-10	0.2352
CIAPIN1	4.5998	PREB	3	NSUN3	2	BC057079	1	MTX1	01	BTBD10	63
2810432 D09RIK	4.5638 6	GM8394	6.5458 9	PHF10	0.1167 96	GM11110	0.0850 407	UNC45A	3.9391 6	ACNAT1	4.2486 6
	4.5436			AC13178	8.5137		0.0854				4.2436
POLR2F	8	FKBP3	6.5407	0.1	3	SLC35A1	511	KIT	3.9252	HIST1H4F	6
LSM4	4.5347 7	FAM165B	6.5406 5	SNAP47	8.4766 2	POLR21	0.0856 321	NPAT	3.8405	CYSLTR1	0.2359 58
	0.2221		6.5069		8.4477		11.677		3.8247		4.2110
PNRC1	74	BCCIP	2 6.5017	RAB11A	9.4463	UBE2B	9 0.0863	MLLT10	7	PSMB9	7 0.2378
PUF60	4.4795 2	PPIG	6.5017 7	EXOC4	8.4462 9	ASAH1	792	1110005 A03RIK	0.2626 3	NEBL	0.2378
1110001J	4.4733		6.4702	HIST1H2B	0.1192		11.502	DPY19L3	0.2633		4.2027
03RIK	0 2226	NSMCE4A	5 6 2017	Н	07	MRPL28	6 0070	D1 113E3	24 0.2636	HRSP12	0.2381
MLLT10	0.2236 94	CEPT1	6.3917 9	TRAFD1	8.3638 2	PCID2	0.0870 048	CDKAL1	0.2636 47	PDIK1L	0.2381
0610010	4.4270		6.3687		0.1197		11.486	0610010	3.7928		0.2384
O12RIK	9 0.2261	SPCS1	6 6.3670	ATF7 4930470	05	SRP9	5 11.430	O12RIK	6 0.2638	GM10482	35 4.1909
GM10482	72	WDR61	6.3670 3	4930470 H14RIK	8.2969	NISCH	11.430	C1D	0.2638 77	POLR2I	4.1909
	4.3926		6.3344		8.2008		11.385	MANBA	3.7860	RPL21-	0.2393
SLC25A11	0.2300	FANCC	6.2053	SOD1 1700064	0.1219	GM2178	5 11.307		9 3.7821	PS4	0.2394
HDAC8	41	RAD23A	6.2055 3	H15RIK	0.1219	FUBP1	11.307	SIN3A	3.7821	TMEM48	0.2394 96

GPR65	-KO-	GPR65	-KO	PLZP-	KO-	PLZP-	KO-	TOSO-	-KO-	TOSO	-KΩ
IL1B+IL6		TGFB1+II	.6-96n-	IL1B+IL6		TGFB1+II	_6-48N-	IL1B+IL6		IL1B+IL6	
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
	(KO/W		(KO/W		(KO/W		(KO/W		(KO/W		(KO/W
	T)		(T)		T)		T)		T)		T)
THAP7	4.3409	RNF5	6.2008	FASTK	0.1221	FANCE	11.298	NASP	3.7632 1	CLN3	0.2400 92
THAT /	4.3342	18141 2	6,1314	FASIK	8.1723	PANCE	11.282		1	CLIVO	0.2402
ECM1	1	CKLF	7	EVI2A	6	RAB8A	4	IQSEC1	3.7207	GABPA	0.2402
		CDK5RAP	6.1174		8.1518	RPL30-	0.0889		0.2704		0.2402
JUP	4.3205	3	1	GALK2	8	PS6	991	WIBG	56	ITGAV	39
1110004E	4.3171		0.1636	AC13178	8.1454		11.212	RALGPS1	3.6955	AC11462	4.1515
09RIK	8	DCAF17	49	0.3	2	FAM64A	1	RALGPSI	3	5.1	4
	4.3060		6.0983		0.1228		0.0899	ARMC7	3.6861		4.1290
TOR2A	1	U2AF1L4	7	DNAJC24	13	TOR1AIP2	992	7444167	5	MBTPS2	5
	4.2920		6.0435	4930534B	8.1266		11.063	SNRPC	0.2718	1810074P	0.2425
ZFP54	5	HMGB1	4	04RIK	7	PSMG3	3		61	20RIK	47
CMCOOO	0.2335	DEMDE	5.9962	2310045	0.1235	81011744	10.923 4	CASP9	3.6757	CENIKAE	4.1186
GM6990 AC15564	0.2336	PSMD6 AC13239	5.9732	N01RIK	79 8.0312	ALDH7A1	4		9 3.6708	CSNK1E	4.1185
6.1	0.2336	1.1	3.57.52	SERGEF	9	TSPAN32	10.724	KLHL15	3.0708	SELENBP2	7 4.1103
0.1	4.2756		5.9491	SERGEI	0.1248	75170152	10.666		3.6701	JEELINDI 2	4.0916
MTX1	1	LY6K	9	GGNBP1	04	SSBP2	5	MBTD1	5.0701	STYK1	9
AL845291			0.1685	5730437	7.9392	PPAPDC1	0.0938	1110065P	3.6625		0.2460
.1	4.2534	CD209C	9	NO4RIK	4	В	32	20RIK	9	UFSP2	6
	0.2353	DLG4	5.9304		7.9146		10.576	NENF	0.2732		0.2468
GTF2H1	42	DLG4	2	DEB1	6	UBL4	- 5	INCINF	59	PHLDA3	6
	0.2356	VILL	5.9289		7.8798		10.568	EIF4ENIF1	3.6444		0.2485
IER3	64	*,,,,	4	MTHFS	1	MED28	4		1	KLC1	87
	0.2359	WDR13	5.9081				10.531	ZFAND3	3.6434		4.0200
AKTIP	25		8	GM10576	7.8766	TRIM28	7		8	PRL8A1	6
WBSCR22	0.2410	HEMK1	5.8964 1	TTC39A	0.1275 76	GIMAP7	0.0953 338	PDLIM1	0.2761 07	GM12166	4.0196 5
WD3CR22	0.2414		5.8333	TICSSA	7.8290	GIIVIAF /	10.480	1110007	3.6140	GWIZIOD	0.2491
LY6K	0.2414	SLC35A1	J.0333	COX7A1	7.8230	IVD	3	A13RIK	3.0140	DUSP22	0.2431
LION	4.1422		5.8157	COMMI	0.1281	1,42	10.470		3.6117	DOSIZZ	4.0020
BRIX1	3	NDUFB6	6	HSPA4	14	HIST1H4C	7	THNSL2	1	CCDC23	6
	4.1298	pppe4			0.1285	AC02578	0.0955	11/015	3.6100		0.2500
DNAJC24	8	PRP\$1	5.7819	RAB9	79	6.1	993	MYO1B	9	NT5DC1	04
	4.1135	IFI27L1	5.7592		0.1286		10.368	ECE1	0.2772		0.2507
ZMYND8	9	1712711	2	DHODH	81	UBR4	1	ECEI	9	RNF185	8
	0.2443	ZMPSTE2	5.6997		7.6997		0.0967	SIVA1	0.2778		3,9794
RNF141	27	4	2	PEX19	3	PIGZ	107	0.07.12	27	METTL1	1
DDV40	4.0713	DEK	5.6890	DURG	7.6030		10.255	TIPIN	0.2778		3.9557
DDX49	2	CEDDMIDA	6	DHPS	5	MAGOHB	6		41	POLR3G	9
CDACE	4.0608	SERPINB1	5.6880 5	CAP1	0.1316 7	KETDO	10.238 4	PSIP1	3.5952	112.06	3.9513
SPAG5 2010107	0.2465	A	5.6837	AC10287	7.4739	KCTD9	10.228		3.5944	H2-Q6	0.2539
H07RIK	74	KCNAB2	5,0837	6.1	3	CNDP2	10.226	USP11	2.5544	GM10495	19
TIOTINI	0.2478		5.6500	0.1		AC16399	10.131		0.2783	GWIE 155	0.2561
TRIAP1	73	NPRL2	2	SSSCA1	7.4544	3.1	1	BATF3	94	RAC3	58
	4.0307	9030619P	5,6431	2010305A	7.4325		0.0992	2411/	3.5873	1700054	3,8999
DHDPSL	3	08RIK	6	19RIK	6	POP1	703	RALY	9	O19RIK	3
	4.0169	MADDE1	5.6322		7.3980		10.042	MTHE		ТМЕМ38	3.8935
CCDC130	5	MAPRE1	3	NDUFB2	8	DHDDS	9	MTHFS	3.5871	В	6
	4.0061	UFD1L			7.3864		10.023	3110001	3.5603		0.2571
CPSF3L	5	Groze	5.6314	GAA	6	YIPF1	1	D03RIK	5	BCAT2	08
	l .	IL2	5.6313	HIST1H2B	7.2938		9.9747	1500002	3.5587		3.8566
GUK1	4.0013		3	N	4	RBM4B	1	O20RIK	7	BATF3	5

_	-	Differenti		·····	-						
GPR65	-KO-	GPR65	-ко-	PLZP-		PLZP-		TOSO		TOSO	
IL1B+IL6	+ IL23-	TGFB1+II	.6-96h-	IL1B+IL6	+IL23-	TGFB1+II	L6-48h-	IL1B+IL6	5+IL23-	IL1B+IL0	5+IL23-
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W
	T)		T)		T)		T)		T)		T)
	3.9869	COPS7B	5.6130		7.2840		9.9591	D6MM5E	3.5547	23100611	3.8502
TMEM85	1		4	DNAJC19	4	MED24	6		8	04RIK	5
ACTRT2	3.9647 8	TEX14	0.1786 36	CLN3	0.1375	R3HDM2	9.8962 5	RIT1	3.5512 6	вмус	0.2601
ACTIVIZ	0.2529			CLIVS	7.2421	1(3(104))2	9.8499		3.5377	DIVITE	0.2612
PPIL3	03	42262	5.5932	PUS7L	3	MTBP	4	SYTL3	3	CBX7	6
	0.2531	RNASEH2	5.5817		7.2348		9.8392	CCT1			0.2615
RSRC1	47	С	4	FAM188A	1	PUS7L	3	GGT1	3.5364	EGFL7	14
		PPOX	5.5695		0.1395		0.1017	ETFB	0.2832	AC12540	3.8122
ZFP68	3.9485	1100	7	IL3	57	TNF	67		29	5.1	9
CEL 11	3.9464	NUDT2	5.5653	CCNDD3	7.1505	er (p.ca	0.1021	GGPS1	0.2837	NOUTDO	3.7938
SEL1L	9 3.9341		8 0.1803	GGNBP2	7.1216	SURF2	0.1025		3.5127	NDUFB2	0.2647
SLC12A6	2.9341	CD27	0.1603	ZFP353	7.1218	TFPT	9	ZFP58	2.3127	ING3	62
SECIZAC	0.2547		5.5286	211 333	7.0826	11.1	0.1026		0.2857	H V GO	0.2658
YBX1	05	MOCS2	5	VKORC1	2	CERKL	7	RTEL1	42	THG1L	05
	3.9236	RGS1	5.5235		0.1424		9.7340	BCL3	3.4953	TMEM14	3.7418
ARID5A	1	VQ21	2	POP5	77	GM10506	3	BCL3	9	7	1
	0.2549	LXN	5.5170		0.1428		0.1027	MFSD11	0.2877		3,7368
CCDC52	01	7.11.	5	TXNL4A	21	TAF12	45		88	ZCCHC10	3
DIIIIADD	3.9192	PTPN6	5.4705	7CDD1	0.1428	ALCE	9.7128	SPSB1	3.4731	DOLDSCI.	0.2679
DULLARD	9 3.9184		0.1830	ZCRB1	6.9972	ALG5	9.5880		3.4640	POLR3GL	58 3.7288
CD209C	3.3184	GM10999	75	GM14420	0.3372	GM7075	3.5000	PRL7B1	3.4040	CD72	3.7200
00200	3.9068		5.4561	AL732476	6.9849		9.5816		0.2889	1110051	3.7246
TTC33	5	PES1	8	.1	9	FAM96B	5	MAPRE2	47	M20RIK	1
	0.2563	SNRPD2	5.4438		0.1432		0.1048	CHAF1B	0.2895		3.7143
RBKS	93	JINNE DZ	2	PARS2	42	MYLPF	64	CHAFIB	52	MBD6	9
	3.8967	ANKRD37	5.4415	2610044	6.9658		0.1051	AP2A1	3.4398		3.7074
PARP3	5		7	015RIK	3	KDM4C	7		2 4106	RNF38	0.2700
FAM71F2	0.2570 88	CDCA2	0.1838 65	AC11725 9.1	6.9419	CTSW	9.4813	SCYL3	3.4186	GGT7	0.2700
2810405K	3.8863	E130306	5.4289	3.1	6.9319	5730469	9,4723		3.4170	C630004	0.2711
02RIK	2	D19RIK	8	GRSF1	2	M10RIK	2	LRIG1	2	H02RIK	04
					0.1449		0.1058	DEK	3.4099		3.6790
GM10720	3.8603	WDR83	5.3926	BNIP2	06	SH3KBP1	24	RFK	3	ORC5	3
	3.8529	EIF2B2	5.3702		6.8763		9.4231	MFSD10	3.4047		3.6758
CSE1L	5		8	PNKD	4	FBXL17	5		4	PHTF2	9
A NIKDD 40	3.8500	MAF1	5.3537	CN410202	C 0C12	A330049	9.3767	H2-Q8	3.4027	4930425F	3.6732
ANKRD40	3.8030	2310003L	5.3520	GM10203	6.8613 0.1463	M08RIK	9.3712		3.4021	17RIK TMEM19	0.2722
MCART6	3.8030 6	2310003E	J.3320 7	SLC7A4	52	MAGED2	9.371Z 4	MAFK	3.4021	9	94
1700093K	0.2633		5.3487	323.711	6.8230		0.1067		0.2941	-	3.6692
21RIK	1	IFNAR2	3	POLR2I	7	NCF4	86	HIATL1	7	POLRMT	9
	3.7941	EIF2S3Y	0.1870	TMEM22	6.7824		9.3342	GM8923	3.3972		0.2731
MYC	6	111 2331	55	3	2	SNRNP25	6	GIVIOSES	4	CNOT6L	67
AC13178	3.7759	ASNS	5.3348	TMSB15B	0.1481		9,3156	ETV6	0.2945		0.2741
0.2	6		7	1	73	ABAT	0 2007		93	EXOC5	82
GM10719	3.7515 4	PDLIM2	5.3300 1	R3HCC1	0.1486 19	CD3G	9.2987	2310079 N02RIK	0.2949 64	ARL5C	3.6345
OINITO\13	3.7485		5.3274	VOLLECT	0.1508	CDJG	9.2861		0.2960	Anio	3.6116
MGAT4C	2.7483	NAA16	J.J∠/ 4 9	TMUB1	0.1308	PIGX	9,2001	CC2D1B	56	PHYHD1	7
	3.7385	cerc.	5.3157		0.1516	2410017P	0.1079	MATCHO	3.3733	BC05532	0.2778
MTA2	2	GSTO1	9	CWC27	24	09RIK	27	MTCH2	5	4	08

				essea gene	s for GP	R65-/-, PLZ		1030-/- 11	117 cens	ı	
GPR65	-KO-	GPR65	-KO-	PLZP-	KO-	PLZP-	KO-	TOSO	-KO-	TOSC	-KO-
IL1B+IL6	+ IL23-	TGFB1+II	.6-96h-	IL1B+IL6	+IL23-	TGFB1+II	_6-48h-	IL1B+IL6	5+1L23-	IL1B+IL	6+1L23-
96h	-1	1		48h	-1	1		96	h	96	ih
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
30	(KO/W	G	(KO/W	00110	(KO/W		(KO/W	00110	(KO/W		(KO/W
	T) 0.2679		T) = 2907		T) 0.1517	1700128F	T) 9,2019		T) 0.2967		T) 3.5963
MAGOH	75	GM10120	5.2897 2	B4GALT3	0.1517	08RIK	9,2019 7	POU2F2	35	CHAF1B	2.3363
WII (GOTT	3.7308		5.2569	AC14210	0.1523	GGHIIX	9.1819		3.3606	DW U 1D	0.2781
TSPAN4	6	MKNK1	5	4.1	05	PTPN2	9	wwox	2	ARIH1	13
	3.7254	IFRD1	5.2484		0.1531		0.1089	SUFU	3.3560		0,2800
GM11167	6	111,004	2	ACIN1	82	POLR2A	41	5010	8	ROBLD3	33
CLYBL	3.7173 6	SDCBP	5.2464 2	SYTL3	0.1535 35	CCDC9	9.1568 9	NMI	3.3491 3	TNFRSF14	3.5706
CLIDL	3.7106		5.2456	31113	6.4958	CCDC3	9		3.3418	TINENSE14	0.2800
GM10717	6	UBE2NL	2	DNASE1	8	PTPMT1	9.1473	WDR11	8	FUCA2	98
	3.7099	TNAFNACO	5.2315		0.1545		9.0764	CN41C41C	3.3374		3.5448
ACTR1B	5	TMEM60	8	GM16372	87	TMEM85	2	GM16416	9	GM11275	1
	3.7041	GM8909	5.2256		6.4688		9.0478	MRPL27			3.5375
BOLA3	3		4	MLLT3	7	PLXND1	5		3.3349	HERC3	4
CEPT1	3.6728 8	GM9762	5.2094 2	RBM22	6.4636	GM8054	0.1107 11	COPZ2	3.3348	PSMD14	0.2832 45
CLF11	3.6723		۷.	RDIVIZZ	0.1554	GIVIOU34	0.1109		3.3343	L DIMIOTA	0.2845
LUC7L	2	LZIC	5.1977	FKBP1A	68	SEPSECS	44	ZFP318	9	TTC7	16
	3.6703	INSL6						APPL1	3.3328		3.5126
LAIR1	3	IIVSLO	5.1949	PLA2G16	6.4322	COX15	8,9846	APPLI	9	AGPAT2	9
	3.6702	GM10925	5.1722	TMEM12	0.1561		8.9789	TCF4	3.3316	AC15272	3.5082
MRPL17	4		7	6A	35	P4HA2	8		8	1.1	8
ASAH1	0.2737 68	CDK11B	5.1663 1	METTL11 A	0.1565 75	EED	8.9773 3	TMEM12 6A	3.3264	RAD23A	3.4964
ASAIT	3.6490		4	RPL21-	6.3542	LLD	8.9616		3.3238	MIDESIA	3.4871
SMARCD2	6	ANXA5	5.1584	PS7	3	MAT2B	2	VWA5A	8	ADAR	8
	3.6424	GPN3	5.1376		0.1581		8.9496	MED10	0.3009		0.2869
GM10718	5	GING	3	ZFP280C	42	FUCA2	8	IVILDIO	58	STX4A	19
DI II (DI O	3.6316	FXR2	5.1359	AC13283	6.3225	NUMBERS	0.1117	COX19	3.3212	1386	0.2871
RUVBL2	3.6309		5.1357	7.1	6.3012	NDUFB4	36 0.1122		3.3165	2210016L	3.4744
TTC35	5.0303	TMBIM4	2.1337	MAP3K5	0.3012	ACAD8	77	GM13147	3.3103	21RIK	5.4744
11.000	3.6205		5.0915		0.1596		8.8842	IDE4	3.3126		3.4704
TPST2	6	ELF2	7	IL24	47	WBSCR22	4	IRF1	4	IL15RA	7
	3.6026	PDCD5	5.0698		0.1598		0.1129	BUB1	3.3027	9030617	0.2890
GM7713	9		- 8	SRCRB4D	36	SMS	65	5051	4	O03RIK	13
CCDC107	3.5940 3	TTC4	5.0531	HCST	6.2420 8	NBR1	8.8219	LYAR	3.2997 9	TRPC2	3.4544
CCDC107	0.2785		5.0520	псэт	6.2342	INDUT	8.8094		3.2924	INTUZ	3.4459
GOSR2	0.2703	MED6	1	GM6096	1	INSIG2	3	KLHL22	5.2324	MPP6	3.11,23
1110003E	3.5867	PTP4A2	5.0264		0.1604	TMEM14		TCD2	3.2839		0.2903
01RIK	9	PIP4AZ	7	RRP8	73	7	8.8022	TSR2	7	TEAD2	37
	0.2811	FBXO6	5.0233			AC16047		WFDC12	3.2708		3.4387
FAM175B	68		3	ALKBH3	0.1605	1.1	0.1139		4	DYNLT1B	8
CCNDBP1	0.2813 81	KCTD13	0.1995 41	KLHL15	6.2265 8	POLE3	0.1141 7	METTL8	3.2697 3	HIST1H4C	3.4330
CCINDDLT	3.5510	AA46719	5.0057	VELLETA	0	FULLS	8,7317		0.3064	BX67966	3.4259
HCST	4	7	6	SLC15A2	6.215	CDC25B	7	ST6GAL1	54	8.1	5
ZMPSTE2	3.5183		4.9706		6.2025		8.6999	CLEC16A	0.3071		3.4219
4	1	CREM	9	GMPPA	3	MMP16	1	CLEC16A	68	AQR	4
	0.2849	MYCBP	0.2012		l			FOXJ3	0.3080		3,4205
SUCLA2	2 5001		52	GM10695	6.2007	CAR9	8,6955		99	GLRX	1
IRE5	3.5001	CUL1	4.9608 5	SDATADA	0.1613	4930425F	8.6519	MEN1	3.2378	AW11201	3 2007
IRF5	1		5	SPATA24	65	17RIK	3		8	0	3.399

		Differenti	ally expr	essed gene	s for GP	R65-/-, PLZ	P-/- and	TOSO-/- T	n17 cells		
GPR65	-КО-	GPR65	i-KO-	PLZP-	КО-	PLZP-	ко-	TOSO	-КО-	TOSO	-KO-
IL1B+IL6	+ IL23-	TGFB1+II	L6-96h-	IL1B+IL6	5+IL23-	TGFB1+II	.6-48h-	IL1B+IL6	5+IL23-	IL1B+IL6	+IL23-
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
	(KO/W		(KO/W		(KO/W		(KO/W		(KO/W		(KO/W
	T) 3.4977	0610010K	T) 4.9544	1700128F	T) 6.1816		T) 8.5019		T) 0.3094		T) 0.2942
SNX11	7	14RIK	5	08RIK	3	TEAD2	1	CREB1	75	CREB1	8
	3.4815	RARS	4.9530		0.1630		0.1177	WDR91	3.2223		3.3860
CLN6	4	CARA	8	PRMT1	87	TRPM7	74	MDK21	2	MKI67IP	2
LIEBAKA	3.4800	MLX	4.9426	CENIDE	6.1181	CAACOOC	0.1180	RPUSD3	3.1980	n a certica	2 2012
HEMK1 AC13904	0.2877	BC02921	4.9275	CENPT	0.1638	GM6396	58 8.4549		3.1926	PACSIN3	3.3842 3.3804
2.1	34	4	6	VAMP8	97	IFI27L2B	5.4343	MAN1A2	3.1320	CDCA3	2.3304
	3.4636		4.9255				8.4477	KDMAD	0.3133		0.2958
MOSC2	5	HCFC1R1	2	FAM132A	6.1003	CLPP	4	KDM4B	14	SLCO3A1	42
ADAMTSL	3.4465	IDH3G		44440040	6.0804	4930431F	8.4468	RPS6KA1	3.1848		0.2960
4	3.4453		4.9087 0.2037	ANKRD12	6.0593	12RIK	0.1186		0.3144	GABPB1	55 3.3644
ENTPD1	3.4433	GM11027	23	MED12	7	GM14326	15	OPCML	52	PPIL1	5.3044
	3.4350	CTCIAL	4,8865		0.1653		0.1187	DCDC4	3.1748	– –	3.3515
HEATR7A	5	CTSW	9	USP48	95	GM14399	19	PSPC1	9	GM13145	5
	0.2913	H2-T22	4.8845			TMEM41	0.1188	GEMIN6	3.1691	HNRNPUL	0.2992
RBMX2	48		3	ARF2	6.0275	В	66		0.3156	1	66
H2-KE6	0.2917	UBAC1	4.8837 3	EP400	0.1659 79	FAM173A	0.1189 28	RSRC1	0.3156	HIST1H4D	3.3302
TIZ KEO	0.2921		<u> </u>	21 100	6.0203	, , , , , , , , , , , , , , , , ,	0.1191	DUDE4	0.3161	1110721770	0.3004
ACADM	64	LRRC42	4.8802	SEC22A	4	PARL	11	PHRF1	04	SRSF9	36
	0.2929	COMMD2	4.8767		0.1675		8.3752	MTMR2	3.1621		
ACAT1	7		5 4.8736	POP4	5.9655	PFDN5	5 0.1195		7	YIPF1	3.3284
TTC4	3.4101	UFC1	4.6730	CUL4A	3.9633	DUSP22	0.1193	СВХ6	3.1587	1110034B 05RIK	0.3010 17
1101	0.2933	PATE Area	4.8554	COLIN	5.9553	0.001.22	8.3424	NIPSNAP	0.3166	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.3013
MPP1	62	EHMT1	6	RHBDD2	6	USP46	7	3B	38	FXR2	91
	3.4068	TSPAN32	4.8518		0.1684			ZFP560	3.148		
DNAJB6	3.4045		2 4.8445	MED13	0.1688	RGS10	8.298 8.2815		3.1471	SEPP1	3.3074 3.3052
PEX3	3.4043	NDUFA5	4.0443	GRIPAP1	36	ZNHIT1	6.2013	PENK	3.14/1	CTSE	3.303Z
	3.3992	cupe	0.2069		0.1689		8.2499	DNIAICAS	3.1460		0.3028
TM2D3	7	SHBG	32	POLB	36	TMEM68	6	DNAJC12	1	GM16415	46
	0.2941	NDUFAF1	4.8305	AC11718	5.9158		8.2397	ALAS1	3.146		3.2952
ING3 BC00333	89		4.8252	4.1	5.9133	MYD88	7 0.1215			LY6C1	0.3044
1	3.3823	H2-Q2	4.0232	FAM45A	3.9133	ADRBK1	0.1213	ATHL1	3.1458	STT3B	0.3044
_	3.3743	NIA A 70	4.8218		5.9057	4933424B	0.1217	TDIMAGO	3.1435		3.2835
GM10721	2	NAA38	4	ATP8B2	2	01RIK	98	TRIM23	6	ABHD10	5
C1.4700.4	3.3648	REXO4	4.8117		5.8877	000mias	8.2078	RPA3	0.3191	e ili ve e	3.2790
GM7204	3.3582		4.7535	HIRIP3	0.1702	SQSTM1	9 0.1221		0.3191	SKINT8	0.3049
GM11110	6	ADRM1	4,7555	TPRKB	18	GM11007	61	MYSM1	82	FANCE	79
	0.2982	CENAMA?	4.7496		0.1705		0.1221	DIAKAR	3.1290		0.3062
CLUAP1	64	GEMIN7	3	BRP44	03	GM14430	61	PI4K2B	7	GSR	38
04000		GM16372		cu: c	0.1707		0.1221	AKR1B10	0.3201		3.2492
CASP2	3.3411		4.7397	GNAQ	5.8499	GM14432	61 0.1221		2 1192	IL10RB	3.2437
PXT1	3.3406	INPP4B	4.7351	IMPA1	5.8499	GM2007	0.1221 61	AP1G2	3.1182	CCDC12	3.2437
	3.3404	******	4.7321		0.1709		8.1828	DOLDS:	3.1180		0.3087
IFT81	2	MRPS33	6	FXR2	76	RNF214	5	POLR2A	9	GM9726	11
	0.2993	DRAM2	4.7313		0.1724		8.1815	HOMEZ	3.1067	8430419L	0.3087
INPP5B	78		8	ZCCHC11	62	BBS5	1	.==	9	09RIK	95

GPR65	- KO	GPR65	: KO	PLZP-	KO-	PLZP-	KΟ	TOSO	KO-	TOSO	KΟ
IL1B+IL6		TGFB1+I	L6-96h-	IL1B+IL6		TGFB1+II	.6-48h-	IL1B+IL6		IL1B+IL6	
96h	1-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
	(KO/W		(KO/W		(KO/W		(KO/W		(KO/W		(KO/W
	T)		T) 4 7265		T)		T)		T) 3.0988	06100111	T)
KIN	0.3007	H2-Q7	4.7265 3	YY1	0.1735 66	PLA2G4C	8.1723 6	TCFE3	3.0966	0610011L 14RIK	3.2323 6
KIIN	3.3072		4,7230	111	0.1739	FLAZGAC	8.1669		0.3228	14MK	0.3094
GLUD1	1	PHF5A	2	ZFP687	0.1753	TIMM17B	5.1005	BLVRA	72	RFC4	0.3034
	0.3026		4.6996		5.7340		8,1244	2224242	3.0918		3,2150
ADCK5	4	TANK	6	ASAH1	9	ITGB4	7	PPP1R10	5	CD69	8
		STOML2	4.6915	1110018	0.1745		0.1231	FUCA1	3.0907		0.3112
RANGRF	3.3018	STONILZ	1	G07RIK	77	STAM2	52	FUCAL	3.0907	CCDC58	59
	0.3032	TBCA	4.6727		5.7164		0.1233	WHSC1	0.3238		0.3115
OBFC1	49	1001		MT2	6	RNMT	06	Wilder	79	MCEE	93
DDED	3.2799	GDI1	4.6536	CONTRA	5.6896	1278.1	0.1233	CLYBL	3.0825	ON MARCHO	3.2052
PREB	3		4.6304	COMTD1	2	KIN	8 4000			GM10576	3 2050
BRI3	0.3049	FAIM3	4.6394 7	SNAPC5	0.1762 33	GNG2	8.1000 3	SLC10A3	3.0807	RDH9	3.2050 7
כואוט	0.3054		, ,	SNAFCS	5.6682	GNGZ	8.0805		3.0805	ROHS	3.2034
GM5116	0.3034	ELMOD3	4.6303	EIF3G	2	HSPB11	1	PTPN5	6	SDF2L1	3.2034
0.0.5110	3.2732		4,6274	230	0.1766		8.0663		0.3249	44	3.1966
NINJ1	9	ACBD5	8	RASAL3	44	TRMU	5	MSL1	43	FAM53B	1
	3.2726	146147	4.6100		0.1767			DDD166	0.3249		3.1962
ANKRD5	3	MCM7	3	NBR1	32	CCDC53	8.0588	PPP1CC	84	ZFP687	7
	3.2716	CDK1	0.2174		0.1769		0.1242	BLOC1S1	3.0766		0.3130
NAPA	6	CDKI	36	MKNK1	48	ZFP120	45	DLOCIJI	2	TOR1AIP1	11
		LIMS1	4.5884		0.1775	2310045	8.0312	RUNX2	0.3254		0.3131
PNKP	3.2648			SFXN5	69	NO1RIK	9		57	TSPAN5	31
MRPL12	3.2625	CD53	4.5876 9	PRPSAP2	0.1778 26	WDR54	0.1249 42	ECHS1	3.0670	CASKIN2	0.3131 55
IVINFLIZ	3.2618		4.5874	PREJAFZ	5.6199	WDRJ4	7.9890		3.0664	CASKINZ	0.3132
SMS	3.2018	PCNP	5	CISH	3.0133	ZFP277	6	BECN1	1	TSEN34	24
0.11.0	0.3069		4.5714	0.011	0.1783		7.9685		3.0605		0.3135
FTSJ3	78	LTA	7	WHSC1	33	GM5830	4	HINT3	8	PLXNA3	12
	3.2568	LST1	4 E C 7 E		5.6046		7.9626	RIN3	3.0586		0.3144
ALKBH7	5	L311	4.5675	PDCD6	8	LST1	1	KINS	4	DNTTIP2	57
	0.3078	GM129	4.5614	A830080	5.5882			STK38	3.0384		0.3148
GTPBP2	96		2	D01RIK	9	GGNBP2	7,9446	011100	2	DEDD	07
CITO	3.2427	YWHAE	4.5364	CNACCO	0.1791	CTVAA	0.1259	CD74	0.3293	1.0847	3.1745
GIT2	2 2274		4 6060	GM9805	0.1705	STX4A	0 1 2 6 2		93	LSM7	3.1732
EDC4	3.2374	SNRPA1	4.5268	1700019E 19RIK	0.1795 83	ITGA3	0.1263 11	RIPK2	3.0345	CD209C	3,1/32
LDCT	0.3097		0.2212	151(1)	0.1797	11070	0.1263		0.3301	CDZOGC	3.1731
KIF18B	56	CCDC55	66	MTF1	24	B9D1	96	PLK4	37	NPRL2	3.17.51
	0.3112	#(A)3 **	4.5038		5.5426	CASP8AP	7.9116	NCUR	0.3303	2010317E	3.1694
MESDC2	01	SIN3B	8	NUDT1	5	2	4	NSUN5	78	24RIK	2
3200002	3.2127	BUD31	4.4995		0.1808	2310004		CCDC124	0.3307		0.3155
M19RIK	2	TCOOL	8	THAP3	12	N24RIK	7.8659	CCDC124	46	COPS8	22
	0.3113	CAMTA1	0.2224		0.1812		7.8408	UBE2L6	3.0211	1700128F	3.1625
TOP2B	71		75	ABCB8	46	GM10192	4		7	08RIK	3
DCTNG	3.2036	TSPAN31	4,4944	TOPOD	0.1812	E31/4	7.8361	D2WSU8	3.0201	ALDH16A	0.3163
DCTN3	0.2124		4 4070	TOP2B	F F 122	EZH2	0.1370	1E	0.2211	1	3 1547
2310061I	0.3124	GM7075	4.4870	AL844854	5.5133	MDDLAT	0.1279	NUP85	0.3311	EDI IN 114	3.1547
04RIK	0.3149		4.4854	.1	0.1814	MRPL47	77 7.8019	BC02382	3.0178	FBLIM1	3.1544
CTNNBL1	75	NUP43	4.4654	SLMAP	59	GM10576	7.6019	9	3.01/8	GM5356	3,13 44 8
RASL2-9-	3.1701	TMEM22	4.4755	32.11.11	0.1821	water with a district of the same of the s	7.7829		3.0080	217,2220	0.3172
	1	3	1	POLD3	26	GIMAP5	2	CLTC	2	TRADD	15

	<u> </u>				<u></u>				_		
GPR65	-KO-	GPR65	i-KO-	PLZP-		PLZP-		TOSO		TOSO	
IL1B+IL6	+ IL23-	TGFB1+II	L6-96h-	IL1B+IL6	5+1L23-	TGFB1+II	L6-48h-	IL1B+IL6	+1L23-	IL1B+IL6	5+1L23-
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
Gene	(KO/W	GC//C	(KO/W	Gene	(KO/W	D C.10	(KO/W	Gene	(KO/W	Q 0112	(KO/W
	T)	00100070	T)		T)		T)		T)	EDALA 100	T)
IDH1	0.3156 5	0610007C 21RIK	4.4707	SCLY	5.4675 4	MAPKSP1	7.7636 2	COG6	3.0069 7	EBNA1BP 2	0.3179 65
וחחו	3.1662		4.4689	SCLT	0.1832	MALKSET	0.1292	2310039	0.3325	Z	0.3181
KIF3A	3.1002	ZFP68	6	JKAMP	42	MFHAS1	44	H08RIK	95	ABCC1	11
	3.1503		4.4661		0.1835	ARHGAP2	7.7160		3.0047		3,1380
LSM12	1	CD2	7	RFT1	57	3	7	MNT	5	PDCL	6
	3.1464	NUSAP1	4.4651		0.1845		0.1296	PCYOX1	0.3337		0.3188
GM221	2	MOSAF1	6	C1D	99	STARD4	74	PCTOXI	52	CCDC43	46
AC13178	3.1459	AGPAT3	4.4611		0.1847	1600002K		B230312	2.9944	4930474	
0.3	1		9	CCDC59	04	03RIK	0.1297	A22RIK	8	NO5RIK	3,1328
FALIDAA	3.1443	AC15655	4.4554	KDELC4	0.1847	coggoila	7.7101	CCNE1	2.9838	00011110	3.1289
FAHD2A	3 1261	0.1	3 4.4460	KDELC1	61	SDR39U1	0.1207		2.9838	PDLIM2	2 1202
DOLPP1	3.1361 8	CDCA8	4.4460	ADCK3	5.4119	NFYB	0.1297 57	NDUFS5	2.9838	CCDC34	3.1282
DOLFFI	3.1357		4,4444	ADCKS	0.1849	METO	37	1110004E	2.9805	CCDC34	3.1244
STAM	1	BTF3L4	1	SEPSECS	85	GRAP	7.6721	09RIK	2.3003	SRSF1	6
	0.3193		4,4418		0.1852		7.6392		2.9802		3.1237
TIMM10	94	DDX52	7	VEGFA	12	LUZP1	3	HMGB1	2	DPP7	5
	3.1259	NDUFS5	4,4277		5.3960		7.6154	GTF2IRD2	2.9792		
GM10203	9		4	SC5D	3	HCST	4	GIFZINDZ	3	IL1F9	3,1218
	0.3203	CDC42SE	4.4198		5.3901		7.6092	TMED5	2.9786		0.3205
NUBP1	16	1	4	FNBP1	5	ZFP637	6	1111233	6	SLC4A11	14
NATO	0.3203	UCHL5	4.4133	A I A A D 4	5.3809		7.5736	FAF2	2.9773	410014	3.1163
NAT9	97 0.3209		8 4.4089	AIMP1 1810020	0.1862	SRP19	7.5654		0.3369	ALG14	0.3210
RB1	64	PIGYL	4.4063	D17RIK	0.1862	OSGEPL1	7.3634 3	CCR4	0.5569	MFSD2A	52
NDI	3.1152			DITTIN	5.3639	TMEM19	7.4878			IVII DDZ/S	0.3211
H2-GS10	8	PDLIM7	4.4059	ECHDC1	2	9	1	NTNG2	2.9583	RB1CC1	73
	3.1101	VD 463	4.4025		5.3433		0.1338	DNIE44	0.3390		0.3211
MYCBP	7	VDAC3	9	MTIF3	7	SENP3	39	RNF44	22	FXR1	84
AC13239		4933424B	4.3895		5.3349			NDUFAF3	0.3393		3.1109
1.1	3.1075	01RIK	8	RAPSN	4	TSEN2	7.4544	110017113	79	PINX1	8
IDO43	0.3220	PPP6C	4,3858	MPHOSP	0.1878	CDD3	7.4378	IFT20	0.3404	D4ERTD2	3.1105
IPO13	49 3.1051		4 2705	Н8	0.1881	GBP2	3	2210000	82	2E	3.1097
PIP4K2B	3.1051	SUCLA2	4.3785 2	GM15401	17	CIB1	7.4126	2310008 H09RIK	0.3405 02	GNG2	3.1097
4930522L	3.1012		4.3661	GIVITOTOT	0.1891	CIDI	7.4078		2.9320	GING2	3.1055
14RIK	7	ENPP2	4	ТВСВ	79	IFRD1	4	CAMK2B	4	ERLEC1	4
1810043	3.0995	Herr	4.3532	5830405	0.1895	3110003A	7.4003	6003	0.3419		3.1023
H04RIK	1	HCST	7	N20RIK	1	17RIK	4	COQ2	51	ARMCX1	1
	0.3233	GNPDA1	4.3490		0.1896	2010107	7.3849	MRPL53	2.9164		3.0998
PSPH	27	GNI DA1	1	OBFC1	33	H07RIK	6	IVIIII ESS	7	GSTK1	7
		BAT1A	4.3470	AC16100			0.1354	CD44	0.3428		0.3227
GM10106	3.0872		2	1.1	5.2627	ZFP51	64		97	UBE2D2	93
ZFP451	3.0859	ZFP738	0.2305	AC15628	5.2625	ARHGAP1	7.3765	NFKBIL2	0.3431	HIST2H3C	3.0978
∠FF431	3.0807		76 4.3296	2.1	5.2599	5	3 0,1366		65 2.9131	8430426	0.3237
R3HCC1	5.0607	MBD2	4,3230	GLUL	5.2399	POLD1	72	RGS1	2.9151	H19RIK	62
	3.0785		4.3294	3202	5.2285		0.1369				0.3238
CHCHD2	6	PRR13	6	LIME1	9	TTLL12	3	POLR2K	2.9129	SMARCD2	87
	3.0775	DBV1013	4.3246		0.1913		0.1369	DNIDCO	2.9113	T	3.0841
PCCA	3	DPY19L3	8	CCDC43	52	MAN1A2	38	RNPC3	3	BDP1	5
·	3.0738	GM6180	4.3231		5.2239		7.2938	ARL5B	0.3444		3.0774
WDR45	1	01110100	1	DNAJC1	4	HAUS1	4	, 111220	85	MPV17	1

		Differenti	ally expr	essed gene	s for GP	R65-/-, PLZ	P-/- and	TOSO-/- Th	117 cells		
GPR65	-КО-	GPR65	i-KO-	PLZP-	ко-	PLZP-	ко-	TOSO-	-KO-	TOSO	-KO-
IL1B+IL6-	+ IL23-	TGFB1+II	L6-96h-	IL1B+IL6	+IL23-	TGFB1+II	.6-48h-	IL1B+IL6	+IL23-	IL1B+IL0	5+1L23-
96h-	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W
	T)		T)		T)		T)		T)		` T)
		SLC25A19	4.3114		5.2236	1700034	7,2785	SLC2A6	0.3448	MPHOSP	0.3252
CFHR1	3.0702 0.3271		0.2321	MRPS24	5 0.1917	H14RIK	7.2656		06 2.8990	H6	79 3.0721
EMD	52	TTF2	43	IMMP2L	98	PGAP2	7.2038 4	TBC1D9B	2.8330	CDCA5	5.0,21
		RPAIN	4.2984		0.1923		0.1376	B230208	0.3451	1700106	3,0720
BCL2L11 AC13178	0.3276 3.0493		9 4,2786	COQ6	5.1774	RASA1	88 7.2493	H17RIK	36 2.8971	N22RIK	0.3257
0.1	3.0493	CARS	4.2780	PIGK	7	JMJD6	7.2433	ZBTB49	2.03/1	ACADSB	35
	0.3282	RCC2	4.2683		0.1931	AC13239	7.2055	WDR12	2.8961	AC12509	3.0686
VTA1	16	NCCZ	4	IL15RA	69	1.1	9	WDRIZ	9	9.1	2.0570
ZMAT5	3.0448 7	DPF2	0.2345 01	VPS25	0.1932 71	COX16	0.1391 35	PTOV1	2.8952 9	SELENBP1	3.0679
	0.3286	PHF10	4.2447		5.1652		7.1859	SRR	2.8933		3.0635
PITPNA	21	11010	5	GM5116	7	SDCCAG3	7			PLA2G16	8
HNRNPH1	0.3296 38	BBS9	0.2358 76	PRM1	5.1504 4	2500003 M10RIK	7.1757 7	2010111I 01RIK	2.8899 2	HIST1H1B	3.0634
	3.0288	RPP21	0.2362		0.1942		0.1393	BLCAP	0.3473	1810030	0.3267
STX17	6	RFFZI	53	CCL5	69	SLC25A14	58	DLCAP	86	N24RIK	36
TFAM	3.0180 5	VMN2R7	0.2367 01	GRAMD1 B	5.1398	TCTEX1D	0.1398 5	PHF20L1	2.8691 6	ARID4B	0.3273
HAW	3.0057	ENDERA	4.2054	В	5.1378	4930447C	7.1450	EDW4/4	2.8680	AIIID4D	3.0542
MXRA8	8	EWSR1	9	CAPS2	9	04RIK	2	FBXW4	8	NOX4	1
ACADSB	3.0019 9	BLOC1S1	4.2011	RPS6KB1	5.1377 8	MRPL53	7.1318 3	PHLDB1	0.3487 14	NEK8	3.0482
ACADSB	2.9972		4.1888	KFJOKDI	0.1947	TMEM39	7.0772	D4.0114	0.3496	IVLNO	0.3281
RPL21	1	GOLT1B	1	TBCA	23	Α	5	RAPH1	41	BLCAP	74
11471	2.9966 6	PFKL	4.184	CLUAP1	0.1948	6 4771275	7.0602 9	PIH1D1	2.8557	FARMADD	A 2202
HAT1 AC15157	0.3338		4,1766	CLUAPI	96 0.1950	MTIF2	9		2.8534	FAM49B	0.3283
3.1	57	FAM132A	1	PUS1	37	SOD1	7.0561	CREG1	6	RHBDD3	72
DUDT4	0.3346	GSN	4.1732	NATO	5.1157	C11111201	0.1421	LMF1	2.8531	ECUBCA	0.3289
PHPT1 TMEM12	79 2.9826		4.1684	NAT9 TMEM21	5 0.1955	GM14391	7.0302	BC00326	2.8529	ECHDC1	0.3291
0A	8	UGDH	3	9	9	GM16519	8	7	1	UFD1L	48
2500	0.3355	NR2C2	4.1657	4.114.004.4	5.1065		7.0272	NELF	2.8361		3.0368
PEPD	18 2.9761		0.2403	ANAPC11	0.1960	ZWILCH	7 0.1429		4	MGAT4C	3.0337
UXT	7	MECR	18	SEC63	09	LENEP	93	ттсэс	2.8299	SRD5A3	2
AC13178	2.9595	ACAA2	4.1473		5.0976		6.9871	EPT1	2.8297		0.3298
0.4	6 2.9458		4.1403	EIF2C4 TRNAU1A	5.0947	BC031181	9 6.9658		2.8296	ZFP874A	0.3298
UCP2	5	GM10028	3	P	4	UNC5CL	3	NEK8	1	UGDH	91
	2.9290	REXO2	4.1339		0.1963		0.1441	MPND	0.3539		0.3303
PML	2.9277		4.1318	DIABLO	02 0.1966	CHUK	61 6.9249		03 2.8254	CUL1	3.0247
GM5531	2.3277	ATM	3	CEP55	27	SPIC	8	MOBKL1A	2.823 4 6	СМАН	3.0247
	2.9189	NUPR1	4.1317		5.0555		0.1445	ZFP287	2.8243		3.0225
GM10715	2 9140		7	GM7075	5.0445	ноокз	41 60114		2 9225	LPL	3.0154
POLR3GL	2.9140 6	GM10203	0.2420 35	AIFM2	3.0445	DLG4	6.9114 2	TBCE	2.8235 8	SIDT2	3.0154
	2.9102	TAGLN2	4.1182		0.1982		0.1453	MARK2	2.8150		0.3330
ı						************************************	(000000000000000000000000000000000000	IVI/\I\I\Z			process and the second
LSM1	7 0.3438		4.1169	NUP210	74 0.1988	ARMCX6	54 0.1453		2.8138	YBX1	0.3331

		Differenti	ena evbi	-33cd 8cm		, , ,					
GPR65	-KO-	GPR65	-KO-	PLZP-	KO-	PLZP-	KO-	TOSO	-KO-	TOSO	-KO-
IL1B+IL6	+ IL23-	TGFB1+II	L6-96h-	IL1B+IL6	5+IL23-	TGFB1+II	L6-48h-	IL1B+IL6	5+1L23-	IL1B+IL	5+IL23-
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W
	T)		T)		T)		T)		T)		T)
CTATC	2.9077	CPT2	4.1068	ARHGAP2	0.1989	ADID	0.1454	FBF1	2.8021	DAIDO	2.9946
STAT6	7 2.9068		4.1035	9	5.0244	APIP	0.1456		3	PNPO	7
DLG4	7	GM1968	1	MAN2C1	7	DET1	0.1430	MRPS23	2.8007	CENPH	2.9921
	0.3440	BEBLA	4.0981		5.0238		0.1457	1 AVD A O	2.8004		2.9888
MTCH1	18	DERL2	7	SPINK10	4	CENPV	45	MXRA8	5	LTBP1	2
	0.3448	ERGIC2	4.0915		5.0186			GOSR1	2.8003		0.3354
MAGED2	48		7	HSPB11	9	GTF2F2	6.8613	GOSINI	5	USP20	11
CLC1042	2.8994	PHOSPHO	0.2449	2810428I	0.1993	CONMINANC	6.8383 4	TAF11	0.3576	CDAMIC	0.3357
SLC10A3	0.3453	2	86 4.0800	15RIK	0.1994	COMMD6	6.8228		93 2.7947	CD40LG	0.3360
CKLF	0.5455	ATP6V1D	7	MFF	84	B4GALT3	5	CHCHD7	2.7347	CLP1	59
	0.3454	101140	4.0798				0.1466	TDID44	2.7920		0.3366
RAE1	95	LSM10	1	TIMD2	5.0101	AARSD1	37	TRIP11	4	CBX8	5
		ZNRD1	4,0745		0.1996			SQRDL	0.3582		0.3366
MED27	2.8884	_,,,,,,,,	8	UFD1L	3	IFT46	6.8108	JOINE	18	TRNT1	73
CTCE	2.8880	LGTN	4.0703	CDUC	0.1996	MAD2L1B	6.8044	TIA1	2.7904	RG9MTD	0.3367
CTSE	2.8857		4.0691	SDHC 1110001J	5.0068	Р	6.7937		9 2.7898	3 26100291	2.9591
IFT57	2.8837	WSB1	3	03RIK	5.0008	NDUFB6	6	EXOC5	2.7636	01RIK	6
	0.3465		4.0688		0.1999	0910001L	0.1472	11900071	2.7889		0.3382
GM10217	67	MTIF3	6	GM11175	73	09RIK	61	07RIK	2	BRE	96
	0.3471	RNF7	4.0568		4.9832			LYSMD2	2.7888		2.9551
CIB1	05		5	STYK1	8	GLRX2	6.7192	LISIVIDE	8	CHCHD6	2
LUNTO	0.3471 57	AC11611 5.1	0.2478 94	DADE1L1	4.9722 8	CHD8	0.1493 39	ZFP317	0.3586	ZFP451	0.3387
HINT3	0.3471	2810474	4.0227	RAD51L1	0.2019	1110008F	0.1494		0.3594	7LL42T	0.3388
TSC22D4	71	O19RIK	6	MED6	69	13RIK	52	CDC34	7	SEC61A2	05
	0.3472	LUC7L3	4.0059		0.2020		0.1496	CCDC28A	2.7795		0.3388
CDC23	4	LUC/L3	7	CNN2	84	THAP7	41	CCDC28A	5	MAP3K14	59
RPL21-	2.8772	TNFRSF4	3.9988		4.9349	ATP5L-	6.6793	BRD7	2.7776		2.9472
PS14	5			PLAC8	7	PS1	2		5	SLC25A19	3
UPP1	0.3479 12	OGT	3.9974	MRRF	0.2031 65	MED4	0.1498 21	SLC39A1	0.3602 42	RG9MTD 2	2.9472
OFFI	0.3480		0.2504	IVIIXIXI	0.2032	IVILUA	0.1499		2.7752	4	2.9439
AI314180	02	TNNC1	44	DPM2	26	SNX15	21	CRTC2	3	PQLC3	3
	0.3484	GM12942	3.9786	3110001	4.8918		0.1500	ATP6AP2	2.7739		2.9423
KBTBD4	25	GW112342	3	D03RIK	7	AHSA2	6	ATFOAFZ	4	PPT2	2
2700094K	0.3489	JTB	3.9769		0.2050		6.6263	USP18	2.7739		2.9405
13RIK	21		3.0744	SMAD4	77	PDCD1	6		1	TMTC2	5 2400
H2-Q6	2.8592 6	WBP5	3.9744 9	RGS10	0.2056 74	1110058L 19RIK	6.6102 2	FANCL	2.7726	MRPL53	0.3400
112 Q0	2.8582	4930522L	3.9707	4933427	0.2058	15.mx	0.1515	PAFAH1B	2.7709	2610001J	, ,,,
ORC4	8	14RIK	3	D14RIK	23	WFDC12	38	1	6	05RIK	0.3403
		DEIDE4	3.9691		0.2059		6.5968	CVIII	2.7603		0.3406
SLC4A8	2.8579	PHRF1	4	TOR1A	23	UFM1	7	SVIL	6	DYNLT3	66
	2.8567	CCDC56	3.9635		4.8531			MRPS25	2.7586	4931406P	0.3409
SDR39U1	2 9540		0.2522	DUT	4 9227	MRPS25	6.5844		6	16RIK	3 0224
USP3	2.8549 8	LMAN2L	0.2523 21	SNX12	4.8327 6	CISH	0.1519 34	NUDT3	2.7582	DIP2A	2.9324
0313	2.8504			JIVATZ	4.8227	CIST	6.5814		2.7581	Un LA	2.9274
H2-D1	3	ISCA2	3.9591	CAMTA1	1.0227	ACER3	3	ATN1	1	STAB1	4
	0.3509	PARL	3.9377		4.8122			OLFR816	2.7554	BC01764	2.9260
SLC1A2	89	LANC	1	EXOC7	9	SLAMF1	6.5452	OFLUOTO	2	7	8

CDDCE	VO.	COOCT	· va	מקום	VΩ	PLZP-	VO	TOCO	VO.	TACA	VΛ
GPR65		GPR65		PLZP-				TOSO-		TOSO	
IL1B+IL6		TGFB1+II	L6-96h-	IL1B+IL6		TGFB1+II	_6-48h-	IL1B+IL6		IL1B+IL6	
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
000	(KO/W		(KO/W	000	(KO/W		(KO/W	355	(KO/W		(KO/W
	T)	+	T)		T)		T)	2242244	T)		T)
CADM1	2 0420	TMEM13	0.2553	COO7	0.2079	ACTE1D	6.5334	2310044	2.7527	FIDS	0.3422
CARM1	2.8438 0.3522	5	81 3.9051	COQ7	0.2082	ACTR1B	6.5094	H10RIK	2.7519	ELP2	0.3424
TPK1	89	IFT52	3.3031	RNF130	22	GM6096	0.5054	CHD6	2.7313	ARHGAP4	84
	2.8359		3.9038	1111 200	0.2086		6.5091		0.3636		0.3436
GM11678	6	PSAT1	3	FAM58B	34	ELP4	7	SNRPB2	67	AP351	2
	0.3526	STX18	0.2563		4.7914		6.5030	NUCB1	0.3644		0.3441
ALPL	87	21718	66	GPD1L	3	TM4SF5	5	MOCRI	79	PTPN3	61
	2.8337	ANXA2	3.8917		0.2087		6.4920	DLGAP4	2.7422		0.3442
H2AFY	8		3	SEC24B	46	PXMP4	5	DEG/ (I I	5	KDM1A	46
	0.3532	AEN	0.2574		4.7619		0.1547	DCXR	0.3647	or in	2.9019
MRPL32	68		95	MBD2	0.2102	SPATA6	34		3.7400	PVR	5
RASSF7	0.3545 35	TADA3	3.8613	ARMC6	0.2102	SNAPC4	0.1549 47	AHCY	2.7409 9	ERH	0.3446 34
NAJJE/	2.8188		3.8610	ANIVICO	4.7405	AA46719	0.1552	1110008P	0.3652	LINI	0.3446
GM14420	2.0100	MAT2B	8	GM10125	7.7403	7	67	14RIK	56	PPOX	66
	0.3552		3.8592	9930111J	4.7387		6.4143		0.3652		0.3453
IGBP1	48	42249	4	21RIK2	5	SUPV3L1	2	TIAM1	57	XLR4B	25
	0.3555	NUDT1	0.2592	0610011F	4.7379		0.1560	EIF2B1	2.7253		2.8866
NDFIP1	98	NODIT	45	06RIK	7	DHPS	39	CIFZDI	6	GM2938	5
	2.8109	RHOF	3.8541		4.7296		0.1565	5830405	2.7248		2.8861
UHRF1	9	111101	8	CNPY2	5	DDIT3	89	N20RIK		PAIP2B	5
TD11.450	2.8104	IMMP2L	3.8453	CUCUDO	4 7005	8084	0.1566	GM11276	0.3672	mmana.m	0.3480
TRIM50	9 0.3558		3.8358	CHCHD8	4.7235 4.7163	BOD1 9030625A	85 6.3545	HIST1H2A	51 0.3672	FBXW2	07
CCDC43	0.3558 35	CELF2	9 3.6336	ACBD6	4.7163	9030623A 04RIK	6.3343 6	0 0	51	MPST	2.8706
CCDC43	0.3559		0.2608	ACDDO	4.7144	OHRIX	6.3391		2.7225	WIFUI	2.8579
GTF2F2	77	DENND2A	43	ABT1	7	COX5A	1	RASSF2	7	C2	5
TNFRSF13	2.8089	FAM114A	0.2610	1810032	0.2121			CDADD	2.7206		0.3503
В	4	1	77	O08RIK	75	HERC3	6.3363	CRADD	6	FAM78A	22
	2.7995	EXOSC9	3.8285		4.7128		0.1581	SLCO4A1	0.3679	C330021F	2.8542
TADA2A	3		2	JUP	6	PPIG	34	JECOTAI	88	23RIK	9
	2.7988	RPL37-	3.8276	C130022K	4.7084		0.1581	ISCA2	0.3689		2.8542
YIF1B	5	PS1		22RIK	6	APITD1	76		0.3691	CDC25B	2.8532
NFKB1	0.3574 41	NCK1	0.2622 34	CDK14	4.7015 7	2310008 H09RIK	6.3185 9	MRPL2	0.3691	ZFP369	2.8532
INLINDT	2.7975		3.7997	CDK14	4.6969	HUDAKK	0.1583		0.3694	257303	0.3504
H2-K1	2.7373	SNX15	2	HTRA2	3	MBOAT1	72	STOM	78	BET1	98
	2.7924	RNASEH2	3.7972		0.2130		0.1589		0.3703		0.3512
IFI27L2B	6	A	4	EIF2B2	67	LMO4	33	BAG1	34	MRPS22	99
	0.3591	CNP	3.7931				0.1590	WSB2	2.7002		0.3513
IDH3B	26	CNP	2	ACBD5	4.688	STK19	19	WSDZ	6	MTFR1	34
	0.3599	ACADVL	3.7918		4.6852		6.2842	BOP1	0.3704		2.8390
MRPL55	18		9	GNGT2	9	PHB	3	50.1	03	INPP5D	9
CDC40	0.3599	MRPL22	3.7888	0610031J	0.2134	/1DB4	0.1591	FBXO18	2.6964	DAWATOD	2.8384
CDC40	45		7	06RIK	85	UPP1	91	CEDDINDC	2 2 2029	DNMT3B	9
COMMD5	2.7728 5	SELK	3.7873	AI314180	0.2137	SLC15A2	6.2807 1	SERPINB6 B	2.6928 3	D16H22S 680E	0.3525 14
COMMINDS	0.3611		0.2644	AI314100	4.6652	JEC13A2	6.2719	5730494	0.3720	DOOL	2.8312
STXBP2	23	MRPS24	76	GM10417	4.0032	MOC52	5	NO6RIK	59	UGGT2	2.0312
	0.3616	JCO5	3.7796		0.2149	T.T.	6.2684		0.3728	· · · · · · · · · · · · · · · · · · ·	2.8284
FAS	73	ICOS	3	CTPS2	64	USE1	6	BLOC1S2	09	HRAS1	8
	2.7617	CSDE1	3.7737		4.6507		6.2638	LAP3	2.6816		2.8210
CTR9	7	COULT	3	CLEC4A2	6	DCTN5	1	LAPS	6	PDLIM5	8

				essea gene	es for GP	R65-/-, PLZ	r-/- and	IUSU-/- TI	n1/ cells	1	
GPR65	5-КО-	GPR65	i-KO-	PLZP-	KO-	PLZP-	KO-	TOSO	-KO-	TOSO	-KO-
IL1B+IL6	+ IL23-	TGFB1+II	L6-96h-	IL1B+IL6	5+IL23-	TGFB1+II	L6-48h-	IL1B+IL6	+IL23-	IL1B+IL	5+IL23-
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W
	T)		T)		T)		T)		T)		T)
CTTO A	0.3637	SNX2	3.7713	CNAZCCE	4.6432	THE	6.2609	CD48	0.3733	T-11.4	0.3547
STT3A	2.7483		3.7608	GM7665	0.2157	TLE6	8		2.6763	TTLL4	0.3554
H2-T23	2.7483	CNDP2	3.7000	SPINT2	13	STX18	6.2564	CHCHD1	2.0703	ALKBH3	42
	0.3642	CLCOFAE	3.7519		0.2159		0.1598	MAPK1IP	2.6733		
GATAD1	31	SLC25A5	9	SPA17	45	BCL2A1B	62	1	1	SFI1	2.8129
	0.3668	SEMA4A	0.2667		0.2159		6.2342	METTL4	0.3740		0.3556
RBM17	44		64	TBC1D1	45	CCNDBP1	1		93	SYNJ1	14
TIMM22	0.3675	FBXO4	3.7472 1	GM14399	0.2161 45	PHKG2	6.2254	ZFP605	2.6704 3	49304221 07RIK	0.3563
TMEM10	2.7151		3.7432	GIVI14333	4.6059	FIIKGZ	6.2191		2.6703	U/MIK	2.8005
6A	6	FXC1	7	PRKRIP1	6	GM10495	8	SLC35A4	6	PRKCZ	2.0003
AL732569	0.3683	DGAT1	3.7340		0.2191		0.1611	PEA15A	2.6675		0.3572
.1	25	DUATI	3	ZSCAN2	06	RRP36	41	PEALSA	9	GGNBP2	7
	0.3687	NSMCE1	3.7335		4.5599		0.1613	IQCE	0.3750		2.7957
SDF2	58		2 7227	PRIM2	3	POLR1E	76		67	PRPS2	6
AC13283 7.1	0.3692	GBP2	3.7327 2	QDPR	0.2193	ARFIP2	6.1693	MTG1	0.3757 58	NADSYN1	2.7775
5930416I	0.3697		3.7303	QDFK	0.2196	AM IF Z	0.1623	RALGAPA	2.6579	IVAUSTINI	0.3602
19RIK	93	EFTUD1	8	CDCA5	92	KRAS	7	2	9	NDUFAF1	65
	2.7023	GRHPR	3.7303		0.2197		0.1623	NOL7	0.3764		2.7726
TUBA8	7	GNOTA	4	SCFD2	81	MAD2L2	73	NOL/	63	LYSMD2	9
	0.3700	IL10RB	3.7267		0.2200		6.1556	FAIM3	0.3767		2.7716
H2-OB	0.3711		3.7229	HADHA	75	EIF2B2 8430423	5 0.1624		0.2771	NUSAP1	0.3609
MED6	13	DNAJC15	3.7229	GM4893	0.2204 36	G03RIK	75	RAB3D	0.3771 63	PXMP2	13
IVILDO	0.3717		3.7224	GIVI4055	0.2207	QUOININ	0.1625	2700094K	0.3775	1 2441 2	0.3610
RSU1	44	IMMP1L	9	RAB8A	4	SGSM3	16	13RIK	86	SNX14	47
TMEM17	0.3718	ARMC7	0.2690		0.2207		0.1630	LDB1	0.3776		2.7695
9B	42	rutive	39	STAP1	47	NSMCE4A	59	LDD1	79	BLOC1S2	3
FLTOL	2.6885	CYP11A1	3.7127	EAR447EA	4.5102	10043	0.1634	ADRBK1	2.6436	LUCTALIAI	a 2002
FLT3L	3		0.2698	FAM175A	0.2223	IPO13	84 6.0907		2.6413	HIST1H4I	2.7683
TMC4	2.6825	EIF4G1	33	TPST1	0.2223	GM561	5	EPSTI1	2.0413	MUC2	2.7000
	0.3730		3.6940			71117	6.0822			· · · · · · · · · · · · · · · · · · ·	2.7646
MORF4L2	36	LGALS9	7	FAM32A	4.4939	GALK2	5	NRF1	2.6405	PPP1R13L	6
	0.3731	ECHDC2	3.6916		0.2226		0.1647	PIGT	0.3789		2,7623
DHPS	79	LONGCE	5	MTUS2	65	YIPF6	9	1101	62	PARVG	2
BC03049	2.6715	S100A13	3.6911	CCNL1	4.4791	ACTES	0.1650	TADA1	2.6381	CBARA1	2.7589
9	0.3747	RNASEH2	3.6763	CCNLI	0.2238	ASTE1	34 6.0593		0.3791	CDANAI	1
SYCE2	28	B	2	MLKL	32	MRPL55	7	CLTB	57	EXOSC3	2.7582
	2.6674	ABBCT	3.6665		4.4649	HSD17B1	0.1651	TCENIDA			0.3626
ZRSR2	1	ARPC5	1	DNPEP	4	2	37	TSEN34	2.6373	SRSF5	6
	0.3749	CYTIP	3.6660		4.4613		0.1656	GM9774	0.3801		2.7559
RNMT	68		9	GM11276	9	GM6843	68		22	FBXL12	7 0 2622
GPCPD1	0.3757	RPA2	0.2741	HIST1H2A	4.4613	 NAEG	6.0351 8	GM2833	2.6246	1500001	0.3633
GLCLD1	2.6606		74 3.6436	0	0.2241	ME3	6.0149		2.6222	M20RIK	2.7487
JAK1	2.0000	MRPL21	3	CDK2AP1	99	ABLIM2	7	WBSCR22	9	MANE	7
	0.3758	DAN DEA	3.6355		4.4562			2410089E	2.6184		0.3638
MT2	98	DYNLRB1	5	ZFP35	3	RPS12	0.1669	03RIK	3	BECN1	18
	0.3763	MUS81	0.2758		4.4520		5.9781	UHRF1	0.3822		2.7477
WAC	08		12	SECISBP2	6	VMN1R58	5	1	47	PSTK	6

CDDC	VO.	GPR65	VO	PLZP-	V O	PLZP-	VΩ	TOSO	٧O	TOCO	VΩ
GPR65										TOSO	
IL1B+IL6		TGFB1+II	.6-96 n -	IL1B+IL6		TGFB1+II	.6-48n-	IL1B+IL6		IL1B+IL6	
96h		1	,	48h		1	,	96		96	
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W
	T)		T)		T)		T)		T)		(NO) 11
	0.3767	CNACCCC	3.6211		0.2248		5.9770	LIDEAE4	2.6147		0.3642
THOC6	26	GM10566	2	NEK8	99	AKIRIN1	5	UBE2E1	2	TMEM29	08
	2.6510	NINJ1	3.6157	****	4.4464		5.9734	GSTZ1	2.6145		0.3648
USE1	0.3773		3.5978	42070	4.4360	TAF13 2400001E	5.9670		0.3828	PUS7	9 0,3657
THAP3	46	BLZF1) 3.3976 3	GM5474	4.4360	08RIK	2.5070	EIF3L	19	CIT	16
	0.3777	14DD140	3.5922		4.4337	1110001J	5.9487	NDI OCA	2.6121	T	0.3659
GM9574	79	MRPL10	3	TIMM44	3	03RIK	5	NPLOC4	7	MLLT10	01
	0.3779	PRODH	3.5892		4.4315		5.9437	BC02658	2.6107		2.7318
MRPS6	89		8	PPDPF	7	ALKBH6	6	5	7	PAQR3	5
AC16047 1.1	0.3782 47	C1D	3.5889 6	IFI35	4.4297 2	DGKZ	5.9229	VPS29	0.3831 07	AHNAK	0.3664 1
1.1	2.6437	D10WSU	3.5765	11133	4.4158	DONE	J.JEEJ		0.3831	1 11 11 11 11 11 11	0.3666
FAM173A	7	52E	9	CENPL	7	MUS81	5.9194	GM5610	09	NUDT3	44
	2.6415	NUP54	3.5669		4.4132		0.1689	PDLIM5	2.6031		0.3670
VEZT	4	180,01		CDC7	8	DCUN1D1	65	T DEIIVIS	1	LBR	02
TMILID1	2.6414	OGFOD2	3.5619	AACDII	0.2269	CINCIA	0.1691 7	SNTB1	2.6028 8	KCTD13	2.7217
TMUB1	2.6410		0.2812	AASDH	0.2272	CLNS1A	,		0.3846	CCDC109	0.3674
LITAF	8	RBM43	72	ZMAT5	16	SLC35C2	5,9112	GPR107	0.3040	A	99
	2.6405	GM5506	3.5548	PPAPDC1			5.8995	1810035L	0.3847		2.7171
CALD1	1	GIVISSOD	7	В	4.3942	CNN2	4	17RIK	39	SSRP1	6
144 DDE4	0.3787	TXN1	3.5524	3110009E	0.2281	100040	5.8963	AEN	0.3850	#m)c	2.7148
MAPRE1	0.3787		3.5502	18RIK	99 4.3807	LRRC40	5.8839		92 2.5922	SPIC	2.7133
USP5	59	ASL	5.5502	GPR19	3	PRIM2	8	USP25	7	PDAP1	2.7155
	2.6364	CD68	3.5446		4.3780		5.8786	FAM183B	0.3868		2.7103
PSMG2	6	CDOO	7	SLC11A2	4	ARFRP1	9	LAINITOOD	4	SNX32	2
NADDI 44	0.3797	GM11444	3,5429	4 D.L.2	0.2284	N. de l'Os d	0.1708	OAS1A	2.584	eree.	0.3695
MRPL41	0.3799		7 3.5417	ARL2	0.2286	MND1	47 0.1709			CTSC	0.3696
SERHL	28	CCNL2	3	DCTN3	15	MOBKL3	36	N4BP3	2.5831	NOL6	0.5050
	0.3799	DPH3	3.5410		0.2291		0.1717	NCKIPSD	2.5777		0.3704
GCC2	96		4	DNAJC12	18	THOC7	61	NCKIPSD	2	ZWILCH	38
CDVCN	0.3800	C030039L	0.2824	DC057070	4.3640		0.1718	RIOK2	2.5774		2.6949
CRYGN	0.3802	03RIK	0.2826	BC057079 TMEM18	4.3582	UTY	29 5.8169		2.5769	OPRM1	2.6919
ABI1	54	ENTPD1	35	8	4.5582	GBA	6	ASB7	2.3703	MRPS7	2.0513
	2.6280	на ос	3.5223				5.8080	FTOUI1	2.5748		
XLR4C	3	H2-Q6	8	ARL3	4.3536	TMEM33	4	ETOHI1	8	MMP16	2.6919
1400474	0.3805	WDR3	3.5193	EDVI 4.7	4 2542	ere renna	5.7906	IL1R2	0.3885		2.6918
MBOAT1	31		3 = 148	FBXL17	4.3512	EIF4EBP1	5.7875		2 5702	PRDM11	0.3717
TMED3	2.6271	DHX8	3.5148 5	MUL1	4.3423 3	GTF2H1	3.7673 7	CYP4F13	2.5703 1	CCT6A	0.3717
	2.6209	AULIDDO	3.5116		4.3396		0.1730	NIK G Z	2.5669		
GIMAP3	7	NUBP2	3	NUP188	7	TUBGCP4	65	NKG7	2	VAV2	2.6868
	2.6194	GM10324	3.5098		4.3366		5,7767	GM14391	2.5627		2.6859
NSUN5	0.3010		6 0 3 2 4 0	RBL2	4 2257	CD9	5 0 1 7 2 1		5	DTL	8
WIPF1	0.3819	NFIB	0.2849 44	MECR	4.3257 7	AFF1	0.1731 18	GRHPR	2.5579 5	ELOVL5	0.3727 57
	2.6093		3.5090		4.3237	(4)	0.1732	B4.055	2.5578		0.3728
CCT4	6	IMPA2	1	AI462493	7	TANK	4	PARP3	3	PDPK1	28
GPS2	0.3834	DCTN5	3.5054	ZFP26	4.3155	2310036	0.1732	HDAC5	0.3911		2.6820
3. 32	57	~ ~ ~ ~ ~ ~	3	2.1.20	1	O22RIK	57	1.5/103	03	TMEM69	2

CDDC	V O			***************	***********		P-/- and	······	***********	7000	VΟ
GPR65		GPR65		PLZP-		PLZP-		TOSO		TOSO	
IL1B+IL6		TGFB1+II	L6-96h-	IL1B+IL6		TGFB1+II	L6-48h-	IL1B+IL6		IL1B+IL6	
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange
000	(KO/W		(KO/W	30.10	(KO/W		(KO/W	00.10	(KO/W		(KO/W
	T)		T)		T)	40204724	T)		T)		T)
NAA35	2.6046 8	DDX1	3.5049	GIMAP5	0.2317	4930473A 06RIK	5,7684	SUPT3H	2.5565	RPA1	0.3731
	0.3839	TNFAIP8L	3,5028		0.2318	OONIN	5.7589		0.3912	NEW1	0.3740
RARS2	3	2	5.3025	CYB5RL	26	EPN2	9	STRA6	27	ITM2A	49
	0.3842		3.5019		4.3105		0.1736		2.5542		2,6724
NGFRAP1	68	ARL6IP4	7	RPS19BP1	3	PNP2	42	EHD1	4	ERCC5	2
IL1F9	2.5986	TMEM12	0.2856	СРМ	0.2328		0.1737	MRPL17	0.3915		2.6723
	9	8	6	CFIVI	19	STIM2	43	WINFL17	55	BRD8	5
TNFAIP8L	0.3848	AC13904	3.4990	GM13147	4.2927		0.1738	TBC1D20	0.3919		0.3743
2	14	2.1	5		1	ZFP62	35		07	CLDN7	23
TMEM16 1A	0.3850 6	SLAMF8	0.2867 43	1110021L 09RIK	4.2791	CAPZB	0.1739 26	TBCA	2.5493 2	SFT2D1	2.6709 3
	0		3.4872		4.2791	CALZD	0.1739	ARHGEF1	2.5484	311201	0.3746
GM10842	2.5922	CDC20	1	PSMD10	4.2703	BCL2A1C	4	8	6	MRPS10	92
^	2.5903				0.2341		0.1740		0.3924		2.6623
CTTN	6	FMNL1	3.4823	VIPAR	74	TGS1	71	ARL16	31	ACAD11	3
MLKL	0.3864	SEPP1	3.4795	CENPA	0.2343		0.1740	1500011	0.3925		0.3757
IVILICE	17	JUFFI	8	CLINFA	17	PPIL3	89	H22RIK	71	HDAC6	56
GGTA1	0.3867	RPS17	3.4703	R3HDM2	4.2677	AC16616	0.1743	PTPN3	2.5462		0.3761
	03		8		2	9,1	96		2	RNF6	93
METT11D	2.5836	GPR18	3.4636	UBE2W	0.2345	FUS	0.1744	SETX	2.5410 7	CARKD	0.3773
1	0.3875		3.4625		0.2346	rus	16 5.7161		0.3935	CARRU	98 2.6470
TAF1D	16	CTLA4	5	TSC22D4	92	PPIH	2	ZDHHC13	63	SBF2	9
2310045	2.5761		3.4567		0.2348		0.1749		2.5397		2.6425
N01RIK	7	TMEM9	3	OLA1	52	MED11	44	PHF7	4	OSBPL7	8
RNASEH2	0.3883	EIF4E	3.4567	TATDN3	0.2349		5.7111	MDFIC	2.5395		0.3785
В	66	LIFFL	2	IAIDNS	26	MANBA	7	WIDTIC	4	ZBTB7B	6
THOC5	0.3885	PIH1D2	3,4464	СНКА	4.2528	TMEM22		SUSD3	0.3942	RGS3	
	75		3 4450		2	3	5.7077		2.5362		2.6388
RPL21- PS12	0.3892 32	GM8815	3.4458 3	RBM14	0.2354 63	BC017643	5.7045 8	RNMT	2.5362	DULLARD	0.3792 02
F312	0.3896				4.2429	BC017043	5,6946		2.5348		0.3805
MRE11A	22	HDAC7	3.4423	СНМ	9	ZZZ3	6	GM12942	3	NUDT14	37
4632428	0.3901	61.635.436	3.4415	EALADC	0.2359		5.6918	MODOC	2.5347	TVARE	2.6273
N05RIK	17	SLC25A39	4	FAM3C	02	L7RN6	5	INO80C	4	TYMS	6
IMMP1L	0.3902	COMMD1	3.4392	MS4A6D	4.2366		0.1757	ZDHHC4	2.5328	SETD6	2.6256
	61	COMMIDI	3	WISTAUD	8	POLK	94	ZDIIIIC4	6	SLIDO	1
8430419L	0.3904	CSTAD	0.2908	GM5900	4.2352	NII 1543	5.6867	РВК	2.5325	INPP5F	2 5254
09RIK	02 2.5604		46 3.4360		0.2361	NUP43	0.1760		0.3950		2.6251 2.6211
CCNC	2.3604	INSL3	3.4360	HDAC8	14	IFT140	33	NUDC	65	CNPY2	Z.0Z11 4
	0.3907		3,4334		4.2230	71110	5.6780		0.3954		0.3817
PSD4	42	AKR1A4	3	NRK	3	DOHH	3	ATPAF2	64	NFIC	18
II 1 F D A	0.3909	AD4C4	0.2913	VMANADEO	4.2221		5.6316	DACCAD1	2.5285	LIDEE	0.3820
IL15RA	15	AP1S1	93	VMN1R58	5	SIRT2	2	RACGAP1	6	HPS5	31
ALKBH1	0.3909	DUSP19	3,4314	ANAPC2	0.2373		0.1778	RFC4	0.3956	GM16181	2,6075
	84		4		03	MRPS34	26	11107	95		- 6
CINP	2.5574	PIH1D1	0.2917	BC055324	4 242.	CTCC	0.1780	METTL10	2.5263	СНМР4В	2.6072
	2 5 5 4 4		03		4.2104	ST6GAL1	39		3 5242		3 6050
PFN1	2.5544 9	4930402 H24RIK	0.2919 65	IFT20	0.2377	TGM4	5.6128	CDC45	2.5242 7	MNS1	2,6050
E030030I	0.3917		3.4172		4.1907	1OW4	5.6071		0.3963		0.3839
	U.JJI/	LSM5	. ~. ¬. ¬. +	WDR85	7.1307	personal del del del del del del del del del de	1 2.007 1	CASP6	1 0.5505	DDA1	1 5.555

		Differenti	ally expri	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- Th	17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II	-KO-	PLZP- IL1B+IL6 48h	KO- +IL23-	PLZP- TGFB1+II	KO-	TOSO- IL1B+IL6 96	-KO- +IL23-	TOSO IL1B+IL0 96	5+IL23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
2700062C 07RIK	0.3921 85	LAMA5	3.4158	1700047 G07RIK	4.1892 5	LRRC31	0.1784 34	PDZD11	2.5209 9	BUB1B	0.3840 36
GTL3	2.5487 3	DBP	0.2929 69	GM11110	0.2387 94	SNAPC5	5.6041 3	FOXRED1	2.5194 5	MAP3K1	2.6019 4
AC08711 7.1	2.5485 5	BAD	0.2939 91	PFDN5	4.1838 2	AIP	5.5998 9	GM9762	0.3970 14	2900010 M23RIK	2.6019 3
ATF7IP	0.3924 41	PFKFB3	0.2941 21	METTL5	4.1732 7	PHF20	5.5982 6	MGLL	0.3970 19	REXO1	0.3847 64
CEP250	0.3924 57	SNRPB2	3.3952 2	RHBDL2	4.1620 3	ACP6	0.1786 77	2310036 O22RIK	2.5186 7	FKBP2	2.5955 1
HIST1H4I	2.5465 8	KCTD14	3.3943 9	AKAP13	4.1501 1	FAM3A	0.1795 02	NMT1	2.5149 7	CES5A	2.5947 5
TNFRSF25	2.545	TNFRSF18	3.3909 1	HIBADH	4.1495 4	2610528E 23RIK	0.1799	2410002F 23RIK	2.5126 3	RBMX	0.3856 16
GMFB	0.3937 79	EDF1	3.3906 8	ING2	0.2411 35	U2AF1L4	5.5563 5	USP21	2.5120 9	2500003 M10RIK	0.3858 65
PARVG	2.5388 4	TM9SF4	3.3890 4	KIN	0.2414 63	MYSM1	0.1801 08	STAP1	2.5094 4	ABI3	0.3860 54
ACPL2	0.3939 29	MRPS36- PS1	3.3858 8	SNX14	4.1350 6	SPAG5	0.1801 24	TMEM12 0A	2.5084 6	PNPT1	2.5901 2
N6AMT2	0.3954 51	CCNE2	3.3824 5	BRD7	0.2424 33	CHAC2	5.5510 4	LY6I	2.5063 6	RPE	0.3860 85
B230208 H17RIK	0.3962 64	C030048 B08RIK	3.3823 5	LSM2	4.1241 5	FAM118B	0.1801 46	IKZF3	2.5061 8	GFM1	2.5896 7
3010026 O09RIK	2.5218 6	TASP1	3.3808 2	GM71	0.2425 91	2310003 H01RIK	5.5476 7	CLK2	0.3991 08	KPNA3	0.3862 92
MTIF3	2.5181 7	GMNN	3.3777 7	SUGP2	0.2426 4	SUSD3	5.5441 2	CSDA	0.3996 4	DEDD2	0.3863 89
BIN2	2.5179 2	SIT1	3.3746 2	WDR26	4.121	PJA2	0.1806 34	IFIT2	2.5003 5	BTBD9	0.3870 14
DCTPP1	0.3974 37	DAPP1	3.3725 7	CAB39L	4.1202 3	CHST12	5.5213 6	RFTN1	2.4971 8	ZZEF1	2.582
TM9SF4	0.3977 46	TUBA1A	3.3702 2	GM6132	4.1164	ZFP61	0,1811 15	U2AF1	0.4007 39	TWSG1	0.3873 42
PROP1	0.3978 41	PLIN2	3.3697 8	PSMC3IP	0.2429 76	A830010 M20RIK	5.5056 4	LZTR1	2.4946 9	ASB6	2.5810 5
2310003C 23RIK	0.3979 82	АСТВ	3.3677 3	IFI27L1	4.0959 6	LRRC59	0.1817 13	9030025P 20RIK	2.4912 5	TRAF3	2,5805 7
ATP1B3	2.5124 4	TMEM97	3.3643 2	GCC2	0.2443 18	PJA1	0.1820 48	RRAS	2.4910 2	SUFU	2.5790 7
PHAX	0.3988 58	TIMM22	0.2980 29	TRIP4	0.2447 04	RBM14	5.4744 1	NGFRAP1	0.4015 06	HAUS6	2.5787 3
KDM4C	0.3992 45	MRPS14	3.3524 4	6330416L 07RIK	4.0824 8	SNX1	5.4675 4	TBRG4	2.4900 7	IRF3	0.3878 19
RRAS	2.5030 4	WDR54	3.3510 7	CASP2	4.08	MPDU1	5.4641 5	1110034B 05RIK	0.4024 64	E330020 D12RIK	2.5783 5
GM6483	0.3999 9	PHB2	3.3491 5	PPWD1	0.2454 56	GM4830	0,1830 93	H2-M2	2.4844 8	JMJD5	2.5769 3
TCTEX1D 2	2.4954 8	CISD3	0.2985 9	ISL2	0.2455 84	PEX19	5.4617	CCDC76	2.4807 2	TRIAP1	0.3883 19
U2AF1L4	0.4014 16	FKBP1A	3.3480 9	AC11723 2.1	0.2458 01	H2-Q6	5.4572 5	ANKRD12	2.4779 7	LSM2	2.5747 3
HMOX1	0.4014 74	SLC25A11	3.3452 1	MMP16	4.0653 7	RBM22	5.4522 2	ZKSCAN1 4	2.4722	ZMAT5	2.5713 6

GPR65 IL1B+IL6 96h	+ IL23- -1	GPR65 TGFB1+II 1	.6-96h-	PLZP- IL1B+IL6 48h	5+IL23- -1	PLZP- TGFB1+II 1	L6-48h-	TOSO- IL1B+IL6 96	+IL23- h	TOSO IL1B+IL6 96	5+IL23- h
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
AC16616 9.1	0.4017 62	AC09056 3.1	0.2993 05	APOBEC1	4.0633 6	MFN2	0.1843 69	CITED2	2.4710 8	AC13232 0.1	2.5709 8
SMEK2	0.4017 7	ATP6AP2	3.3393 8	CCDC40	0.2462 46	GM6710	0.1847 04	ING3	2.4692 2	UNC45A	2.5680 6
TGDS	0.4022 64	PFDN1	3.3382 9	TIAL1	4.0592 3	KIF2C	5.3976 2	ATP6V1D	2.4653 8	ZBTB20	0.3897 32
BBC3	0.4023 95	SNX1	3.3302 4	MRFAP1	0.2468 88	TBPL1	5.3866 1	KCNK7	0.4066 65	NXF1	0.391
CBARA1	2.4847 6	LUC7L	3.3247 3	GADL1	0.2470 37	CDC123	5.3803 4	HNRNPL	0.4067 92	GMEB1	0.3910 28
XRN2	0.4032 58	EIF4B	3.3246 3	SERPINF1	0.2470 61	RAG1AP1	5.3771 2	SPG11	2.4580 9	CIRH1A	0.3917 77
2810428I 15RIK	0.4034 71	FYB	3.3178 9	KIF5B	4.0461 9	4933421E 11RIK	5.3700 1	MIPOL1	2.4569 9	OAS1B	2.5521 6
LGALS3	0.4036 29	KNG1	0.3021 11	CORO1B	0.2471 87	AC12759 0.1	5.3572 4	COL4A3	2.4558 3	ARRB1	0.3924 11
S100A3	2.4669	LPCAT3	0.3021 57	LRRK1	4.0434 9	4930512 M02RIK	5.3539	HSF2BP	2.4556 1	MRPL43	2.5441 4
GM6396	0.4055	GGA3	0.3028 24	TMEM10	4.0407	TREX1	5.3484 9	GM12789	2.4504 7	GM14443	2.5415 4
ITGA6	2.4638	ANKRD16	0.3030 06	ZFP488	4.0366	MRPL2	0.1872 8	AU02287 0	2.4502 7	SPAG5	2.5388
HMGN1	0.4071 01	ZSCAN21	0.3030 14	2310001 H12RIK	0.2478	42248	5.3335 3	VAMP4	2.4497 3	ZFAND6	0.3939 17
EED	0.4073 65	VTA1	3.2971 4	GNB1L	0.2484 59	CUL4A	5.3305	CIAPIN1	0.4086 38	AC06800 6.1	2.5346 4
DNAJC21	0.4079 73	SATB1	3.2957 1	RPS2	0.2486 05	CENPL	0.1876 71	COQ5	2.4461 6	CD27	2.5345 8
NDUFS1	0.4080	NDUFS3	0.3037 51	ILK	0.2486 48	AU01982	0.1877 17	TATDN1	0.4089	PLBD2	2.5236
GM5617	2.4498	JKAMP	3.2921 2	COMMD2	4.0166 5	TRADD	5.3218	RNF7	0.4089 86	RAB2A	2.5204
WTIP	0.4083	SKAP2	3.2868	COQ9	0.2489 66	SNX12	0,1888 94	ATR	2.4449 4	ATRIP	2.5203
CD48	0.4088	H2-Q10	3.2867 3	D930014 E17RIK	0.2493	LLPH	5.2939	H2-Q6	2.4435	SEC16A	0.3969
MFF	0.4089	COMMD3	3.2843 3	AC14245 0.1	4.0057	TNFRSF13	5.2883 9	PTPN2	2.4435	MED31	2,5165
SRSF2	0.4100	MYSM1	3.2837 8	CLCF1	0.2497	MRE11A	0.1891 38	ATG4B	0.4099 98	PCCA	0.3977 18
SLC39A11	0.4106 55	1810020 D17RIK	0.3047 18	AC10260 9.1	3.9995		5.2773 2	MED18	2.4357	SNAP23	0.3983 89
PPCS	2.4245	GM10800	3.2804	ORC4	0.2504	IMPA1	0.1896	1110049F 12RIK	2.4352	IKBKE	
RPE	2.4239	TMEM50	6 3.2781 6	YTHDC1	0.2509	GALT	5.2733 5	SPR	0.4108 02	NOP10	2.5098 2.5075
BC04934 9	0.4125 84	CAPZA2	3.2775 1	MRPS23	3.9812 4	LY6C2 RP23- 369M17.	0.1902 28	TMEM12	2.4340 6	D19ERTD 386E	0.3994 71
LRRC33	2.4212	МАР2К3	3.2728 4	TNFSF9	3.9768	LY6I	0.1903 18	BAK1	0.4111 64	CUL4A	2.5022
GM4953	2.4205	MDH2	3.2714 6	LSM12	3.9742 6	KIF1B	0.1904 99	WDR26	2.4314	MRPL12	2.5000 1

GPR65	· κΩ	GPR65	KΟ	PLZP-	KO-	PLZP-	KΟ	TOSO	KO-	TOSO	KΟ
								1			
IL1B+IL6		TGFB1+II	.6-96 n -	IL1B+IL6		TGFB1+II	.6-48n-	IL1B+IL6		IL1B+IL6	
96h		1	,	48h		1	,	96		96	,
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W
	` T)		T)		` T)		`T)		` T)		, T)
SMAD2	0.4134	CD3D	3.2711	POLD4	3.9480		5.2410	МАРКЗ	0.4118	NCKAP5	
	06 0.4138		3.2701		0.2535	EIF3G TMEM21	9 0.1911		46 2.4279		2.4997 2.4993
PTPRV	51	PEX11B	9.2701	CEP57	63	9	0.1311	CD226	4	GM10125	2.4333
KLC1	2.4143	AHSA1	3.2695 4	SAMSN1	3.9424 8	4930529 M08RIK	5.2301 4	TBC1D13	2.4240 5	GM5607	2.4975 1
CISH	2.4124 8	SPINK10	0.3059 27	2300009A 05RIK	3.9376 3	H2AFV	5.2259 6	TIMM50	0.4125 33	FANCG	0.4005 78
1700007K	0.4151	BC01764	3.2675	AC15694	3.9324		5.2209	1810020	0.4126	FBXO44	0.4007
09RIK	0.4152	3 A630001	0.3062	8.1	3.9173	DNAJC9	5.2187	D17RIK	2.4223		67 0.4009
PIGZ	17	G21RIK	25	S100A1	3.91/3	TK1	3.2167	CUX2	7	BIRC2	62
PTTG1	0.4155 44	TBC1D10 C	3.2634 9	GMDS	3.9158 3	RAD51AP	0.1919 65	C130026I 21RIK	2.4200 4	2310044 H10RIK	0.4011 07
BC01764	2.4033	PARD6A	3.2627	CARS	0.2555		5.2046	PRMT7	0.4134	BC04835	2.4889
3	7	11000	6	Critio	55	DHX33	1	11(((1))	02	5	7
YIF1A	0.4164 15	PAM16	3.2571	MRPL21	3.9061 2	IRF1	5.2016 3	LUC7L3	2.4189 3	5930416I 19RIK	2.4846 2
FBXO5	0.4165 9	SCN9A	0.3075 86	PEA15A	0.2562 57	CAT	0.1923 78	TM2D1	0.4135 69	PTPN4	2.4840 7
PSEN2	2.3981 3	MOBKL2A	3.2505 4	ACP6	0.2563 89	CFLAR	0.1925 3	SUV420H 2	2.4171 5	ANKRD13 C	0.4026 13
LASS2	2.3977 8	SRSF7	3.2458 1	DHDDS	0.2566 06	BRP44	0.1925 42	МАРК7	2.4170 4	DNAJC16	0.4029 7
AC13563 3.1	2.3955 8	OTUB1	3.2362 1	RAB7L1	0.2567 33	ST7	5.1906 8	NDUFAF4	0.4143 96	SMARCB1	2.4752 7
LAMC1	2.3935 8	ATP5SL	0.3091 21	B9D1	0.2568 24	MS4A6B	5.1883 1	SLC35C2	2.4126 7	ZFP488	2.4752 2
PQBP1	0.4186 68	LDHA	3.2329	GPATCH8	3.8910 8	LXN	5.1843	FBXW17	2.4095	1110004E 09RIK	2.4706
YIPF6	2.3857	CTPS2	3.2320 1	NT5C3	0.2573 59	NRD1	0.1930 68	GM6055	0.4151 27	DUSP10	2.4697 8
PPP1R15	2.3815	GLMN	3.2244	2410017P	0.2573 89	1110002B 05RIK	5.1742 4	COL11A2	2.4079	2610030 H06RIK	0.4061
A	0.4200		3.2211	09RIK	3.8787	AL844854	5.1724	1700034	-		0.4061
PHF20	72	ZMAT5	6	UTY	1	.1	9	H14RIK	2.4071	SSSCA1	9
GM9775	0.4201 55	MAP2K2	0.3108 23	1110012L 19RIK	0.2582 56	MCCC2	5.1689 9	HNRNPM	2.4069 3	LGALS3BP	2.4616 9
H2-Q10	2.3785 9	COMMD4	3.2157	CCNH	3.8675 5	MRPL17	5.1590 4	BOLA1	0.4155 47	MTM1	2.4580 5
PHB2	2.3769 6	PIGP	3.2133 4	ANKRD32	0.2587 92	RPP38	0.1944 25	MNDAL	2.4058	ENTPD5	0,4068
BTF3L4	2.3742	CNPY2	3.2120	TBC1D7	0.2593		5.1343 5	BIRC5	2.4044	ТВСВ	
HSCB	2.3657 4	CHCHD8	3.2108 6	XLR4A	3.8539 9	LGTN GM16181	5.1329 3	FOXP1	2.4042 4	GM2178	2.4579 0.4069 96
A930005	0.4227	HNRNPH	3.2027	NINJ1	0.2599		0.1950	ANKRD13	2.4039	CCDC77	2.4545
H10RIK PPP2R2C	0.4228	LCORL	3.2024	2610001J	0.2600	ORC4	5.1245	D Al452195	2.4021	ZFP259	0.4077
ATG13	29 2.3644	TMEM69	3,2010	05RIK 4930579	73 0.2606	SCARB1	5.1157	ARL8A	0.4166	ZDHHC12	0,4079
515	2.3639		7 3.1988	G24RIK	0.2607	DOT1L	5.1127	20/1	67		0.4080
AATF	2.3639	S100A6	3.1988	GM14326	14	MRPL23	5.1127 4	ARMCX6	0.4168	GSK3B	0.4080 54

		Differenti	ally expr	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1		TOSO- IL1B+IL6 96	5+IL23-	TOSO IL1B+IL0 96	5+IL23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
CDK1	0.4232 07	NFX1	3.1988 3	STARD3N L	3.8356 1	COMMD3	0.1957 5	TRIM56	2.3984 7	RMND1	0.4081 42
RABGGTB	0.4233 71	PDCD6IP	3.1986 5	VPS39	3.8301 5	FLAD1	0.1957 74	RAB43	2.3960 9	GM13147	0.4082 8
PNRC2	0.4237 64	ZRSR2	3.1960 3	ERCC1	3.8256 4	MRPS11	5,1038 7	FGD3	2.3956 5	AIM2	2,4485 6
HDAC1	2.3587 9	ABHD11	3.1956 5	APPL2	3.8225 5	IFNGR2	5.1014 7	TRIM37	2.3943 1	UHRF1	2.4458 2
GTF3C2	2.3577 8	CNBP	3.1843 7	MKRN1	0.2616 8	COX10	0.1961 07	NDUFB4	2.3924	DUSP19	0.4091 79
PPIL2	2.3571 1	GM10801	3.1807 8	PTP4A1	0.2617 91	ENDOG	0.1964 94	DUT	0.4179 92	BC02381 4	2.4417 6
TUBB2C	2.3532 6	H2-D1	3.1742 1	STK11	3.8065 5	GLS	5.0892 1	INSR	2.3869 5	TBX21	2.4414 2
UBE2W	2.3508 2	SPATA5	3.1717 8	GM10490	3.8009 9	UBE2E3	5.0857 8	MTF1	0.4191 49	LIFR	2.4391 5
NEIL1	2.3434 2	PSG23	0.3155 46	TMEM50 B	0.2635 02	MRPL41	0.1967 29	FANCE	0.4195 95	COMMD5	0.4103 51
UBE2A	0.4267 73	BRD3	3.1670 8	GALT	0.2643 71	NUBP1	5.0825 3	0610037L 13RIK	2.3820 9	RGP1	2.4343 4
SLC25A39	0.4275 32	CAPZA1	3.1670 5	NAA35	0.2644 06	DGUOK	5.0798	STK32C	2.3794	DCAF17	2.4337 5
SIL1	2.3340 7	ADAM33	0.3159 62	PCIF1	0.2645 8	TTC1	0.1972 29	MRM1	0.4203 47	TAZ	0.4111 56
LY6C1	2.3325 1	AC13178 0.2	3.1649 2	Al413582	0.2647 92	NUPL2	5.0688 5	FKBP5	2.3789 6	ТНАР7	0.4112 34
H2-KE2	2.3273 3	A930001 N09RIK	3.1599 2	MRPL16	0.2652 74	FKBP1A	5.0611 2	RPL21- PS14	2.3789 3	TRAPPC3	0.4113 35
0910001L 09RIK	2.3272 3	GPR19	0.3167 3	CETN4	0.2660 08	ABHD10	5.0579 9	TMEM20 9	0.4207 12	MINK1	2.4296 6
RGS1	2.3223 8	ARHGDIB	3.1569	RNMTL1	0.2660 08	GNPDA2	5.0525 8	PPP2R2D	2.3750 6	FBXO11	0.4117 41
MFAP3	0.4308	PSPH	3.1481 8	LPL	3.7559 1	4930470 H14RIK	5,0502 7	SNAP23	2.3746 1	мсмз	0.4117 54
MTMR4	0.4309 25	GFPT1	3.1470 9	SPRYD4	0.2666 57	AMPD2	5.0445 3	CHD4	0.4213 01	UAP1	0.4120 61
ABHD11	0.4310 66	RC3H2	0.3177 9	IFT80	3.7481 3	ZFP386	0.1982 34	ZFP110	2.3735 6	6330577E 15RIK	0.4125 24
THY1	2.3178	PJA2	3.146	GSN	3.7453 4	LMF1	5.0339 5	VPS26A	2.3726 6	SEPW1	2.4217 1
1500031L 02RIK	2.3116	TIMM23	3.1459 6	PDCL	3.7438 4	IL2	0.1986 61	PNKP	0.4215 21	BAIAP2	2.4198 1
PEMT	0.4328 17	PSMA1	3.1440 8	AGTPBP1	3.7416	ANKHD1	5.0277 4	TMEM63 B	0.4223 63	USF2	0.4135 63
CDK2AP1	0.4329 35	FANCE	0.3181 56	LUC7L	3.7392 9	TSPAN14	0.1990 12	DNAJB11	2.3654 3	FOLR4	2.4156 3
RAD54L	0.4341 73	CDCA7	0.3194 38	ECE2	0.2676 44	AC12200 6.1	5.0115 2	TYMP	2.3643 1	RAB14	0.4147 68
SMU1	0.4342 79	RPP30	3.1277 4	1810074P 20RIK	3.7358 2	MAP3K5	5.0115 2	NDUFA10	0.4231 07	CRYZL1	0.4151 22
SMPD2	0.4349 36	ME2	3.1234 4	GTF2H4	3.7286 9	CASP2	0.1998 54	DARS2	2.3627 5	BRCC3	0.4151 53
IFI27L1	2.2959 4	NAA20	3.1211 9	1110058L 19RIK	0.2682 54	TTC23	4.9978	CUL1	2.3625 3	WDR3	0.4154 3

GPR65	-KO-	GPR65	-KO-	PLZP-	KO-	PLZP-	KO-	TOSO	-KO-	TOSO	-KO-
IL1B+IL6		TGFB1+II		IL1B+IL6		TGFB1+II		IL1B+IL6		IL1B+IL	
96h		IGEDITI	-0-3011-	48h			-0-4011-	96		96	
9011	Fold.Ch		Fold.Ch	4011	Fold.Ch	1	Fala ch	90	Fold.Ch	90	Fold.Ch
	ange		ange		ange		Fold.Ch ange		ange		ange
Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W	Gene	(KO/W
	T)		T)		T)		T)		T)		T)
RSL24D1	2.2942	PKP4	0.3207	GM10212	3.7267		4.9963	PAPD5	0.4238	FAM60A	0.4155
	8		92		9	GM10695	8	2700097	09 2.3556		74
SFRS18	0.4360 07	FYTTD1	3.1168	TMEM93	3.7227 9	ETV4	4.9814	009RIK	2.3556	CAPN2	0.4156 88
DIVACD	0.4367	DIVALS	3.1159	CDCC10		исрара	4.9715	D4ERTD2	2.3554	ADPGK	0.4158
PIK3CD	53	PKN1	4	GRCC10	3.7191	HSD3B2	4	2E	9	ADPGK	59
HVCN1	2.2893	4933421E	3.1144	TFG	3.7163	ESF1	0.2013	GTF3A	0.4246	ADSSL1	0.4159
	0.4368	11RIK	3.0995		0.2697		13 4.9450		2.3517	MARCKSL	0.4159
SEMA4D	48	CDC23	4	BRCC3	0.2037	SNX17	2	ARNT	3	1	94
BC00326	2.2884	CLDND1	3.0952	PDK3	3.7062	CCND3	0.2023	PARD6A	2.3498	AGTPBP1	2.4030
6	1	CEDINO1	3	PDK3	4	CCNDS	76	PANDOA		AGIF DF1	1
FAM165B	0.4374 7	ACTR2	3.0841 6	GGCT	0.2699	NSMCE2	4.9365	INTS2	2.3485 1	RUFY1	0.4172
	2.2848		3.0794		3.7046		4.9340		2.3477		0.4175
IL24	3	ESF1	4	TM9SF1	8	TYMS	4	ATP5K	8	PROCR	4
TBPL1	2.2831	STAT1	3.0782	EDC3	0.2702	KRT19	4.9322	DNAJA1	2.3447	HSD3B2	2.3935
IDICI	1	3(4)1	5	LDCJ	47	WIN CTS	5	DNAAI	8	1130302	3
CPNE8	0.4381 06	FPR2	0.3251 05	OSBPL9	3.6982 5	STXBP3A	4.9142 9	ADK	0.4265 64	L7RN6	0.4184
	2.2800	1700047	0.3251		0.2705		4.9085		2.3437		0.4185
ANKRD37	6	G07RIK	3	ACADM	59	RHOQ	5	ABHD11	6	VWA5A	8
MSL3	0.4391	PLEKHA2	3.0727	2900010J	0.2706	CRCP	4.9020	GM5830	2.3400	TESC	2.3887
	12		9	23RIK	62		1		2 2207		3
PIGF	0.4398 76	EIF3E	3.0727 5	PMS1	0.2707 38	1700049 G17RIK	4.8994 7	KPNB1	2.3397 2	LAP3	0.4191 11
EDUN4	2.2722	808	3.0727	6530401	3.6832		0.2044	JENIA DA	2.3389	DIATO	2.3833
EPHX4	8	POR	4	N04RIK	6	PSTK	21	IFNAR1	4	BIN3	1
1500002	2.2695	NSUN5	0.3256	DLGAP4	0.2715	FOXM1	0.2045	DNAJB4	0.4276	ZDHHC21	2.3821
O20RIK	0.4406		29 0.3258	PAFAH1B	0.2715		62 4.8819		2.3384		2.3784
BCAT1	55	BHMT2	84	3	58	TLCD2	7.0013	XPO6	2.3384	TRAF3IP3	2.3,04
ZFP58	0.4406	ACAT1	3.0655	UTP3	0.2717	RDH9		FAR1	2.3382	SLC25A10	0.4206
ZFF30	74	ACATI	7	UIFS	46	KUNS	4.8736	FANI	6	JLCZJA10	02
AHSA2	0.4411	SLC12A8	0.3264	GM7609	3.6765 5	OBFC2B	0.2058	RAB31	0.4277	WDR73	2.3763
AC15463	42 0.4416		75 3.0571	C630004	0.2720		23 4.8552		2.3363		2.3740
1.1	29	MRPL23	1	H02RIK	53	LSM2	8	POLR2L	8	PIF1	3
FERMT3		MAPK8IP	0.3273	SIRT4	0.2726	WAC		CYB561D	0.4291	SUV420H	2.3692
TEIMITS	2.2639	3	93		85		4.8472	2	12	2	1
PDCD2L	0.4417 46	SUMO1	3.0530	2700007P 21RIK	0.2733 77	1700021F 05RIK	4.8356 3	KPNA2	0.4294 64	PHYHIPL	2.3677
LVDF44	0.4420	TECO	3.0530		0.2737		4.8227	5730601F	0.4297	TRACESACOT	2.3656
LYRM4	65	TESC	1	TRIT1	48	DSN1	1	06RIK	23	TMEM97	1
PHOSPHO		TMEM9B	3.0515	TMC5	3.6515	GM9894	0.2073	PIGQ	0.4299	HOOK2	0.4227
2	0.4425		3.0492		3.6336		52 0.2074	·	0.4307		2.3650
OIP5	2.2582	ZFP637	3.0492	GM5244	3.6336	FBXW9	0.2074 69	AURKB	77	GMFG	2.3030
DC A NAT	2.2559	MDD: 2.4	3.0440	CDF1	0.2752	DC A NAC	4.8149	TU1	2.3211	NO.11	0.4228
PGAM5	9	MRPL24	9	GDE1	14	PGAM5	1	TH1L	9	NOL11	81
GM6293	2.2537	TBCB	3.0427	GTF2H3	3.6294	GM5576	0.2078	FAM184A	2.3174	CLTB	
	9 0.4447		9 3.0419		0.2755		01 4.8105		0.4318		2.3623 2.3544
PDSS1	0.4447 57	ETS1	3.0419	GNPAT	0.2755	SNAP23	4.8103	GSTT3	0.4318	FAM136A	2.3344

GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO- IL1B+IL6 96	+IL23-	TOSO IL1B+IL6 96	5+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
VBP1	0.4450 36	SDR39U1	3.0412 5	HSD3B2	3.6278	C2CD3	4.8104 3	CHD8	0.4320 11	MOSPD3	0.4254 77
IFT46	0.4452 27	SERPINB1 C	3.0372 7	DCP1B	0.2758 93	HMOX1	4.8025 8	ODF2	2.3143 1	PHF7	2.3478 5
GPR174	0.4452 64	FABP5	3.0340 5	DHX32	0.2758 93	HDDC2	0.2083 25	GM16380	0.4326 09	ITGB1	0,4260 33
TES	0.4453 57	1110003E 01RIK	0.3297 43	GM5617	3.6245 9	HSPA12B	4.7969 3	DHX32	2.3112 4	TWF1	2.3433 5
H2-Q2	2.2423 7	UQCRC2	3.0294 6	ZCCHC7	0.2759 33	CCDC34	4.7963 2	CELF2	0.4326 91	CTSO	2.3380
GAPVD1	0.4465 33	MGAT4C	0.3302 76	CASP8AP 2	0.2762 11	TMUB2	4.7930 7	TUT1	2.3101 9	ACP5	0.4277 21
PANX1	0.4474 49	TIPIN	3.0271 7	DPF2	0.2766 12	AC14210 4.1	4.7914 3	AFF1	2.3098 1	RBM43	2.3378
RBM38	2.2343	RPS6KB1	3.0251 7	MBD5	3.6126	CDK5RAP	0.2091 44	POMP	0.4329 71	TMC5	0.4278
PUM1	0.4481 27	APOBEC3	3.0245 8	CERKL	3.6077	TMBIM1	4.7737 8	PITRM1	2.3078	GM3435	2.3372
PER1	2.2291	POLR2F	3.0202 6	THUMPD 3	0.2772	IL11	0.2099 98	CYB5D1	2.3069	WASL	0.4283
MAEA	0.4493 6	TMEM21	3.0190 8	LMF1	3.6037	NIPSNAP3 B	4.7527 6	MED25	0.4341	ANKRD16	0.4291 25
RBP7	0.4497 86	1700123 O20RIK	3.0179 4	ARRDC1	3.6020	CDC40	0.2106 31	MTUS2	2.3032	GM5577	2.3292
6330439K 17RIK	2.2228	OSBPL2	3.0160 9	GIMAP9	3.5994	ZC3H10	4.7413 8	AAGAB	0.4342 76	1810009 A15RIK	2.3291
PPIL5	0.4505 13	RBMXRT	3.0158	CIZ1	0.2781 98	DEPDCS	4.7380 9	GTPBP5	2.3025	LRRC40	0.4294
TIMM8B	0.4519	PTMA	3.0147 7	ALG9	0.2783	CCDC6	4.7318 4	SLAIN1	2.3004	42068	0.4294
TKT	2.2113	RBM22	0.3317 73	ADRBK1	3.5912 8	ZDHHC12	0.2113 34	ZFP609	2.3002 8	ACSS2	0.4295 15
GM4877	0.4527 72	SAT1	3.0139 3	INSL6	0.2787	4930522L 14RJK	4.7296 5	TRUB2	0.4348 77	GM4825	2.3243
TTC23	0.4528 78	2410004P 03RIK	0.3322 88	KANK3	3.5782	METTL8	0.2115 86	VMAC	2.2980	H2-Q7	2.3232
DPYD	0.4531	ADAMTSL 4	0.3324	VPS4B	0.2797	DCTN3	4.7230 1	S100A1	0.4354	STARD3	0.4305 84
FAM103A 1	0.4532 56	D4WSU5 3E	3.0046 3	PTTG1IP	0.2799	BCCIP	0.2118	TOMM40	2.2949	MPHOSP H9	0.4311 48
CYB5R3	2.2010	GM6104	0.3332	ZFP738	3.5675	CDKN2AI PNL	4.7163 6	INTS12	0.4358	METTSD1	0.4320 89
GPR89	0.4545 38	PRPSAP1	0.3332	NDRG1	3.5565	PIGN	4.7151 1	BC03118	2.2913	MYG1	0.4324 92
PICK1	2.1998	GM10979	0.3334	CENPH	3.5554	PIGQ	0.2122 19	ZFP60	2.2910 5	PPIH	2.3121
ARL6IP4	2.1967	ING3	2.9965	MLH1	0.2812	RBM28	0,2123	DBR1	0.4365 65	EIF5	0.4336 05
H2-K2	2.1966	SMARCA5	2.9927 4	GIT2	3.5547	TARBP2	4.7076 6	RBM34	2.2905	SNRNP35	0.4337
GDE1	0.4555	SRP19	2.9839	CDC20	0.2817	AC16100	4.7036	KIF21B	2.2878	0610011F	0.4342
AC07964	48 2.1936	INPP5F	0.3353	EXOSC4	3.5458	1.1 CDK14	9 4.7015	UBN2	2.2874	O6RIK PPAN	0.4343

GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1		TOSO- IL1B+IL6 96	+IL23-	TOSO IL1B+IL6 96	5+IL23-
3011	Fold.Ch	*	Fold.Ch	4011	Fold.Ch	-	Fold.Ch	30	Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W
GM16381	2.1936 1	STX6	0.3356 92	TRPM1	0.2821 01	RAD18	0.2129 48	BAT5	2.2873 9	ATP13A3	0.4345 17
GM2001	2.1936 1	GM10123	2.9767 2	CMAS	3.5442 7	DPY19L4	4.6929 3	RGS19	2.2834	ELOVL1	0.4348 24
GM5670	0.4558 82	сст5	2.9761 6	HCFC2	3.5392 5	HIBADH	4.6829 9	TM9SF1	0.4383 14	GM7935	0.4350 03
LEPR	2.1916	NT5C3	2.9728 7	ADIG	3.5356 3	HNRNPL	0.2135 39	XBP1	0.4385 4	2310045 N01RIK	2.2985 2
НОРХ	2.1894 8	PIM2	2.9722 4	CATSPER4	3.5356 3	FAM175A	4.6808 8	H6PD	2.2779 2	4930555F 03RIK	2.2952
CLSPN	2.1861 1	LY6E	2.9699 4	HERPUD1	0.2829 19	SYTL3	4.6687 1	SEMA4A	0.4389 99	MRPL16	0.4357 79
AKR1B8	0.4575 58	TTLL4	2.9678 6	IQCC	0.2829	GGA3	4.653	RABEP2	2.2770	CYBASC3	0.4362 56
GRCC10	2.1849 7	PTPRC	2.9590 1	EIF2B4	0.2830	IFFO2	4.6507 6	RG9MTD 3	2.2761	HIST1H2B B	2.2912
POLE4	0.4577 19	PKM2	2.9575 9	S100A6	0.2837	POLB	4.6477 9	2610020 H08RIK	0.4399 23	GBP5	2.2906
GPRASP2	0.4578 73	SYCP1	2.9535 8	TGS1	0.2838 13	GM2938	4.6443 4	MPDU1	2.2730 8	WDR77	0.4367 86
BC05647 4	0.4581 57	ACOT13	2.9529 1	РССВ	0.2839 49	GRAMD3	4.6408 9	HEMK1	2.2716 6	1700034 H14RIK	0.4369 58
CIDEC	0.4584 86	ADAM19	0.3390	FOXK2	3.5215	9430023L 20RIK	4.6357 9	NDOR1	0.4405 14	RBM7	0.4376
FNBP1	0.4585 81	1110065P 20RIK	2.9479 4	LY6C2	3.5131 2	ATPBD4	4.6323 2	BZRAP1	0.4406 38	BRWD1	0.4376 64
SAE1	2.1796 4	AIMP2	2.9418 7	METT11D	3.5082 5	CREBL2	4.6292 9	SRBD1	2.2682	WDR46	2.2830
TFIP11	0.4588 74	RDM1	2.9385	ARID4B	0.2855 07	HDHD3	0.2162 75	RDH14	2.2678 6	4930534B 04RIK	2.2814
RPL30- PS6	2.1767 8	ZCRB1	0.3403 27	SGK1	3.4986	GSS	4.6213 3	DAZAP1	0.4410 77	4933427I 04RIK	2.2792 9
ADAR	0.4594 89	DAPK2	0.3407 16	8430423 G03RIK	3.4965	POLD4	4.6163 7	TRIB3	0.4416 63	BC02382 9	0.4397 85
PGS1	2.1739	LRRC41	0.3410 72	EXTL2	3.4950 9	DNAJB11	4.6138 7	2810422 O20RIK	2.2635	SGSM3	2.2732
GPR107	0.4601 42	STARD3N L	2.9317 2	CENPK	0.2861 16	CDK2AP2	4.6087 4	STX2	2.2625 9	TOR1B	0.4403 44
TIMM17B	2.1713 7	GM11152	0.3414 78	PAM16	3.4935	VPS36	4.6021 8	GABPB2	2.2617 8	FLAD1	0.4406 99
STAM2	2.1672	MRPS18A	2.9180 5	RALB	3.4907	CD74	0.2175 96	FAM126A	2.2612	VEPH1	2.2683
GAA	0.4616	ORMDL3	0.3431 51	ZBED4	3.4891 7	TMEM10 6C	4.5850 9	TFB2M	2.2577 7	6030422 M02RIK	2.2653
TRAPPC3	0.4617 43	GHITM	2.9123 4	STIM2	3.4891	ZFP353	4.5843 9	ECHDC1	2.2572 9	SCARB2	0.4416
PAFAH1B 3	2.1655	STRN4	0.3437 65	4930547 N16RIK	0.2866 25	PHRF1	4.5794	ANKRD32	2.2542 1	ST6GALN AC6	2.2635
PRAMEL6	0.4618 53	AZI2	2.9073 8	TRPC2	0.2866 52	PDDC1	0.2183	EPHA2	0.4441 15	NRF1	0.4422
LPHN3	0.4623 71	GM7030	2.9061 7	ING3	3.4874	CORO7	4,5784 3	NSUN3	0.4444	GJC3	2.2607 2
PCBP3	2.1624	RTP3	0.3442	DGCR6	3.4874	GTF2H4	4.5770	SHARPIN	2.2497	PPPDE2	0.4428

		Differenti	ally expr	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+IL6 96	i+IL23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
SRSF3	0.4628 4	COPS2	2.9012 5	BOLA1	0.2874 78	TTC35	4.5758 4	LRRC8C	2.2495 4	L1CAM	0.4429 79
PET112L	0.4653 25	GM10451	0.3446 91	HIST1H4D	0.2878 59	6030408B 16RIK	4.5669 6	ATP2B4	2.2494	RPAP2	2.2569 9
1500012F 01RIK	0.4653 66	CALM2	2.9008 9	GM2938	3.4695 2	JAK1	4.5579 7	RASL11B	2.2486	DPY19L4	0,4433 54
SHISA5	2.1485 7	ICAM1	2.8997 7	PSAP	3.4592 8	PRAMEF8	4.5572 9	ΠΙ1	2.2481 9	MFN2	0.4437 58
SH2D3C	0.4660 11	HSPA14	2.8992 6	AC16121 1.2	3.4569 3	GTPBP8	4.5557 6	RFXAP	2.2471 7	CCDC84	0.4443 41
MRPS28	0.4661 72	MED14	2.8974	SLC16A6	0.2892 78	FAM162A	0.2197 95	LRRC33	2.2432 3	NR4A2	0.4447 08
IL4	0.4671 98	EBP	2.8952 2	GNPDA2	0.2894 66	CNOT6L	0.2199 28	AC10187 5.1	2.2394 5	PARVA	2.2478 1
HNRNPC	0.4675 46	ACAT3	2.8950 8	COX17	3.4415 5	MTUS2	4.5429 1	CDK5RAP 1	2.2378 5	CCPG1	0.4450 04
RTF1	2.1357 2	2310035K 24RIK	2.8950 1	MPDU1	3.4409 2	ZMYND11	4.5364 6	SETDB1	0.4471 54	H2AFX	2.2465
IDH3G	2.1339 2	BC05707 9	0.3454 61	PNPLA7	3.4408	SFPQ	0.2205 24	TELO2	0.4471 55	MRPL1	2.2456 1
MFSD2A	0.4693 66	CRISP4	0.3457 59	COX10	0.2912 76	THUMPD 3	0.2208 1	VTA1	2.2359	2900097C 17RIK	2.2443
CLN3	0.4701 16	SNRNP25	0.3461 71	SETD5	3.4307 4	DNAJB6	4.5264 2	ZFP426	2.2353	ADI1	2.2422 5
CYP51	0.4703 41	ARRB1	0.3463 38	TNF	3.4238 3	CENPH	0.2210 34	MSL3	2.2349 9	GRAP2	0.4462 83
CARS	2.1241 4	GM10719	2.8870 8	TRAPPC6 B	0.2922 86	STK38L	4.5185 1	SSNA1	2.2331 1	IKZF3	2.2400 7
ACAT3	0.4715 53	AL603711 .1	0.3464 53	ERI3	3.4132	ZFP110	0.2213 31	SNRPG	0.4481 37	UTP6	0.4467 4
ETFB	2.1196 8	SLC25A1	2.8862 4	USP33	0.2931 3	ZDHHC6	4.5142 3	SLC28A2	0.4487 12	LCORL	0.4470 19
ATRIP	0.4726 54	CLK2	2.8843 1	DIAP1	0.2933	GM5623	0.2216 94	EXOSC7	2.2274	SEC23B	2.2370
NSMCE1	2.1155	GM11042	0.3467 09	PKP3	0.2934 41	HIST1H4K	4.5102 3	HELZ	0.4493	LEPREL2	2.2361
DHRS1	0.4731 78	LGALS4	0.3471	DCBLD2	3.4018	UBE2K	0.2218	MGAT4A	2.2246	GM9762	0,4479 16
GM10250	0.4733 86	CCDC97	2.8777 6	IKBKB	0.2939	AL732476 .1	4.5064 3	C330027 C09RIK	2.2240	SLC25A23	0.4480 19
SVOP	2.1124	ITGA3	2.8747	PRPF3	0.2946 36	RPF1	0.2221 92	FAM33A	2.2207	MRPS33	2,2318
GBP3	0.4734	BC02658 5	0.3478 65	FNBP4	3.3934	EFTUD1	0.2226	DIS3L2	2.2205	CORO2A	0.4482 98
TSPO	2.1121	NDUFB11	2.8721	PHOSPHO 2	0.2946 93	METTL6	0.2226	PRPS2	0.4503	STK17B	0.4484
FAM45A	0.4735 28	SLC5A11	0.3483	NFYC	0.2947 86	AGA	0.2227 96	ELP4	2.2185	ҮКТБ	0.4487
NEK2	2.1112	NDUFA8	2.8684	MCOLN2	3.3836	MGST2	4.486	GLRX2	2.2171	RCBTB2	0.4490 53
DGAT1	0.4740 97	BUB1B	2.8667	PDAP1	0.2956	РМРСВ	4,4791	TCP11L1	2.2168	GIT1	2.2222
CENPH	0.4740 97	RHBDL2	0.3492 14	NFYB	3.3787 7	LZTFL1	0.2236 06	NFS1	2.2165 3	AC15694 8.1	2.2201 8

		Differenti	ally expri	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO- IL1B+IL6 96	5+IL23-	TOSO IL1B+IL6 96	5+1L23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
SGSM3	0.4745 55	CYB5	2.8630 3	MRPL2	0.2963 63	DTWD1	4.4720 1	TMC6	0.4518 46	LEO1	0.4504 33
TRIM30B	0.4746 04	PDCD1	2.8629 5	DTWD1	0.2964 8	REPS1	4.4696 6	MYEOV2	2.2122 2	MVP	0.4504 8
FDXR	0.4754 4	CAPRIN2	0.3493 69	GM10033	3.3729 1	REXO4	4.4678 8	PFDN2	0.4525 43	RDM1	2,2186 2
ТОММ20	2.1006 1	DHRS1	0.3494 92	STRN4	3.3685 5	MRPS15	4.4649 4	TMEM16 1A	2.2082 9	FAM192A	2.2176
PDAP1	0.4771 04	SH3GLB1	2.8571 8	SEC61A2	0.2968 84	RAC1	0.2239 67	CHRM4	2.2041	TBL3	2.2152 2
PTPMT1	2.0939 3	TCF4	0.3504 83	ACER2	3.3672	EIF4ENIF1	4.4392 9	E130309 D02RIK	0.4537 87	1110008L 16RIK	2.2136 8
SIGMAR1	0.4786 21	TRIAP1	2.8506 5	BUB1B	0.2971 87	NRF1	4.4383 6	NPEPPS	2.2029 5	UVRAG	0.4521 27
BBS7	0.4790 5	FUBP3	2.8496 9	GTDC1	3.3638 6	SPINT2	0.2254 26	DNAJB2	0.4546 67	GLRX5	2.2084 6
TNFSF13B	0.4797 92	CENPF	0.3510 01	GADD45G	3.3623 4	PLOD2	4.4337 3	GM2178	0.4547 56	2510003E 04RIK	0.4528 82
PARP2	2.0829 9	LY6F	2.8468 8	TM2D2	0.2974 12	NDUFAF2	4.4315 7	MS4A6B	2.1978 9	NUFIP2	0.4530 53
NUDT3	2.0826 2	GM14181	0.3515 1	TOMM34	3.3582 4	ABHD6	0.2257 48	DOS	2.1947 2	TK1	0.4533 55
TTC5	2.0822 4	TPI1	2.8447 4	DYNLL2	0.2979 32	GTF3C5	4.4277 4	TBX21	2.1942 9	PPP1R12 A	0.4536 02
LRRC24	0.4807 79	LMNA	2.8389 3	MTERFD1	3.3564 7	TXNIP	4.4158 7	FBXO44	0.4560 12	MAX	2.2040 5
NAA20	0.4816 4	TMEM55 B	0.3526 78	TFAM	3.3562 4	SNX3	0.2265 96	CTLA2B	2.1924	PLIN2	0.4537 64
EIF1AX	0.4818 16	IF147	2.8270 3	FLT3L	3.3475 9	TM9SF4	4.4106 7	4921517L 17RIK	2.1923 8	DNAJA2	0.4537 95
MRPS36	0.4819 83	GM5145	2.8259 7	NOL7	0.2988 38	BBS9	4.4079 3	AC16526 6.1	0.4565 77	MTF2	0.4538 88
COX6B2	0.4822 87	ADK	2.8212 7	CTSE	3.3434 4	SEC23A	4,4053 7	PPRC1	2.1891 1	F2RL1	0.4550 44
GTPBP8	0.4823 07	AC14958 5.1	0.3547 3	2810422J 05RIK	3.3430 6	UBLCP1	4.4045 1	BCAS3	0.4572 48	FBXO3	0.4557 36
CHI3L1	0.4829 18	NAT9	2.8154 3	MIA1	3.3413 5	NT5C	4.4043 6	PSMB6	0.4575 75	GM10417	2.1919 3
SIGIRR	2.0705 8	XRN2	2.8151 6	EIF4H	0.2998 47	POLR2H	4.4026 2	TMEM12 0B	0.4577 65	ZER1	0.4562 95
GM11273	2.0692 2	SCMH1	0,3553 75	THAP7	0.3008 09	CDC42SE 1	4.4022 9	CDK16	2.1831	PREX1	0.4564 46
GM9830	0.4835 86	GM5160	2.8127 1	CREB1	3.3232 3	TNFAIP3	0.2273 58	2310011J 03RIK	2.1827 3	RPL21- PS7	0.4567 37
DBR1	0.4838 31	HFM1	0.3557 16	GM2833	0.3009 88	PRR15	0.2273 65	GPR89	0.4583 67	IGSF8	0.4568 69
LEPREL1	0.4838 56	D18ERTD 653E	2.8073 2	SRSF9	0.3012 96	TNFSF13B	4.3957	ARL5C	2.1810 9	МАРКЗ	0.4570 86
CRYZL1	0.4840 85	4933427I 04RIK	0.3562 43	PFDN2	0.3014 24	NUDC	0.2275 73	GSTK1	0.4585 5	5730469 M10RIK	2.1868
CCDC127	0.4847 08	ARHGAP4	2.8070 4	PIGYL	3.3160 8	ZFPL1	4.3942	DSTN	2.1800 6	SEMA4D	0.4577 13
RNF7	2.0583 3	PRAMEF8	2.8069 7	GM8055	3.3147 5	C2	0.2277 83	SEC23B	0.4588 03	МҮСВР2	2.1845 2

GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1	.6-48h-	TOSO- IL1B+IL6 96	5+IL23-	TOSO IL1B+IL6 96	5+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
ACTC1	2.0578	CCR7	2.8016 9	REST	0.3019	NGRN	0.2278 15	FTSJ1	2.1793	STX8	2.1776 7
GM8815	2.0572 2	G3BP1	2.8006 3	SP100	3.3113 4	CRYZL1	4.3877 8	MEF2A	0.4593 17	NOL12	2.1768 3
TBC1D10 C	2.0562 8	ADAMTSL 5	0.3573 85	OAS1G	0.3021 31	PSMD5	4.3829 1	CDK2AP1	2.1771 5	ТОР3В	0,4600 01
OSCAR	0.4863 45	HSDL2	2.7978 9	RASA1	3.3005 4	CBLL1	0.2292 51	TANK	2.1771	HECTD2	0.4601 61
GM8909	2.0533 6	SDHD	2.7973 2	MAPKAPK 5	3.2987 7	FOLR4	4.3620 4	AC12522 1.1	0.4593 49	IKBKAP	0.4603 35
NCOA7	2.0506 6	LRRK1	0.3577 6	SLC4A1AP	0.3033 47	PRMT1	4.3601 1	MPHOSP H6	2.1757 9	DGUOK	0.4604 41
TRNT1	0.4878 22	PSMD5	2.7945 8	SQSTM1	3.2931 6	OPCML	4.3588 7	GM7367	2.1738	R3HDM2	0.4604 94
AIRE	2.0496	HSD17B1	2.7942 4	COX19	3.2930	CD200	0.2294 79	AC16310 1.1	0.4601 69	STIM2	2.1714
MRPS18B	0.4893	KIF18B	0.3579 54	GM12184	0.3036 72	HSD17B7	4.3486 4	CALD1	2.1723	IPO9	0.4606 07
AC11330 7.1	0.4903 48	GTF2E2	2.7936 4	MAPKAP1	0.3041 15	ОТИД7В	4.3457 1	ZFP125	2.1718	TCP11L1	2.1700 6
PA2G4	0.4905 83	RP23- 147014.1	2.7 93 5 7	TRMU	0.3043	ZCCHC9	4.3401	ALG5	0.4605 28	UQCRC1	0.4612
VPS8	0.4906 81	ACNAT1	2.7904 8	ITGB1	0.3045	ITGAM	0.2304	CNIH4	2.1711	DYNC1H1	2.1678 1
UBE2F	0.4907 97	GOSR2	2.7898 5	8430410A 17RIK	3.2829	TIAL1	0.2305	GM10180	2.1707 4	TM7SF3	2.1668
DDX50	0.4914 92	SNRPE	2.7881 5	TMEM10 6B	3.2734 9	KATNAL2	4.3336 1	NAPG	0.4607 11	PAPOLG	2.1655 8
LCTL	0.4915 21	3110057 O12RIK	2.7867 3	TUBD1	0.3059	FTO	0.2310	CCNK	0.4609	UBE1Y1	2.1645
PWP1	2.0334	TBPL1	2.7856 4	GET4	3.2673 5	SLC12A8	4.3262	1110014 N23RIK	0.4611 85	COPG	0.4622 15
TMEM16	0.4918 29	5730437 N04RIK	2.7851 8	ZFP560	0.3060	GM6624	4.3237	NDEL1	2.1664	CREB3	0.4635
TRABD	2.0272	FGGY	0.3595 34	RG9MTD 3	0.3076 57	CEP63	0.2313 91	TOM1L2	2.1655	DHX32	2.1569
PCNA	2.0268	MAP4K2	2.7798	RPS6KB2	3.2466	TM9SF3	0,2314 88	VARS2	2.1651 4	PHRF1	2.1566 2
SFT2D1	0.4934 85	DIAP1	2.7796 2	1500011B 03RIK	0.3081 19	ASCC1	4.3171 8	BBS9	0.4618 86	RNF220	2.1549
IFRD1	0.4943	TUBA1C	2.7781	MAP2K5	0.3086	TBCE	4.3105	ERH	0.4619 97	DNAJB6	0.4641
RPS6KA6	0.4952	AI462493	2.7723 3	GM5890	0.3089	ELMOD2	4.3061 5	EVL	2.1626	BCLAF1	0.4648 92
FBXO4	0.4958	N6AMT2	2.7710 3	LSM6	0.3090	SMARCD2	4.3011	FAM58B	2.1614	2210012 G02RIK	0.4649 73
IRF6	2.0159	PPIA	2.7667 1	SESTD1	0.3099	BUB3	4.3011 4.2996 2	1810014F 10RIK	0.4628 29	TEPT	2.1471 8
TIMM13	2.0151	A430093F 15RIK	2.7665 4	AIG1	3.2246	SLC20A1	4.2973 3	BPNT1	0.4630 89	H2-DMA	2.1425
HEATR3	0.4972	TSR1	2.7659 5	SLC25A14	0.3101	GPN2	0.2330 55	AKAP9	2.1587	UQCRQ	2.1420
CNN3	45 0.4973 68	AC12041 0.1	2.7642 6	TMEM39 A	3.2229 1	SLU7	0.2332 92	SLC30A4	2.1575 7	RBBP6	2.1401 7

GPR65	-KO-	GPR65		PLZP-	<u> </u>	R65-/-, PLZ PLZP-		TOSO-	***********	TOSO	-KO-
IL1B+IL6		TGFB1+II		IL1B+IL6		TGFB1+II		IL1B+IL6		IL1B+IL6	
96h		1010171	-0-3011-	48h		10101711	.0-4611-	96		96	
3011	Fold.Ch		Fold.Ch	4011	Fold.Ch	-	Fold.Ch	301	Fold.Ch	50	Fold.Ch
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W
GM6351	T) 0.4986 05	TGOLN1	T) 2.7639 9	0610010K 14RIK	T) 3.2193 2	MS4A6D	T) 4.2778 3	UBTF	T) 2.1570 3	WBSCR27	T) 0,4673 99
RTN3	2.0054 7	1810012P 15RIK	0.3618 85	AC13239 7.1	0.3111 55	VTI1B	4.2757 6	TSR1	0.4636 91	NLRC3	2.1394 4
OLFR345	0.4997 59	GM4979	0.3620 23	wwox	3.2115 3	PI4KA	4.2738 4	INTS9	0.4639 11	NAAA	2.1365 1
CCDC55	0.5003 81	TMED7	0.3620 38	RP9	3.2092 8	GM10208	0.2344 78	AC13239 1.1	2.1550	SRR	0.4681 15
GAR1	0.5024 31	TRP53	2.758	CHCHD5	0.3116 61	MLX	4.2550 4	FKBP15	2.1539 1	BC01642 3	0.4682 65
CCR8	1.9899	CETN3	2.7573 8	RANGAP1	0.3116 73	HAUS7	0.2350 16	GM13308	2.1506 6	TMPRSS1 1BNL	2.1335
HSDL2	1.9894	CTNNBL1	2.7561 2	FYN	0.3119	ARGLU1	4.2504	TXNRD2	0.4655	MCM6	0.4689 71
RTCD1	0.5027	USMG5	2.7550 5	GPLD1	3.2021	TGIF1	0.2355	PWP1	0.4657 91	GABARAP L2	2.1308
2900092E 17RIK	1.9888	ORF19	0.3630 04	DNAJA1	3.1971	GTF3C2	0.2355	TMEM22 0	2.1467	MYC	2.1293
ACLY	1.9886	RP23- 389D15.1	0.3631	42253	0.3129	ADM	0.2359 92	PDE7A	2.1466	PSENEN	2.1288
1110059E 24RIK	0.5032	CORO1C	0.3631 95	IL23A	0.3130	DSCR3	0.2361 14	CGRRF1	0.4661 17	ADCK4	2.1245
CAPRIN1	0.5033 11	AC13178 0.1	2.7529 8	PRL8A1	3.1936	RNF13	4.2306	IL17F	0.4664 76	2610020 H08RIK	2.1236
FAM129B	1.9833	KBTBD4	2.7519	SEPP1	0.3134 28	PPAP2C	4.2201 4	HIST4H4	0.4666 39	COQ6	0.4709
MTHFS	0.5049 17	RPL7A- PS10	2.7503	NDUFB7	3.1880	GM129	0.2375	ALDH4A1	0.4666 55	TRRAP	2.1221
STAU1	1.9770	2610204 G22RIK	0.3641 74	WDR35	0.3137	CRTC2	4.2083 3	MRPL20	2.1427	ERGIC2	0.4717 59
TLE6	0.5059	GM10750	0.3644 82	CSF2	0.3138	ANKRD46	4.2065	CLEC4A2	0.4669 49	HYOU1	0.4718
1190002 H23RIK	1.9761	IKZF5	0.3645 38	RER1	0.3140 12	TOR1A	0.2378 85	UBXN2A	2.1398	PTPRCAP	2.1184
CD40LG	1.9755	NPEPPS	2.7380 2	RECQL	3.1820	ZNF512B	4.1997	FAM82B	0.4675 89	TOMM70 A	0.4721 27
STAT5A	0.5065 35	4932425I 24RIK	0.3653	STAG1	0.3142 67	SPRED1	0,2382 32	HIST1H1B	0.4676 05	TCIRG1	0.4723 79
FHDC1	0.5069 63	GNL2	2.7343 8	NKAP	3.1816	MRPL50	4.1961 5	MAP2K5	2.1372	MRPL35	2.1151
NRBP1	0.5070 55	UGT1A6A	0.3662	PTGR2	3.1815	ZC3H15	0.2385 61	STRN	2.1335	BRP16	2.1119
RHOC	0.5072 38	STAG1	0.3663 99	SIRT3	3.1812	GINS4	0.2389	GM10736	2.1334	CYB5R1	0.4739
SIDT2	0.5073 07	UBE2J2	0.3664 74	CCBL1	0.3145 23	1700020C 11RIK	0.2390	CDKN2C	2.1312	PFKP	0.4740
LPCAT4	0.5074	NIPSNAP 1	0.3664 88	KIF3A	3.1729 7	KDELR3	0.2393	EP\$15	2.1304 4	TIMM22	0.4741
1700009P 17RIK	01 0.5074 9	UBC	2.7258	2310061C	0.3151 97	DUSP23	0.2394 68	2510002	0.4695	PRDX1	0.4744
GPN3	0.5080	PDIK1L	0.3670	15RIK PDHX	3.1710	ACAD11	68 4.1732	D24RIK VTI1A	2.1278	TOP1MT	2.1072
POP7	25 1.9677	PFKFB2	74 0.3671	GALNT6	0.3161	CLCC1	7 4.1710	CCR8	9 0.4699	COX15	0.4746

GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1	.6-48h-	TOSO- IL1B+IL6 96	5+IL23-	TOSO- IL1B+IL6 96	i+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
TMEM10 6C	0.5085 05	CCDC93	0.3674 84	ALG1	0.3162 57	NDUFA10	4.1687 3	IRGM1	2.1268 3	4933421E 11RIK	0.4750 88
GBA2	0.5092 79	ZFP260	2.7202 5	ORAOV1	0.3162 66	SEPP1	4.1648 6	UBE2M	0.4703 7	AIF1L	2.1047 1
ING1	0.5097 37	RNF38	0.3676 95	PEX3	0.3164 48	ATG13	4.1605 6	RELT	0.4704 13	PATZ1	0.4754 65
ATP5G2	0.5099 9	ADD1	2.7194 1	TRIM12C	3.1583 5	ING2	4.1570 7	GBP8	2.1249 3	NDRG1	0.4760 38
ZMYND15	0.5101 39	EEF1G	2.7187 4	CR974466 .3	3.1556	GM13540	0.2406 4	MFSD5	0.4714 48	GM6404	2.0998 9
RAMP1	1.9599 4	MARK2	0.3684 65	WIPI2	0.3169 89	H2-M3	0.2406 82	LCMT1	0.4717 78	SLC35C1	0.4762 17
TUBE1	1.9588 1	KLF7	2.7138 5	TRIB2	0.3171 26	ERP44	0.2408 25	KPNA6	2.1164	EPB4.1	0.4762 45
COMMD2	0.5108 98	5730403B 10RIK	0.3685 07	нтт	0.3173 42	OVGP1	4.1495 4	TMX1	2.116	IL5RA	2.0988 9
FAM76A	0.5111 98	TMEM17 6B	2.713	GM10355	0.3173 73	TEX264	0.2412 96	BET1L	2.1144	DPH3	2.0978 4
OSGIN1	0.5119 61	IL1F9	0.3689 8	PABPC1	0.3175 86	GSPT1	4.1414	ADARB1	0.4730 36	MED30	0.4768 57
GM10479	0.5120 29	RNH1	2.709	METTL1	3.1470 5	MRPL24	4.1404 4	RPL30- PS6	0.4733 59	FGF13	0.4771 04
CCDC155	0.5120 97	TXNDC17	2.7069 2	BIN3	0.3178 91	NARFL	4.1372 9	FBXL8	2.1117	LRCH1	2.0954
AP2S1	0.5132 82	ARL3	2.7045 5	EIF1AD	0.3180 45	нмвох1	0.2419 91	CTSL	0.4738 8	PHACTR4	0.4773 94
GM5356	1.9475	NAPG	2.7008	SLC7A3	0.3181 91	MRPL40	4.1322 1	0610007C 21RIK	2.1099	ENTPD1	2.0906 4
GM2004	0.5135 59	COX5A	2.6993 5	ACSL6	3.1415 6	AP3M1	0.2424 16	AMDHD2	0.4739 71	ELF4	0.4784 86
ZMYM1	1.9467 8	ARFGAP3	2.6957 3	TIMP1	3.1412 9	RILPL2	4.1221 7	IFITM7	2.1078	5133401 N09RIK	2.0877 6
YIPF3	1.9403 7	B230208 H17RIK	0.3711	H2-M3	0.3185 27	BC056474	0.2429 85	PRKD3	2.1065	GM5244	2.0873 4
NDUFB4	1.9399	CCT2	2.6938 2	HNRNPD	0.3188	LAMC1	0.2432 58	DPP7	0.4747 07	TXNDC5	0.4793 54
SLC5A6	1.9379	EXTL1	0.3713 83	SMARCE1	0.3189 39	C1GALT1 C1	0.2433 91	AHCYL1	0.4750 79	DBR1	0.4794 24
SLPI	0.5161	2210418 O10RIK	0.3714 65	FYTTD1	0.3189 77	UTP6	4.1041	SNRPE	0.4754 42	PSME2	2.0838
STXBP3B	0.5166	PAK2	0.3715 64	ZFP68	0.3191 57	HELQ	0.2438	KDM1A	2.1032	GLB1	0.4811 16
ODF2	1.9309	MAN1B1	0.3716 06	GRK4	3.1313	CNPY2	4.0997	ASAH1	2.1029	PYGL	0.4813 26
MYO1B	1.9296	ABHD14A	2.6888	NCALD	3.1282	CTSE	4.0976	NBEAL2	2.1018	ZNRD1	2.0758 9
PABPN1	0.5182	AQP3	2.6860	VDAC2	0.3204 77	FUNDC2	4,0962 6	TMEM22 3	2.1006 7	DDB1	0.4822 69
FAM119A	0.5197	GM14443	0.3723	WDR5	3.1154	AATF	0.2441	BC01649	2.0990	RDH1	2.0706
HSP90B1	0.5197	PTS	25 2.6821	PIGN	3.1135	BAZ2B	43 4.0940	5 MTMR14	0.4770	1810006K	2.0695
FAAH	61 1.9221	COX7A2	5 2.6759	4933411K	7 3.1090	NPRL2	0.2442	TMEM19	2.0960	21RIK SCAI	2.0691

GPR65-KO-		Differentially expres		PLZP-KO-		PLZP-	KO-	TOSO-	-KO-	TOSO	-KO-
IL1B+IL6+ IL23- 96h-1		TGFB1+IL6-96h- 1		IL1B+IL6+IL23- 48h-1		TGFB1+IL6-48h-		IL1B+IL6+IL23- 96h			
										IL1B+IL6+IL23- 96h	
Gene	ange	Gene	ange	Gene	ange	Gene	ange	Gene	ange (KO/M/	Gene	ange (KO/M
	(KO/W T)		(ко/w т)		(KO/W T)		(KO/W T)		(KO/W T)		(KO/W
	1.9207		2.6755		0.3216		0.2444		,		2.0690
GNAQ	1.5207	TMX1	3	UBFD1	59	STRN3	85	ANK	2.0958	GMPPA	1
	0.5210		0.3739		0.3217		4.0887	222422	2.0956		2.0672
YWHAZ	58	LIMD2	78	USF1	83	RBMX2	5	PPP1R8	4	OTUB1	8
FAM98B	1.9146	SEC14L3	0.3742	EPB4.1	0.3221	TMEM16	0,2445	GM11092	2.0930	MRPL54	2,0661
171111505	9	ULU1100	68		07	1B	74	GWIIIOSZ	3		1
SYNGR1	0.5231	GM13247	0.3752	DNAJC9	3.1033	RHOT1	4.0843	ZHX2	0.4778	TNFSF9	2.0659
	0.5239		3		0.3225		4.0805		08 0.4780		0.4846
SHARPIN	17	ABI1	2.6648	SPEN	19	MOBKL2B	7	IDE	85	TPCN2	25
	1.9077		2.6627		0.3226				0.4781		
PSMA4	4	FAM53A	2	MCEE	23	ANKLE1	4.0788	HSBP1	65	GPS2	2.0626
AMZ2	0.5253	SEC13	2.6561	CENPO	0.3228	HTATIP2	0.2454	BC02912	2.091	APPL2	2.0613
	51	DECID	1	CLINFO	61	DIATIFE	56	7	2.091	AFFLZ	2
GM5590	0.5256	SUN1	0.3766	EBI3	3.0973	CORO1B	4.0719	PLSCR1	0.4782	GMIP	0.4852
-	98		37		1 2 22 4 5		2		94		89
PXMP4	0.5258	GTDC1	0.3769	NDUFS3	3.0946	D030074	0.2455 84	MAVS	0.4787	EIF2AK4	0.4855
	0.5259	4933427	2.6523		0.3233	E01RIK	4.0693		2.0885	TMEM12	79 0.4857
ESRRG	93	D14RIK	2.0323	ASH2L	4	SERTAD2	9	GM129	2.0883	3	69
PFDN1	1.9004				3.0887		0.2461		0.4787		0.4863
	8	UIMC1	2.6522	NAGK	5	ITGA6	02	TFPT	98	UBE3B	41
CCDC21	1.8987	PSMB2	2.6477	WDR37	0.3239	SPEN	4.0565	4931429L	2.0870	SEC11A	0.4868
CCDCZI	9	1311102	5	VVDI(37	44	5) (1)	3	15RIK	6		73
MUS81	1.8952	SNX12	2.6475	MOBKL2A	3.0857	DAP	0.2465	BC05647	0.4791	4933439F	0.4869
	0.5277		2.6466		3.0836		16	4	57 0.4793	18RIK	67
RBM3	6	GM5623	7	PPP1R7	3.0030	DGCR6	4.0543	FAM96A	84	OLFR613	2.0521
DLGAP4	0.5277		0.3779		0.3243	GRAMD1	0.2467		2.0857		2.0513
	7	TEX13	13	MOBKL3	37	В	09	TAF6	2	KCTD10	6
PSMG1	0.5280	GM10222	0.3780	2410017P	3.0818	ATP5S	0.2469	BRCC3	0.4795	CAST	0.4875
TOWIGI	81	GWIIUZZZ	32	07RIK	5	A11 22	42		27	CAUI	54
ABCF2	0.5280	HIST1H4D	2.6445	TMC6	3.0804	SEL1L	4.0456	0610007P	2.0845	RAPGEF2	2.0503
A430005L	96 1.8935		8 0.3783		0.3247		4.0442	08RIK	7 0.4800	RPL23A-	2.0501
14RIK	1.0933	OLFR592	12	RCC1	0.3247	LTBP1	7	THYN1	0.4800	PS1	2.0301
	1.8923		0.3785		0.3249		0.2473		0.4802		2.0501
PARS2	6	DEFB36	63	FAM98A	01	BC002059	11	PLRG1	48	PKP4	4
DDX23	0.5293	MAGEB1	0.3787	GSTO1	3.0734	FKBP2	4.0434	PEX19	0.4805	TTF2	0.4877
JUNES	33	8	97	<u> </u>	9	TRUIE	9	TEXTS	76	1112	81
TRADD	0.5294	PRKRA	2.6385	ADI1	3.0724	PIH1D1	0.2473	MSRB2	0.4810	SNX11	0.4880
	0.5297		3 6335		3.0700		0.2476		0.4813		0.4895
BRWD1	74	ZCWPW1	2.6335 5	CAD	3.0700	CAMK4	13	SGSM3	19	AKIRIN1	18
HOOK1	0.5298		2.6322		0.3268		4.0355		0.4823		0.4897
	63	TECR	6	PRKAB1	59	EPB4.1	2	GOLPH3	46	SHPRH	2
BZW1	0.5302	ESCO2	0.3800	IDS	3.0588	TMEM12	4.0334	TNFRSF1	0.4823	MS4A6B	2.0397
DC AA T	77		25	כטו	3	0A	2	В	73	141247700	6
CIZ1	0.5314	PPID	2.6304	PIGS	0.3270	ACY1	4.0314	NUDT1	0.4823	TAF6	2.0395
	06		7 6252		95		02492		0.4927		0.4004
LPIN3	0.5316	SRP68	2.6252 6	UBE2K	3.0569	FBXO7	0.2482	PAG1	0.4827 28	STK25	0.4904
	1.8791		2.6215		0.3271	2700062C	, ,		2.0691		2.0374
RHOG	6	TXNRD2	7	DHTKD1	49	07RIK	4.0248	EAPP	2.0031	RGS14	2.03/4

		Differenti	ally expri	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TH	17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO- IL1B+IL6 96	+IL23-	TOSO IL1B+IL6 96	5+1L23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
TDRD7	0.5340 47	4930425F 17RIK	0.3818 26	PNPO	0.3271 68	SLAMF7	0,2484 59	ADH5	0.4834 43	APEX1	0.4911 94
BRCC3	1.8723 5	ODF2	0.3819 01	ATOX1	3.0533	ECHDC1	0.2485 83	CHEK2	2.0683	WDR37	0.4914 2
NME2	0.5340 89	EEF1A1	2.6176 6	MTA1	3.0526 3	INPP5D	4.0219	ZDHHC5	0.4838 38	BC00562 4	2.0342 9
COMMD9	0.5345 38	GM4609	2.6168 3	MPP7	0.3276 79	OGFOD1	4.0203 6	SPATA2	0.4839 05	TAX1BP1	0.4917
CUL1	0.5347 86	EIF2S1	2.6126 3	ENO3	0.3277 96	PPIL5	0.2487 34	AKR1B8	0.4840 74	VAPA	0.4917 56
FGFR1OP 2	1.8682 8	REPS1	2.6108 7	CTLA2B	0.3281 06	CD84	0.2489 64	TMEM16 0	0.4841	MFSD4	0.4929 19
GM5494	0.5358 08	HEXDC	0.3831 38	TRMT5	3.0478	AC14245 0.1	4.0142 7	TADA2A	2.0651	C130026I 21RIK	2.0284 9
STARD4	0.5363 93	NUBPL	0.3832 79	L7RN6	0.3281	TUBB4	4.0125	BFAR	2.0651	GTF2H1	0.4931
SLC4A2	0.5369 14	H2-K1	2.6070 2	FBXO18	0.3283	HIGD2A	4.0105 9	CD55	2.0632 7	GUK1	2.0276 4
ACBD7	0.5370 82	3110003 A17RIK	2,6060 8	OBFC2B	0.3289	ITPRIPL1	0,2494 59	CDYL2	2.0612	BAT4	0.4932 62
NUP188	0.5371 66	SLC12A9	0.3840	UBE2R2	0.3297	BOLA2	4.0064	5730460C 07RIK	2.0579	PXN	0.4941 38
CCDC67	0.5371 88	CDADC1	2.6038 9	JAGN1	3.0243	TUBA3A	0.2496	5830418K 08RIK	2.0573	BOLA3	0.4944 76
SCO2	0.5372 68	ATP6V1A	2.6038	DNASE2A	3.0221	UNC50	4.0063 4	LARP1B	2.0571	INSIG1	0.4945 44
RPL7A- PS8	0.5377 95	MLF2	0.3845 58	STX7	0.3311	PHF14	0.2501	NRD1	2.0556 4 0.4867	CARM1	2.0220
SYNGR3 6720456B	0.5382 27 0.5382	MGST3	2.6002 2.5972	PI4KA	3.0190 3 3.0172	FAM114A 2	0.2502 61 3.9934	GPT2	0.4867 63 0.4869	LGALS4	2.0170 7 0.4960
07RIK	0.5382 49 0.5393	CTSD	2.3972 8 0.3851	WASF2	0.3317	AMT	0.2507	LGALS8	18	STIM1	0.4960 23 0.4961
SBDS	36	FIGNL1 1110054	0.3855	RRBP1	63	DHR\$13 AC11725	12 3.9847	G6PDX	2.0522	FAF1 0610030E	16
SRFBP1	87 0.5397	O05RIK	79 2.5895	LRPPRC	31	9.1 FAM103A	3.9812	R3HDM2	2.0513	20RIK	2.0156 0.4966
MANBA	15 0.5401	STXBP3A	6 2.5868	FAH	3.0056	1	3.9789	ATP5H	0.4875	TUSC3	43
MARK2	56	RPS6	3 2.5867	SPC24	0.3330	ALKBH1	3.9768	TRAF3IP3	75	BZW1	08 2.0070
CRNKL1	27 0.5420	GSTT2	7 2.5861	IPP	73	CYSLTR1	0.2515	GNG12	06	CYP4X1	3 0.4983
RAB8B	64 0.5425	TUBA1B	8 2.5859	SFMBT1	3.0010	DRAM2	73	SLC25A10	53	ERO1L	34 0.4986
CREBL2	31 0.5430	TEC	5 0.3868	CSTF2	3.0008	9930111J	19 3.9735	B9D1 MAPK1IP	81 0.4884	1110038	56 2.0050
CRLF3	38 0.5436	OLFR57	92 2.5 813	TCP11L1	3.0000	21RIK2	3.9719	1L	44 2.0470	D17RIK	9 0.4989
MBD6 MPHOSP	51 0.5442	ZFP58 GM1840	3 2.5792	BCAS3 WBSCR22	0.3335	TASP1	3.9653	ETL4 ABR	2.0469	CDS2 ACSL4	34 0.4992
H8 ORAOV1	74 0.5454	OPHN1	4 2.5792	XIAP	21 2.9949	TRIP13	9 3.9543	SMPDL3A	2.0461	LETMD1	23
OUVOAT	72	0111111	3	VICE	5	11111 13	8	JIVIF DLJA	3	LE LIMINT	2.003

GPR65		GPR65		PLZP-		PLZP-		TOSO		TOSO-	
IL1B+IL6		TGFB1+II	LB-96N-	IL1B+IL6 48h		TGFB1+II	LD-48N-	IL1B+IL6 96		IL1B+IL6 96	
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
EFTUD1	0.5460 74	CENPH	0.3883 23	CTLA2A	2.9872	IDH3B	3.9538 1	PSMD6	0.4888 33	CIAO1	0.4994 91
SYNE2	0.5463 79	42253	0.3884 38	CCDC30	2.9862 2	PRAMEL6	3.9499 7	GATA3	0.4889 35	NARS	0.4996 62
GM16519	0.5469 36	GM8325	2.5739 5	ESF1	0.3353 38	H2-AB1	3.9480 4	MFN2	0.4891 62	GM10845	1.9997 4
GZMA	0.5475 03	CDKN2AI PNL	2.5724 5	RBBP9	2.9817 1	KPNA6	0.2533 14	RPP21	2.0417 1	ATP5SL	0.5001 47
SSBP3	0.5475 55	RASA1	2.5705 8	FRYL	0.3356 25	PSMB4	3.9460 7	PARK7	0.4898 43	TNK2	0.5002 51
AC15490 8.2	0.5488 73	ММАВ	2.5704 5	WSB1	2.9788 3	FOXP1	0.2534 22	PTPN7	2.0411 2	TRPM7	0.5003 09
TEX10	0.5491 38	HNRNPA2 B1	2.5668 1	GTF3C5	2.9786 5	PCCB	0.2536 8	VTI1B	2.0405	HEXDC	1.9976 4
ENTPD8	0.5499 7	DYNC1LI1	0.3900	MAN1A2	2.9770 6	CASZ1	0.2537	SYPL	2.0392	C79407	0.5006 89
CLU	0.5500 86	ACOT8	0.3901 87	CHURC1	2.9741	2310061I 04RIK	3.9408 6	SLC35C1	0.4904 01	SMG5	0.5009 51
ATP6AP1	0.5501 53	GM6578	2.5612 2	APOO	2.9733 1	EDA	3.9408 6	GM10226	0.4907 33	ERCC1	0.5010 52
EXOC4	0.5503 39	RCAN3	2.5611 7	SPARC	2.9712	PDS5A	0.2539	FBXO22	2.036	ALKBH6	1.9938
AC12195 9.1	0.5508 3	PIGU	0.3906 26	RABL3	0.3372 72	CLEC16A	3.9338 3	BNIP3L	2.0350 6	GARS	0.5015 51
CLDND1	0.5509 84	A430078 G23RIK	0.3907 74	AC16326 9.1	0.3374 21	URM1	3.9267 8	SUV420H 1	2.0337 9	CINP	0.5020 82
PELP1	0.5522 41	CRIP2	2.5586 2	MDM2	0.3379 25	CDK2	3.9249 2	WDR77	2.0330	PHF20	0.5021 94
IAH1	0.5528 25	DPP6	0.3910 64	BC004004	2.9557 4	2900062L 11RIK	0.2550 86	WDR47	2.0323	CBX6	0.5025 39
UFSP2	1.8083	ZFP772	0.3912 24	1810006K 21RIK	0.3387 21	TMCO4	3.9183 2	SUGP1	0.4921 91	PI15	1.9893 7
PSAT1	0.5532 74	MRPS5	2.5529 8	SMARCA5	0.3390 57	YIPF3	3.9135 9	GFER	2.0304 4	HTATSF1	1.9889
RPL21- PS10	1.8074	TIMM13	2.5522 5	SMC4	0.3390 9	GM6531	3.9098 6	TNFAIP3	2.0288 7	MTHFD1L	0.5028 04
ATAD3A	0.5539 98	WDR70	0.3924 6	TLCD1	2.9478 1	TADA3	3.9080 2	SLC19A2	0.4930 46	CTPS2	0.5028 12
FANCC	0.5541 28	RPS8-PS1	2.5425 8	ZMYM4	2.9447 5	AC15759 5.1	3.907	GGA2	2.0262 5	RPL31	1.9862 9
RPL7A- PS3	0.5561 95	CIZ1	0.3933 23	CR1L	2.9362 5	RIN3	3.9052	MARK4	0.4939 23	IPO8	1.9839 3
DTWD1	0.5568 41	PDCD2L	2.5414 9	AC15490 8.2	2.929	NDUFV3	3.9029 8	ATP11A	0.4940 52	GM7964	0.5047 08
SOD1	0.5585 99	HAT1	0.3937	TRAT1	0.3414 17	SLC29A1	0.2563	KATNAL2	2.0233	SLC7A11	1.9758 6
SPEN	0.5598 7	UROS	0.3938 38	ARL1	2.9218	TOR1AIP1	0.2564	TPRKB	2.0220	DPF2	0.5066 25
FAM58B	0.5612 43	CENPM	2.5378 5	FH1	0.3424 86	DPF1	0.2566 06	RABGGTA	0.4951 79	GM9924	1.9716 5
KLHDC10	0.5630	KIF1B	0.3942 97	MSL1	2.9195 8	GEMIN4	3.8937 1	HEG1	2.0190	AC15900 8.1	1.9692 9
MMADHC	0.5640 54	TNNI3	0.3944 72	SLC4A11	0.3425 29	ARMC7	3.8921 9	CHD2	2.0157	UBE4B	0.5082 36

CDDCC	VC.	CDDCT		************	***********	PLZP-		TOSO-/- Th	*********	TOCO	٧٥
GPR65		GPR65		PLZP-				TOSO-		TOSO	
IL1B+IL6		TGFB1+II	.6-96h-	IL1B+IL6		TGFB1+II	.6-48h-	IL1B+IL6		IL1B+IL6	
96h	-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W
	T)		T)		T)		(KO)W		T)		T)
	0.5641		0.3948		0.3426		0.2572		0.4961		0.5086
GNA13	15	DRAP1	33	GEMIN6	77	WARS	73	ATF1	24	STAM	25
1110001 A16RIK	1.7700 5	DCUN1D1	2.5323 4	PDXDC1	0.3433 55	2610001J 05RIK	3.8863 9	GZMB	2.0154 1	SERPINF1	0.5097 71
AC11297 0.1	0.5650 13	RAD52	2.5261	TRAPPC2	0.3442 81	AC15490 8.2	0,2573 44	IKBIP	2.0152	CAPN7	0.5101 5
MRPL47	0.5654 22	TNIP2	0.3959 21	CTSA	2.9031	EBAG9	0.2575	HPVC-PS	2.0122	UAP1L1	0.5103 79
BCORL1	0.5655	GM4945	2.5231	CDK5RAP 1	0.3444 97	MFNG	3.8817 5	MFAP1B	0.4969 86	SF3A3	1.9591
GM16514	0.5663	CHST12	2.5228	CIAO1	2.8987	HK1	3.8804 2	KAT2B	0.4972 07	DTX3	0.5105
DENR	0.5673	CSN3	0.3967	SMYD4	2.8971	MRPS10	0.2577 69	PIN4	2.0111	CTXN1	0.5106
ZBTB20	0.5676 25	DRG2	2.5205 5	GRHPR	0.3452	PIGYL	3.8743 6	SPRED2	2.0094	ATP13A2	0.5108
IPO4	0.5679	4930431F	0.3969	BATF	0.3453 88	RBM17	0.2581	СРМ	2.0084	KPNA1	73 0.5114
CSTF1	0.5682	12RIK GM12216	0.3973	IFT46	2.8929	2310001	07 0.2582	CRYZ	2.0082	NUP160	0.5117
DNALC1	0.5691	VEGFB	62 2.5158	HEXDC	2.8915	H12RIK CDADC1	0.2585	PRDM9	2.0076	DOHH	0.5117
PPOX	0.5703	NDUFV1	2.5142	LIMS1	2.8912	EIF3K	0.2586	D17WSU	0.4984	CD84	47 1.9519
RP23-	1.7533	WAC	2.5075 9	MTM1	2.8898	9330129	56 3.8658	104E SLC25A23	0.4988	PPME1	0.5133
378I13.5 GSTT1	6 1.7526 5	PSMD7	2.5072	EMID2	0.3464 45	D05RIK NADK	5 3.8621 9	SIT1	0.4989 06	GM8113	1.9473 2
UBAC1	0.5708 86	SET	2.5064 4	VPS36	0.3464	CISD3	3.8563 9	H2AFX	2.0040	RELT	0.5137 63
FAM114A 2	1.7508	DAZAP2	2.5063	CSNK1G1	2.8860	2610021K 21RIK	3.8562	MED29	0.4992	SIN3A	1.9462 1
ATP6V1D	0.5718 85	DPCD	2.5061	MRPS9	2.8838	TNNC1	3.8466 9	SPECC1L	2.0013	MAP2K2	0.5144 33
NUP210	0.5723 76	MYG1	2.5056 6	AC16310 1.1	2.8747	COPG2	3.8454 5	CFLAR	2.0013	GAD1	0.5153 78
FKBP4	0.5730	TRAF6	2.5028 5	CTSS	2.8718	GPS1	0,2602 65	POLK	0.4997 94	2010106 G01RIK	0.5160 83
SF3B5	1.7442 2	2410002F 23RIK	0.3996 37	ABCF3	0.3484 41	TWF2	0.2602 67	STX1A	0.5000	PIGX	1.9375
GNAS	0.5756	SLC1A5	2.5016	ATF2	0.3486	TRIAP1	3.8390 2	AAK1	1.9972 1	2510039 O18RIK	0.5164 61
1600002K 03RIK	0.5770	KATNAL1	0.3999	SND1	0.3490	GM12184	0.2607 14	OSBPL3	0.5008	TRAPPC4	0.5166 34
TRIM27	1.7329 4	SHISA5	2.4999 8	GM4978	2.8639	CNOT3	0.2608	TES	0.5013	PYCR2	0.5175 69
МТА3	0.5778 92	PLXNA2	0.4003 44	KBTBD4	2.8624	IER3	3.8341 2	FAM76A	0.5016 09	GM7334	1.9315 6
CDKN1A	1.7286	ENSA	2.4963	PDE7A	0.3494	PUM1	3.8327	THUMPD 3	0.5018	VP524	0.5178 16
LY6I	1.7284 7	PTPN2	2.4941	RPL30	0.3495	MRPS9	3.8311	ADORA2B	1.9918	ZBTB44	0.5183 69
MRPL4	1.7250 1	CCR8	2.4915 6	SRD5A3	0.3497	GLUL	0.2610	DLAT	0.5023 27	ZBTB25	1.9288

		Differenti	ally expri	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- Th	17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II		TOSO- IL1B+IL6 96I	+IL23-	TOSO IL1B+IL6 96	5+IL23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
STK16	0.5826 41	GPR171	2.4906 5	CCDC101	0.3498 85	TAF1D	0.2610 34	RCBTB2	1.9894 9	CDCA7L	1.9282 5
FAM19A1	0.5827 55	EAF2	0.4017 32	ZFP828	0.3507 27	2700060E 02RIK	3.8289	BC00333 1	1.9891 4	DPP8	0.5189
1700022I 11RIK	1.7116 5	LYZL6	0.4019 36	CNOT6L	2.8499 9	RAD52	0.2616 05	CYFIP1	1.9879 7	FOXRED1	0.5196 51
CCDC58	0.5852 4	SIGLECS	2.4874 7	BET1	2.8445 1	CELF2	3.8193 5	2400001E 08RIK	1.9875 9	PSG28	1.9232 9
CWC27	1.7068 8	NUMB	0.4020 97	ATP5J2	2.8436 5	2410002 O22RIK	0.2619 16	RNPEP	0.5035 12	CDCA4	0.5203 08
NPC2	0.5861 83	SMOX	2.4854 3	MTA2	0.3518 93	PTTG1IP	0.2623 22	KIF2A	1.9852 6	NMT2	0.5203 84
CASC1	0.5873 11	PRKRIP1	2.4849 5	TSR2	2.8415 1	LRP1B	3.812	CNOT7	1.9849 9	SLC25A3	0.5208 12
FIGNL1	0.5877 06	1700040L 02RIK	2.4840 4	APOO-PS	2.8409 3	1700084J 12RIK	0.2624 48	ACER2	1.9839 8	TBCE	0.5208 16
GM10947	0.5889 48	HOMER3	0.4029 29	SRP9	0.3522 07	AMZ2	0.2628 04	CTNNB1	0.5040 68	FGFR1OP	0.5215 89
USP4	0.5922 3	AKT1S1	0.4029 34	CHD6	0.3528 69	TWF1	0.2629 02	2310001 H12RIK	0.5040 76	UPB1	1.9167 1
IPO9	0.5927 84	CCDC52	2.4812 7	ST13	0.3531 81	9130011E 15RIK	0.2630 89	1200016B 10RIK	0.5042 31	ACO2	0.5217 75
GLUL	0.5936 23	MLXIPL	0.4038 03	GM10126	0.3539 69	PGM2	3.7969	COQ9	0.5044 26	ARID1A	1.9141 9
IK	0.5942 84	FAM96B	2.4750	YME1L1	0.3543	ZFP119B	0.2633	GM9920	1.9820	SCO1	0.5224 45
SMN1	0.5987 34	FAM192A	2.4749 9	LARS2	0.3546	MS4A4C	0.2639 21	LSR	0.5047 04	STK19	1.9127 9
RPF1	0.6001 17	D2WSU8 1E	2.4742 2	XRCC2	2.8168	BSCL2	3.7878	A230046 K03RIK	1.9806	SLC9A7	1.9123
EIF3F	0.6009 44	KARS	2.4733	PPT1	0.3553 64	GPAA1	3.7878	PAIP2	0.5050 06	MEF2A	0.5234
STAMBPL 1	0.6018	ZEB2	2.4729	ATP6V1G 1	0.3559 86	SLC6A9	3,7878	NAB2	0.5051 61	4732465J 04RIK	1.9077
NAP1L4	0.6018 61	EIF3I	2.4718	LRRC59	0.3565	RABEPK	0.2641	IBTK	1.9788	TRIM26	1.9052 6
SUMO3	1.6608	ССТ7	2.4716	DAP	0.3569	POLR3G	0.2645	SCMH1	0.5056 17	PDLIM7	0.5253 43
ZFYVE20	1.6595	H2AFZ	2.4694	E130309 D02RIK	0.3570	PHB2	3.7781	BC03135 3	1.9776	RAB8A	0.5255
SNX6	1.6470	CLIP1	0.4050 64	HMGB3	0.3575	VPS25	3.7765	UPF3A	1.9750	FAM172A	1.9021
TMEM20 8	0.6080	FLNA	2.4629	USP45	0.3580	APPL2	3.7744	FDXACB1	1.9750	HSP90B1	0.5260 21
CDYL2	1.6406	СМАН	0.4068 25	UBE2G2	0.3587	NAGA	0.2649 86	LY6C1	1.9736	TRAF2	1.9004 9
MRPS23	1.6232	PSMB3	2.4574	SLC13A4	0.3589	ZFP444	0.2652 17	RBBP6	1.9735	RTN3	0.5262 87
SDCCAG8	0.6181 33	NUP188	2.4558	DCTN6	0.3596 05	BTD	3.7705	DNAJC15	0.5067 79	HAT1	0.5266 03
GM10180	0.6231	TMEM50 B	0.4076 58	BC005537	0.3597	ERCC8	0.2652	твх6	1.9728	Al480653	0.5269
NFKBIL2	0.6236 3	PDIA6	2.4511 6	4930473A 06RIK	0.3600 25	2310011J 03RIK	0.2653 76	IRS2	1.9725 7	WDR13	0.5272 64

		Differenti	ally expri	essed gene	es for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO- IL1B+IL6 96	+IL23-	TOSO IL1B+IL0 96	5+IL23-
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
TREX1	1.6007 9	SLC2A9	0.4084 52	NUP35	0.3601 56	SLC3A2	3.7682 4	ZFP260	0.5069 64	RPS12	1.8952 6
NMT1	0.6292 25	FBXO18	2.4466 5	DUS1L	0.3609 92	ADI1	0.2655 36	A630010 A05RIK	1.9709 9	H2-GS10	1.8949 5
BOLA2	1.5874 7	IL2RG	2.4444 7	RNF25	2.7645 5	GSTZ1	0,2657 92	SYTL1	0.5076 13	RBPSUH- RS3	0.5279 76
RPS12- PS3	0.6350 83	SNRNP20 0	2.4442 1	ATP6V1D	0.3624 58	MTG1	0.2658 86	LYN	1.9696 3	CTNNA1	0.5281 39
EIF3K	0.6400 23	APLF	0.4091 41	AGK	0.3624 86	PPM1M	3.7609 3	ZMYND8	0.5078 88	POLD1	0.5282 32
RNF8	0.6405 52	TTC16	0.4092 14	EIF4E3	0.3625 49	MYBBP1A	0.2659 55	TGTP2	1.9687 5	FNDC3A	0.5300 53
GIMAP5	0.6410 94	FAM171A 2	0.4092 87	PNO1	0.3632 85	TUSC2	0.2660 08	1600014C 10RIK	0.5079 38	ECT2	0.5300 97
ICOS	1.5574 7	RDH11	2.4414 5	RPAP2	2.7457 8	CCDC40	0.2662 74	COG2	0.5080 92	ZBTB48	0.5312 18
AAAS	0.6452 99	GM9867	0.4097 53	CRYBG3	2.7450 7	RCCD1	3.7555 3	EIF1B	1.9674 8	AIMP2	0.5313 18
AACS	1.5471 3	SH3GL2	0.4100 64	YBX1	0.3643 51	UBE2G2	3.7520 8	AKR7A5	0.5082 68	GEM	0.5324 75
CLTB	0.6464 66	TGDS	2.4371 2	BBS9	2.7443 5	ZCCHC11	3.7501 4	A430033 K04RIK	0.5083 86	SMOX	0.5324 85
TSTA3	0.6468 3	GM12355	2.4359 4	CCNC	0.3645 51	RFT1	3.7462 4	GNPTG	1.9663 7	GRK1	1.8778 2
GLTPD1	0.6473 85	SLC17A1	0.4105 97	ORC6	2.7406 3	BFAR	3.7438 4	CDC42SE 2	1.9659 4	HSPH1	0.5325 96
USP33	0.6520 32	CHCHD2	2.4343 1	PSTK	2.7400 2	MLL5	0.2672 06	UBAC1	0.5090 05	EEF2	0.5327 76
HSF2BP	0.6572 6	2310004i 24RIK	0.4110 66	PHF20	0.3652 73	AB04180 3	0.2672 28	STT3A	1.9640 5	SESN3	0.5334 5
EIF2B2	1.5135 3	RFC4	2.4323 7	GBP4	2.7348	EIF4E1B	3.7421 3	MEA1	1.9638 8	TMEM17 6B	0.5341 51
GM9846	0.6613 06	GM5449	2.4316 2	ATP2A2	0.3657 47	NUP54	0.2673 26	ALG6	1.9613 5	UBE2Q2	0.5344 91
AC06800 6.1	1.5103 7	RNMT	2.4293 2	CSDA	0.3658 8	TMEM11 1	3.7406 1	MAP2K4	0.5101 81	RASSF7	1.8697 1
BCL2A1D	0.6637 82	KIN	2.4282 6	CBR4	0.3660 82	GYG	0.2673 83	DAPK3	1.9594 9	MAVS	0.5352 61
EPHX1	0.6643 93	CRX	0.4120 69	CCDC111	2.7301 3	WAPAL	0.2674 53	GM6132	1.9588 6	FAM32A	1.8681 5
		NOSTRIN	2.4266 9	MBTPS2	0.3664 24	POLA1	3.7371 3	LRP1	0.5111 41	SMG7	0,5353 01
		TPMT	2.4210 8	GLA	0.3676 3	SCFD2	3.7363 1	VMN1R1 5	1.9561 7	CBLB	1.8634 3
		RIN2	0.4140 77	TUBGCP4	2.7022 3	ZBTB25	0.2676 44	2010005 H15RIK	0.5113 84	VPS33B	0.5379 68
		MRPS21	2.4143 5	PTPN22	2.7020 1	CCDC137	3.7330 3	PUS1	1.955	RERE	0.5382 33
		LSS	0.4142 7	FAM82B	0.3703 92	GM16380	3.7313 5	HOXB1	1.9547 1	RAB7	0.5390 09
		ERCC6L	0.4148 13	OCIAD1	0.3707 22	ZFP870	0.2682 54	PTPN1	0.5117 05	TMEM22 2	1.8546
		CDH7	0.4153 62	PHF14	0.3715 14	BC021614	3.7267 9	ТОРЗА	1.9542	CDC26	0.5393 05

GPR6	5-KO-	Differenti GPR65		PLZP-	***********	PLZP-		TOSO	***************	TOSO	-KO-
IL1B+IL6		TGFB1+II		IL1B+IL6		TGFB1+II		IL1B+IL6		IL1B+IL6	
96h	n- 1	1		48h		1		96		96	
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.C
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/V T)
		FLT1	0.4155 99	BC017643	0.3715 95	CENPO	3.7243 5	42066	1.9540 3	ARRB2	0.540 6
		NHLRC3	2.4057 6	TAF12	2.6907 1	RGS11	0.2685 13	FAM65A	1.9538 5	REEP4	0.540 8
		RAC2	2.4055	B230208 H17RIK	2.6882 5	SIDT2	0.2686 42	TRA2A	1.9534 7	NFKBIL1	0.540
		TTC35	0.4160 79	SMOX	2.6879	внмт2	3.7213 8	CCDC34	1.9529	LUC7L	1.847
		SERTAD2	2.4033	SNX1	0.3728 94	PRPSAP1	0.2689	SEC61B	0.5121	GM7263	1.84
		BCL3	2.4031	GM10491	2.6798	ZNRD1	3.7180	UBTD1	0.5123	SGIP1	0.54
		ORAOV1	0.4162 62	GLIPR1	2.6716	ZFP566	0.2692	BCAP29	0.5124 97	1810029B 16RIK	1.83
		GM10192	0.4164	CCDC55	2.6615 1	TFG	0.2692 49	F730047E 07RIK	0.5129	GPR98	1.83 1.83
		GM10576	0.4165 31	BCKDK	2.655	PIH1D2	3.7134	GTF2E2	0.5129	SYPL	
		1810062 G17RIK	0.4165 42	OLFR613	2.6527	ATG4A	3.7113	BPTF	1.9490	TARDBP	0.54
		ATF7	0.4165 42 0.4168	MRPS28	0.3780 22 2.6424	GRINA	0.2695 74 0.2698	SURF6	0.5131 01 1.9480	PAFAH1B 3	0.54
		PYGL	98 2.3973	GOSR2	6 0.3791	SIL1	67 3.7040	CDK4	0.5133	SNAPC1	0.54
		B4GALT7	8 0.4171	SNX10	13 2.6371	FAM54B	3.7029	OAT	0.5133 48 0.5133	PNRC1	0.54
		SHKBP1	87 0.4175	PTPN7 RPL21-	1	H2-Q7	8 3.7008	HSPBP1 RP23-	87 0.5136	DHCR24	0.54
		NEIL3 ARHGAP2	89 0.4178	PS6	2.6325 0.3803	LGAL54	0.2703	71J17.1	0.5130	EPT1	1.82
		3	65 0.4179	CDK2AP2	98	FZR1 PAFAH1B	3.6960	MINK1	28 0.5137	SERINC3	0.54
		CCDC73	48 2.3924	LRRC33	5 2.6246	3	5 0.2706	GPN2	45 0.5141	TRIM16	0.54
		SERINC3	2.3908	PXMP4	2.6240	NFKB1	57 3,6944	LANCL1	43	EIF4H	0.55
		IRF3	2 0.4186	MAP3K1	0.3817	TAF8	0.2709	RNF214	19	SERINC1	0.55
		REEP3	67 2.3869	LCLAT1	54 2.6183	CD44	38 3.6879	NEURL3	1.9442	NFE2L2	1.80
		NAPA RCCD1	2.3831	TADA2A	2.6166	SLC12A5	5 3.6832	GJA1	6 0.5143	PSG16	0.55
		RCCD1	2 0.4196	SBF2	5 0.3823	ADPRHL1	6 0.2715	CTPS	34 0.5143	PSD4	1.80
		ZBTB48	38 2,3829	MED11	79 0.3826	GSTT2	38 3.6816	EPHB6	82 1.9423	BRP44L	1.79
		ENO1	1 2.3825	SDR39U1	38 0.3827	NDUFS3	5 0.2716	SC4MOL	4 1.9417	NDUFS8	0.55
		SRA1	2 2025	FLII	7 2.6064	WWOX GALNET	17 3.6799	GOLGB1	6 1.9403	PRKAG1	0.55
		NRN1	2.3825 2.3822	CCDC58	5 2.6051	GALNT1	0.2718	FAM53B	5 0.5155	VEGFA	0.55
		RBMX2	9	DCAF17	5	AK157302	78	AZIN1	98	PML	

GPR65	5-KO-	Differenti GPR65		PLZP-	KO-	PLZP-	ко-	TOSO	-KO-	TOSO-	-KO-
IL1B+IL6		TGFB1+II		IL1B+IL6		TGFB1+II		IL1B+IL6		IL1B+IL6	
96h	ı-1	1		48h	-1	1		96	h	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.C
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/V
	T)		T)		T)		T)		T)		T)
		PLSCR2	0.4198 96	DPYSL5	2.6001 7	VPS52	0.2719 94	TBC1D7	1.9389 1	ZFP277	1.793
		MRPL27	2.3793 7	D17WSU1 04E	2.5981 4	TPRGL	0.2721 12	GM5148	0.5160 57	EAPP	0.557
		GM9920	0.4203 06	CRBN	0.3849 86	SDCCAG8	0.2721 55	GM15446	0.5166 69	UBR1	1,792
		SNX11	0.4206 89	COMMD3	2.5971 2	JMY	0.2722 84	RPS19BP 1	0.5171 13	NUP210	0.558
		CCDC127	2.3755 4	GARS	0.3854 47	ZFP68	3.6726 3	BAT2L	1.9334 1	TRAF4	0.559
		GM12166	2.3745 5	ADD1	0.3857 54	KDELR1	3.6672 3	THOC2	1.9318	NSMCE4A	1.78
		CHCHD5	2.3722	IGF2BP1	2.5918	PRPSAP2	0.2726 85	GM7204	0.5181	TUBG1	0.560
		PSMC1	2.3712	4930422I 07RIK	0.3859 53	4921521F 21RIK	3.6649 5	N4BP2L1	1.9293	HERC4	0.56
		CDCA3	2.3703 1	SLC5A6	2.5907 2	AMDHD2	0.2728 58	DDB2	0.5183 93	TMEM12 8	0.56
		HIGD1A	2,3696	STK38L	2.5865 7	SREK1	0.2728 66	UBR1	0.5187 47	ACP6	0.56
		HK2	2.3684 5	PIGQ	2.5853 2	SPATA5	3.6635	CCDC64	1.9273 9	RAE1	1.77
		HAX1	2.3670 9	CCNE2	0.3872 62	YWHAB	3.653	TIMM17A	0.5192 87	CRK	1.77
		GM6616	0.4226 01	RNFT1	0.3876 17	AGPAT4	3.6515 3	NOL6	0.5195 25	PKM2	0.56
		GOLGA2	2.3661 6	WDR83	2.5794	C130022K 22RIK	3.6476 2	SNF8	0.5195 44	RAB3D	0.56
		IDH3A	2.3655 5	TMEM20 8	2.5781 9	AAMP	0.2743 62	ZFAND2B	0.5196 92	ERI2	0.56
		TUFT1	0.4227 71	LDHB	2.5767 9	BTNL7	0.2743 62	MAP2K6	1.9237 8	RAD9	1.76
		IARS	2.3651 7	HIGD2A	0.3882 63	FARS2	0.2745 34	RPA2	1.9237 6	TRIM12C	0.56
		SNRPC	0.4230 25	TRMT2A	2.5755 6	TMEM13 8	3.6388 4	FLCN	0.5199 22	BHLHE40	0.56
		TAGAP1	2.3630 5	1810029B 16RIK	0.3886 97	DHRS1	0.2748 22	CCDC109 A	1.9233 3	GOLGA3	0.56
		ESRRB	2.3625 9	WDR11	2.5720 5	FAM45A	0.2748 96	MICAL1	1.9232 9	DHODH	0.56
		EGLN2	0.4237 27	PRPF4	0.3891 38	LRRC51	3.6365 2	YTHDF1	0.5200 77	CD2BP2	0.56
		GNB3	0.4237 51	GM129	2.5611 3	HBP1	3.6352 7	6330512 M04RIK	1.9221 4	NUP50	0.56
		CETN2	2.3563 1	RNF8	0.3904 62	TM9SF1	0.2751 83	ARFGAP3	1.9205 2	RBBP4	0.57
		SRSF2	2.3553 7	ENOPH1	2.5586 4	GM10125	3.6336 3	AHSA1	0.5208 38	SYCE2	0.57
		GM6984	2.3543 9	CCDC21	2.5583 9	VPS4B	3.6317 2	KCTD20	1.9197 1	SDHB	0.57
		ZDHHC2	0.4249 65	POLR3C	2.5568	SMYD4	0.2759 47	OLFR309	1.9178 4	IKZF1	0.57
		ACTR5	2.3530 9	LZIC	0.3916 56	KDELC1	0.2759 47	1200011 M11RIK	1.9175 2	трм3	0.57

GPR6! IL1B+IL6 96l	5+ IL23- 1-1	GPR65 TGFB1+II 1	L6-96h-	PLZP- IL1B+IL6 48h	6+IL23- -1	PLZP- TGFB1+II 1	L6-48h-	TOSO- IL1B+IL6 96	5+IL23- h	TOSO- IL1B+IL6 96	i+IL23- h
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold:Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.C ange (KO/V T)
		BNIP1	0.4250 06	SMARCAL 1	2.5470 2	RIOK2	3.6238 8	FUZ	0.5216 5	GNPDA2	0.572 3
		FUNDC1	2.3496 4	CASP9	0.3927 95	ACTG2	0.2764 42	FBXL20	0.5218 82	BBS5	0.573 5
		TMEM10 6C	2.3483	ATAD3A	2.5452 6	ACSL5	3.6173	CHCHD4	1.9161 1	WIPI1	0.57
		RPL27A- PS2	2.3464 3	CREM	0.3931 01	IFT80	3.6157 8	CCDC99	1.9160 8	GM10126	1.72
		2610020 H08RIK	2.3461	NUSAP1	2.5438 1	C1QBP	3.6156 6	CNOT8	0.5220 17	EIF2B3	0.58
		ALOXE3	0.4263 14	INTS4	2.5435 9	SAR1A	0.2765 78	RMND5A	0.5220 92	UBAP1	1.71
		HELZ	2.3423 5	UBE3B	2.5434	EIF5	0.2765 83	VRK3	0.5224 3	SPSB1	0.58
		FAM58B	2.3403 3	2210012 G02RIK	2.5431 4	ZDHHC4	3.6142 5	ТМЕМ70	0.5224 9	ALG1	0.58
		TMEM29	2.3386 3	DCLRE1C	2.5430 8	RHEB	3.6126 1	WDR62	1.9133 7	EIF4G1	0.58
		ССТ8	2.3368 1	HUS1	0.3933 19	DEGS1	0.2771 1	PLA2G4C	0.5226 7	GM10154	1.69
		BRD7	0.4279 7	UROS	0.3934 7	SETD3	0.2771 25	APLP2	1.9130 9	ARPC2	0.59
		PSMD4	2.3365 2	CDCA2	2.5412 4	SNX5	3.6065 8	НЕХВ	0.5229 21	SIN3B	0.59
		AC08711 7.1	2.3362 8	ATP5G2	0.3936 22	1700026 D08RIK	3.6006 5	ITGA7	0.5230 22	NADK	0.59
		CCNB1	2.3354 5	CHCHD2	2.5376 4	F730047E 07RIK	3.5994 2	DDX3X	0.5230 83	SNX15	0.59
		GLRX2	0.4282 97	RNF7	2.5329 3	AC10287 6.1	3.5992 4	LY75	1.9098 2	SUGP1	0.59
		PRKAR1A	2.3345 9	ZFP871	0.3948 55	STRADA	3.5978 2	AMN1	0.5236 42	WBP11	0.59
		FER1L4	0.4283 92	HDAC3	2.5311	МТСН1	3.5929 4	GM10126	1.9084	EIF4B	0.59
		SERF1	2.3326 4	GM11444	0.3951 69	CLUAP1	0.2784 52	TBC1D14	1.9060 9	KPNA6	0.59
		GLB1	2.3319 7	TRMT6	0.3953 06	TXNL4A	3,5902 5	TTC14	1.9039 6	EIF3G	0.60
		RPL17- PS3	2.3318 5	PSMB4	0.3957 13	2010002 N04RIK	3.5887	POLR2I	1.9036 3	СНСНДЗ	0.60
		PCID2	2.3294 9	PSMB10	2.5260 9	WDR83	3.5886 4	CORO2A	0.5255 57	BLMH	0.60
		SLC35A5	2.3285 5	FDPS	0.3960 01	ALG1	3.5864 2	CTSF	1.9024 7	NDUFV2	0.60
		АСОТ9	2.3266 7	PUS7	0.3966 96	SLC25A20	0.2788 3	CPEB4	1.9022 7	AC12195 9.1	0.60
		XPO6	2.3236 6	H2-T10	0.3967 61	C1D	0.2789 9	ACAD11	1.9014 2	1700021K 19RIK	0.61
		DULLARD	0.4305 51	CDK6	2.5200 8	WDR5B	0.2790 4	ACADL	1.9002 4	JUNB	0.61
		MBTPS2	0.4309 66	STXBP3A	0.3970 55	FBXW17	0.2793 42	USP34	1.8996 6	GM16372	0.62
		GLRX3	2.3191 6	PRDX4	0.3970 77	MRPS2	3.5782 2	HECTD2	1.8990	TRIOBP	0.62

		Differenti	ally expr	essed gene	es for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	6+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+IL6 96	5+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
	1)	FBXO7	0.4312 01	CAMK2D	0.3977 55	PARP2	0,2794 68	FAM18B	1.8984 6	SLC23A2	0.6232 97
		RFC1	2.3175 4	SURF6	0.3979 19	PVR	0.2798	SUB1	0.5270 24	TIMP1	0.6243 7
		BACH2	0.4315 18	NMT1	0.3981 18	SLC38A6	3.5734 3	GM4953	1.8973 4	NF2	0.6277 46
		EDIL3	0.4318 46	MRPL12	2.5067 6	CCDC117	0.2801 62	ORAOV1	0.5272 63	TM9SF2	0.6306 55
		MAPKAPK 3	2.3132 8	UBA3	2.5020 3	SRSF1	3.5674 3	ARL13B	0.5273 58	BCL2L1	0.6313 18
		ACSL3	2.3125 3	CCDC53	0.4000 55	CCDC37	0.2805 58	VPS37A	0.5273 94	ZFP68	0.6325 26
		EIF2B1	2.3124 8	ARPC4	2.4987 4	NDUFA5	0.2807 68	RAD23B	1.8935 6	2410002F 23RIK	0.637 36
		RAB34	0.4327 62	SIP1	2.4963 3	LAPTM4A	0.2809 76	KLHDC1	1.8932 1	TIMD2	0.6546 6
		HIST1H1B	2,3099 9	DUSP11	0.4009 3	RHBDD3	3.5590 2	ACTN1	1.8931 2	GM11092	0.6628 00
		FAM86	2.3092 6	AQR	0.4019 72	CHURC1	3.5584 2	RNASEH1	0.5284 73		
		USP20	0.4332 14	PRPF6	2.4872 1	SRP72	0.2814 68	MFSD4	0.5286 88		
		ARRDC4	2.3081 1	SMCHD1	2.4853	VAPA	3.5442 7	РНКВ	1.8912 1		
		GNB1L	2.3049 1	TOE1	0.4024 48	VCAM1	0.2821 46	CR97446 6.3	0.5294 69		
		OXSM	0.4339 47	ETF1	0.4026 12	C130026i 21RIK	0.2826 69	FEN1	0.5295 93		
		KDELR1	2.3024 6	CSNK2B	0.4028 76	TAX1BP1	3.535	НК2	0.5297 64		
		PPWD1	0.4344 47	MRPL23	0.4034 81	H2-KE2	3.5344 8	ZFP64	1.8874 6		
		MTCH1	0.4344 5	PIP4K2B	2.4782 3	LRRC57	0.2829 27	CBFA2T2	0.5298 15		
		UBE2K	2.3 01 1	GEMIN5	0.4038 58	MCFD2	0.2829 48	NUDT2	1.8873 2		
		MCM3	2.3008 9	MPP6	2.4759 3	RPUSD4	0.2830 46	TRIM26	1.8865 6		
		RAB26	2.2997 2	CHCHD3	2.4756 3	AHCTF1	3.5329 9	CAPN1	1.8860 8		
		COQ5	2.2992 9	BCAP29	0.4041 56	2610015P 09RIK	0.2831 8	GPRASP2	0.5302 05		
		PPP1R12 B	0.4350 5	HAX1	0.4042 98	AC16121 1.2	3.5313 2	WDR83	0.5302 8		
		GM1673	0.4353 22	RAB1	0.4043 38	GM10845	3.5271 1	ATP6V0A 1	0.5303 09		
		BAT4	2,2961 8	2310008 H09RIK	2.4730 1	RRP9	3,5263 2	1810012P 15RIK	0.5304		
		ННАТ	0.4361 99	PLEKHA2	0.4043 72	JKAMP	3.5234 5	GNPDA2	1.8852 1		
		IL11	0.4364	MRPS11	2.4719	BEND5	0.2838 81	1200011I 18RIK	1.8846		
		TERF2IP	0.4365 46	GM10247	0.4051	RBM18	3.5210 6	RNF220	1.8831		

GPR65 IL1B+IL6 96h	5+ IL23- 1-1	GPR65 TGFB1+II	-KO- _6-96h-	PLZP- IL1B+IL6 48h	KO- +IL23- -1	R65-/-, PLZ PLZP- TGFB1+II 1	KO- .6-48h-	TOSO- IL1B+IL6 96	-KO- 5+IL23- h	TOSO IL1B+ILI 96	5+IL23- h
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.C ange (KO/W T)
		TOP1	0.4365 7	RFC3	2.4681 5	PFN2	0.2842 57	D11WSU 47E	0.5310 55		
		PIGO	0.4369 2	C130026I 21RIK	2.4668 7	COQ3	0.2843 01	UBXN11	0.5310 91		
		GAK	2.2880 2	ETFDH	0.4056 5	CYC1	3.5162 8	GSPT1	1.8826 3		
		SLC35B4	2.2855 1	2810474 O19RIK	2.4650 9	GRINL1A	3.5131 1	FUS	1.8815 9		
		RWDD1	2.2847 6	ZMYM1	0.4059 29	CMTM5	3.5117 9	МАРК6	0.5314 95		
		ARFGAP1	2.2844 3	МҮН9	2.4630 3	UVRAG	0.2849 38	2810006K 23RIK	1.8800 5		
		RNF207	0.4379 31	RNF135	2.4622 9	SLC2A1	3.5080 6	TUBB6	0.5321 62		
		4933434E 20RIK	2.2826 8	GBP2	2.4622 8	DCUN1D5	3.5063 2	BC00326 6	1.8782 2		
		1700049 G17RIK	0.4381 22	RABGGTB	0.4064 51	RMND1	3.5037 3	ZKSCAN5	1.8777 9		
		MYST2	0.4381 31	BCL2L11	2.4598	PRKCQ	0.2854 25	PPARD	0.5327 56		
		HNRNPU	0.4382 83	CORO7	0.4070 67	BOLA1	3.5002 9	TOMM70 A	0.5328 04		
		A2LD1	0.4385 7	CAB39	0.4072 57	2900010J 23RIK	0.2858 79	ZCCHC10	1.8762 9		
		WDR67	0.4386 38	PFKFB4	2.4537	CLSPN	3.4918	LPIN2	0.5337 43		
		MAPKAPK 5	0.4387 37	THOC4	2.4529	NUDT19	3.4885 5	MOCOS	1.8726		
		MRPL23- PS1	2.2789 6	R3HDM1	0.4077 04	TRP53BP1	0.2866 92	CCDC17	0.5342 54		
		BC04633	0.4388 5	LAMC1	0.4077 77	USP8	0.2867 42	PIK3AP1	0.5343 86		
		GM4666	0.4388 8	RBM4B	0.4079 37	2310008 H04RIK	0.2869 29	SPNS1	0.5344 07		
		ADSL	2.2755 9	SERF2	0.4082 98	NR2C2	0.2869 73	EIF2B3	0.5348		
		VSIG10	0.4394 92	CINP	2.4482	CD97	3,4814 8	ACD	0.5348 47		
		ATP2B1	2.2749	KPNB1	0.4084 74	PGM3	0.2874 26	PTPMT1	1.8695		
		UCP2	2.2717	TAP1	0.4090	CLEC4A2	3.4753 1	UBA5	0.5352 27		
		GM8279	0.4402 09	EIF3F	2.4442	FCRL1	0.2877 44	SOCS1	1.8683		
		SSR4	2.2715 5	2700094K 13RIK	2.4396 6	RAD51L1	0.2878	TRIM12A	1.8674		
		IGSF8	0.4409 73	CPNE8	2.4394 6	нівсн	3,4733 9	KANK3	1.866		
		DAGLB	0.4409 8	AP1G2	2.4387 8	METTL7A	0.2880	CSTF3	0.5359 54		
		UBB	2.2669	CNN3	0.4102	FAM58B	3.4704	RREB1	0.5359		
		KLHL18	0.4417 15	NUP93	2.4338 3	GM5507	0.2886 49	GM10749	99 1.8647 5		

		Differenti	ally expr	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- T	n17 cells		
GPR65 IL1B+IL6 96h	6+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	6+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		SNRNP35	0.4417 46	SNAP23	0.4108 76	KCNQ5	3.4635 9	NCOA2	1.8643 4		
		DPM3	2.2629 9	IL17A	0.4111 63	D630004 N19RIK	0.2887 87	ABCD1	1.8639		
		BC04934 9	0.4421 84	SCD3	2.4312	SLC25A39	3,4627 6	FOXO3	0.5366 58		
		HECTD3	2.2614	RRP36	0.4121	3110001 D03RIK	3.4612	ASH2L	0.5368 41		
		MUM1	0.4423 46	WDR77 1110059E	0.4122	ACRBP 2610301B	3.4592 8 0.2893	CD1D1	1.862		
		GM5879	2.26 2.2577	24RIK	2.4255 5 2.4241	20RIK	35	EXOSC3 2700073	1.8603 2 1.8597		
		ANAPC5	2.2576	RAB4B	9 0.4126	TIMM22	3.4562 0.2894	G19RIK	0.5377		
		MSN	6 0.4433	FAS	0.4126 15 0.4127	ERCC3	51 0.2894	CLP1	0.5377 57 0.5378		
		PRKAB1	8 0.4434	CDV3	3 0.4129	TTLL1	66 3,4540	GFM1	0.5376		
		OBFC2B 2010002	48 2.2541	TARS	62 2.4213	CYP4X1	5 0.2895	ANGEL1 TMEM55	21 0.5379		
		N04RIK	2.2528	MCTS1	2 2.4190	FANCC	78 0.2897	В	35 0.5379		
		GBA WFDC12	1 0.4448	ADK LUM	2 0.4138	ACP2 BC068281	25 0.2898	Al314976 FRG1	74 1.8587		
		HSD17B1	38 2.2467	DDB2	37 0.4140	STARD7	3.4506	IFI47	9 1.8575		
		0 RSF1	0.4456	CHCHD1	0.4141	PLAC8	3.4492	SLC39A14	0.5386		
		DHRS3	0.4456 27	HAUS5	92 0.4142	RPL21- PS4	3.4483 2	RPL10A-	0.5390 89		
		APEX1	2.2438	GRAMD3	0.4145 62	AA96043	0,2901 63	PS2 MRPL12	1.8542		
		TULP4	0.4456 93	STAG2	2.4119	CBR1	3.4450 6	RAPGEF6	1.8531		
		KLHL6	2.2427	KIF23	2.4113 4	UROD	0.2902 78	ETFA	1.8518 2		
		TSTD2	0.4459 08	FANCG	0.4148 15	1110018 G07RIK	3.4424 1	IL4RA	0.5401 25		
		SFXN5	0.4459 41	42249	2.4080 7	GABARAP	0.2905 49	BCL2L11	1.8509 6		
		A530064 D06RIK	0.4459 59	MRPS5	2.4068 9	RFTN1	0.2908 02	CKAP5	1.8501		
		RG9MTD 2	0.4463 27	9330129 D05RIK	0.4154 76	TOR1B	3.4376 1	PPP1R11	1.8494 7		
		POLR3K	2.2404	МҮСВР	2.4048 9	SIRT6	0.2909 91	MGAT1	0.5408 91		
		ZFAND1	2.2402	SMYD5	2.3976	HYAL2	0.2912	ACTL6A	0.5409 91		
		CHN2	0.4468 49	ZFP605	2.3959	AA41539 8	0.2914	PRR3	0.5410		
		GNA13	2.2378 2	POLR2F	0.4182 89	LAPTM4B	0.2917 71	TSPAN3	0.5412 38		

		Differenti	ally expr	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		LRRC57	2.2367 6	TCTN2	2.3902	ACOT9	3.4273 5	SDHA	0.5412 54		
		RORA	2.2361 5	ZC3HAV1	2.3887 8	RIT1	0.2919 82	IRAK1	0.5414 35		
		STK38	0.4475 01	2410002I 01RIK	0.4196 39	GATAD2B	0.2920 71	GM16372	0.5414 65		
		SDF4	2.2320	томм7	2.3820	GM454	3.4213	PRR13	0.5415		
		EMG1	2.2313	TBC1D9B	2.3803	RUSC1	0.2922 86	PHF21A	1.8461		
		FAM69A	0.4484	AC16625 3.1	2.3784	2610029 G23RIK	0.2924	CCNDBP1	1.8460 1		
		IKBKG	0.4484 82	ID2	0.4204 75	MAX	3.4167	WBSCR16	0.5418		
		AC17075 2.1	2.2284	NUP43	0.4209 72	CIR1	3.4140	SURF2	0.5422 03 0.5423		
		IAH1	0.4488 38 2.2276	CLINT1	0.4211 82 2.3737	SLC45A4	3.4140 7 3.4102	HEATR7A	0.5423		
		ARMC6	9 0.4490	BAZ2B	2.3737 2 0.4213	LEPROT	0.2932	UPF2	1.8433		
		RIMKLB	0.4490 0.4490	NFS1	73 0.4215	DTWD2 TMEM12	3.4048	ZDHHC2	0.5428		
		ZNF512B	96 2.2237	CD40LG	23	6A	3.4018	ZSWIM7	56 1.8411		
		PSMB1	7 0.4497	SEPHS1	66	TSPAN6 1700052	7 3.4013	SNAPIN	2 0.5432		
		SPIC	45 2.2226	MSH2 1110001A	2.3698	N19RIK	9 3.4005	H2-OA	18		
		NDUFB5	6 0.4500	16RIK	2.3696	ZFP239 2410002I	3.3992	HIST1H3G	63 1.8389		
		ACTL6A	8 0.4503	IL16	2 2.3689	01RIK	3 3,3979	SH3BP5	5 1.8389		
		PLA2G2C	26 2.2190	SEC11A	3 0.4225	CST3	3 0.2942	4933421E	2 0.5440		
		RPL3 CLUAP1	3 2.2178	DECR2	54 2.3663	SLC9A3R1 ZFP82	97 3.3948	11RIK CYB5R1	24 0.5443		
		5100A7A	7 0.4514	DPCD	0.4227	CABLES2	3.3934	GM10349	34 0.5445		
		USP7	0.4518	POLE	54 0.4228	RNF38	7 3.3929	PDCD1	27 0.5446		
		2900092E	36 0.4521	INPP5K	0.4229	2410002F	3.3869	PPP2R5E	1.8356		
		17RIK TUBG1	71 0.4529	FOXRED1	2.3640	23RIK HMGN5	0.2952	WHRN	0.5452		
		PECI	48 2,2068	VPS4A	2.3632	GALNT7	0,2952	WDYHV1	0.5457		
		DHX40	2.2016 1	BIRC3	2.3623	CRK	0.2958 38	GNPNAT1	1.8322 7		
		PAQR3	0.4543 1	GM10395	0.4233 51	1810063B 05RIK	3,3794 5	6330416 G13RIK	0.5457 76		
		AL592187	0.4544 99	3110043 O21RIK	0.4234 84	PPP2R2D	0.2959	QDPR	0.5459 29		

		Differenti	ally expr	essed gene	es for GPI	R65-/-, PLZ	P-/- and	TOSO-/- T	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	6+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	6+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		MIF4GD	2.2001 9	SATB1	0.4241 46	AHNAK	0.2959 31	ZRANB2	1.8312 1		
		ABAT	0,4546 36	AC13232 0.1	2.3553 3	PTK2B	0.2960 81	GM71	1.8305 6		
		PBX1	0.4554 34	QRICH1	0.4247 93	ATP6AP2	3.3742 4	FBXW11	0.5463 54		
		MLPH	0.4555 92	TRP53	0.4251 01	WEE1	0.2964 8	GIMAP4	1.8302 6		
		WDR77	0.4556 13	SLC25A36	2.3523	LRRC41	3.3714 9	AGFG1	1.8294		
		FBXO44	2.1941 1	PIGX	2.3521	CENPQ	0.2966	AMIGO1	0.5469 86		
		PFDN2	0.4558	ASB13	0.4253	ATP6V1B 2	0.2972	NDUFB9	0.5471 45		
		SULF2	0.4560 66	POP1	0.4254	NGFRAP1	3.3635	TMEM43	0.5472		
		4632433K 11RIK	0.4564 27 0.4564	TTC19 AC08711	0.4255 44 2.3408	GM4922	0.2974 12 0.2974	EPHX1	0.5473 67 0.5473		
		AP1B1	39 2.1884	7.1	2.3404	HAUS3	0.2974 12 0.2974	RALB	77 1.8266		
		MRPL20	2.1884	ZDHHC21	2.3404	IL1RL2 2610018	0.2977	SPATA7	9 0.5476		
		HINT1 6330439K	7 0.4570	TCHP	95	G03RIK RPL13-	53 3.3584	КНК	49		
		17RIK	64 0.4573	DPY30	7 0.4278	PS3 3110009E	0.2977	CYTH2	8		
		ANP32A	93 2.1817	NTAN1	09	18RIK	97 3.3564	FAAH	0.5479 0.5481		
		H2-T23	1 0.4585	PFDN4	53 2.3344	LDHC	7 0.2984	R3HCC1 1700057	64 0.5482		
		SAG	65	SH3KBP1	9 0.4289	NHEDC2	41 0.2984	G04RIK	99 1.8223		
		CTSZ	2.1802 0.4587	GM10063	16 0.4289	MKLN1	86 3.3499	AHR	5 1.8213		
		GM10699 DGUOK	37 2.1790	CAML LRRFIP1	73 0.4290	FBXL4 GM6816	6 3.3499	PLOD3	1.8203		
		PARP1	6 2.1754	SEMA4D	2.3306	CORO1C	3.3484	PSMD10	7 0.5499		
		UNC45B	3 0.4597	TRAPPC1	2.3280	SETX	0.2987	USMG5	59 0.5511		
		H2-K2	94 2.1714	ZFP655	0.4295	USP21	0.2988	CCDC127	0.5511		
		POLD4	2.1712	CD209C	2.3259	APEX2	38 3.3449	BRIX1	1.8141		
		ZFP53	2.1695	PPPDE1	2.3245	TMEM69	3,3432	BGLAP-	1.8126		
		VPS54	7 2.1694 8	DEPDC5	0.4315	LRPPRC	0.2992	RS1 POLD1	0.5517		
		H2-OA	0.4609 69	EIF2B5	2.3157	CMTM6	36 3.3385 3	YWHAZ	0.5518		
		CCDC124	0.4611 7	AP1B1	2.3137	RER1	3.3385	PRPF3	0.5519 42		

		Differenti	ally expr	essed gene	s for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+IL 96	5+1L23-
_	Fold.Ch ange		Fold.Ch ange	_	Fold.Ch ange		Fold.Ch ange	_	Fold.Ch ange		Fold.Ch ange
Gene	(KO/W T)	Gene	(KO/W T)	Gene	(KO/W T)	Gene	(KO/W T)	Gene	(KO/W T)	Gene	(KO/W T)
		TLCD2	0.4616 32	RNASEH2 B	0.4322 67	CDK8	0.2997 5	HIST1H2B G	1.8116 1		
		LIMCH1	0.4616 84	RNF20	0.4327 32	KPNB1	0.2998 05	4930455C 21RIK	0.5524 7		
		CLYBL	2.1649	GNPDA1	2.3095 7	GSN	3.3350 4	2810417 H13RIK	1.8097 7		
		2610028 H24RIK	2.1623 1	VTA1	0.4332 42	2010107 G23RIK	3.3314 4	CHURC1	1.8093 6		
		POT1B	0.4626 53	NISCH	2.3073 6	CCNL1	0.3001 71	DNAJA3	0.5527 77		
		GM10359	2.161	INPP5B	0.4340	EIF2C4	3.3282 5	ТМЕМ33	0.5529 49		
		FAM48A	2.1600 8	VEZT	2.3013	2310039 H08RIK	3.3252	CRTC1	0.5529 87		
		SLC35A3	0.4630 86	DDX56	0.4346	GM4769	0.3007	MAN2C1	0.5530 75		
		VPS28	2.1594	MRPS18C	2.2997	CDKN3	3.3243	TBC1D2B	1.8074		
		GM16223	0.4637 71	TSSC1	2.2963	ALG8	0,3009	TMEM10 9	0.5532 79 0.5533		
	-	PPIL1	0.4638 44	NIF3L1	0.4355 06 0.4355	NDUFAF1	3.3085 4 3.3079	DPH1	0.5533		
		SEC23A	2.1553 3 0.4651	АСОТ9	0.4333 67 2.2957	BC026590	0.3024	ZFP617	1.8071 0.5535		
		KCTD20	0.4657	RTN4	6 0.4357	VPS45 RPL21-	74 0.3028	GABPB1	0.3333 83 1.8047		
		GM10491	33 2.1468	ICAM1	6 0.4361	PS6 4932425I	32	PBX4	0.5544		
		GAPDH	3	IFT52	0.4376	24RIK	3.3020	RPS6KB2	0.3344		
		EML1	0.466 0.4660	GM10941	25	ZUFSP	95	WASF2 1810063B	6		
	1	GM11127	28 2.1452	CUL2	6 0.4377	FBXO25	23 3.2952	05RIK	0.5548 0.5553		
		CTSL	8 0.4663	RABEPK	62	CHCHD3 AC15628	7 3,2931	GTF3C5	42 1.8005		
		FCGBP	72 2.1436	CCNA2	0.4381	2,1	6 3.2930	NCOR1	6 0.5554		
	-	PMPCB	2 0.4670	NFU1 4930512	0.4384 2.2809	APOO	2 3.2905	UFD1L	19 0.5555		
		GM11696	28 0.4672	M02RIK	7 0.4384	TUBB2A AC15472	3 0.3045	INCENP BC00400	29 1.7996		
		EXPI CD30	45 0.4677	MEMO1	8 2.2802	7.1 METT11D	76 3.2805	4	9 0.5558		
		CD70 MRPL13	04 0.4678	9130011J	7 0.4388	1 TMEM55	0,3050	ELOF1 ANKRD39	67 1.7986		
		FAM188A	33 2.1370	15RIK NAE1	52 0.4391	B GM7792	17 0.3052	PEX5	3 1.7985		
		HELLS	8 2.1366	SET	0.4395	TBC1D14	22 3.2763	PML	7 1.7976		
		ZDHHC12	0.4682	PYCARD	36 0.4398	PRKACA	0.3053	PDGFA	0.5562		
		ED-110CTZ	37	, TO/IIID	8	(1333547)	46	10017	87		

KO- IL23- 1 Fold.Ch ange (KO/W T)	GPR65 TGFB1+II 1 Gene GM6843 H2-KE2		PLZP- IL1B+IL6 48h Gene	6+IL23-	PLZP- TGFB1+II		TOSO- IL1B+IL6 96	+IL23-	TOSO	6+IL23-
ange (KO/W	GM6843 H2-KE2	ange (KO/W T) 0.4689	Gene	ange				•	96	ih
	H2-KE2			T)	Gene	Fold Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
		 Contract to the contract to the c	FADS6	2.2716 8	CHCHD5	3,2718 2	ZMYM1	0.5564 84		
		2.1307 1	NDUFB3	0.4409 46	PUF60	3.2699 6	RC3H2	0.5565 97		
	TTC39B	2.1277 6	CTNNB1	0.4412 76	B230315 N10RIK	0.3059 22	IFI30	0.5567 67		
	GM9104	2.1277	PGAP2	0.4416	CASP9	3.2688	WDR74	0.5568		
	IFFO2	0.4700 55	SLC1A7	0.4416 65	CSMD3	3.2673	MAPKAPK 5	0.5570 62		
	UNC119	0.4701	1110007A 13RIK	2.2639	GIT2	3.2625	PLCXD1	0.5570 75		
	FARSA	2.1237	PARVG	2.2637	PARVG	3.2613	ABI1	0.5572		
	CDK5RAP 1	0.4710	CCNG1	0.4417 66	JMJD1C	0.3066 47	PISD	0.5578		
	GM10481	3	G02RIK	2.2607	EXT1	79	PRDX1	6		
	HCN3	13	CENPN	1	STRBP	4	CEPT1	51		
	WDR26	3	AHSA2	6	HSD11B1	6	GPSM3	2		
	ZSCAN2	82		5		54		88		
		85		3		77		2		
		3				53		5		
		5 0.4734		9 2.2522		6 0.3079		44 0.5594		
	1110008J	11 0.4738		6 2.2474		5 3,2443		49 1.7868		
	03RIK	31 0.4740		7 2.2467		7 3.2443		4 0.5597		
		32 0.4742		2.2461		1 3.2433		41 0.5600		
	1110049F	95 0.4744		0.4452		3.2421		72 0.5602		
	12RIK CCDC101	16 2.1059		2.2435	5730403B	3.2418		57 0.5603		
	8430410	7 0.4757		0.4466		3.2403	ZFP783	96 1.7841		
	A17RIK GM16409	2.1003	STOML2	2.2369	RRP15	3.2377	RHEBL1	0.5606		
	4930423	0.4764	TRUB2	2.2362	HERC4	0.3091	DLD	0.5607		
	O20RIK IPO4	0.4769	LIAS	0.4471	PPIE	0.3095	AGPAT6	1.7829		
	OGFOD1	0.4772	EME1	2.2347	BRMS1	3.2304	CCDC88C	0.5609		
		46		ე პ				0.5610		
		1 GM10481 HCN3 WDR26 ZSCAN2 RABL2 LRRC8D CPNE5 WFDC5 1110008J 03RIK TPM1 TAF11 1110049F 12RIK CCDC101 8430410 A17RIK GM16409 4930423 O20RIK IPO4	1 03 GM10481 2.1219 3 HCN3 0.4714 13 WDR26 2.1198 3 Z5CAN2 0.4717 82 RABL2 0.4724 85 LRRC8D 0.4729 5 CPNE5 0.4729 5 WFDC5 1.11 1110008J 0.4738 03RIK 31 TPM1 0.4740 32 TAF11 0.4742 95 1110049F 0.4744 12RIK 16 CCDC101 7 8430410 0.4757 A17RIK 27 GM16409 3 4930423 0.4764 OZORIK 18 IPO4 8	1 03 CUNG1 GM10481 2.1219 1810043 GO2RIK HCN3 0.4714 13 CENPN WDR26 2.1198 3 AHSA2 ZSCAN2 0.4717 82 NF1 RABL2 0.4724 85 TIMM9 LRRC8D 0.4729 CPNE5 0.4729 5 CPA6 WFDC5 0.4734 1110008J 0.4738 03RIK 31 0111008J 0.4740 TPM1 0.4740 TPM1 0.4740 11110049F 0.4744 12RIK 16 CCDC101 2.1059 TAF11 95 SS18 R430410 0.4757 A17RIK 27 RPUSD4 GM16409 2.1003 3 STOML2 4930423 0.4764 O20RIK 18 PO4 0.4769 RPLIA	1 03 CCNG1 66 GM10481 2.1219 1810043 2.2607 HCN3 0.4714 CENPN 2.2603 WDR26 2.1198 AHSA2 2.2598 ZSCAN2 0.4717 NF1 2.2590 RABL2 0.4724 TIMM9 2.2565 RABL2 0.4729 FAM192A 2.2561 CPNE5 0.4729 CPA6 2.2548 WFDC5 0.4734 ACO1 2.2522 1110008J 0.4734 SUCLA2 7 TPM1 0.4740 CCS 2.2467 TAF11 0.4742 HDAC6 2.2467 1110049F 0.4744 BCL2A1D 0.4452 12RIK 16 BCL2A1D 3 CCDC101 2.1059 SS18 6 8430410 0.4757 RPUSD4 0.4466 A17RIK 27 RPUSD4 0.4466 A930423 0.4764 TRUB2 2.2362 020RIK 18 TRUB2 6 1PO4 0.4769 LIAS 79 0.6F0D1 0.4772 FMF1 2.2347	1	1 03 CUNGI 66 JMMDIL 47 GM10481 2.1219 1810043 GO2RIK 2.2607 EXT1 79 HCN3 0.4714 CENPN 1 STRBP 4 4 WDR26 2.1198 AHSA2 6 HSD11B1 6 6 ZSCAN2 82 NF1 2.2590 TSC22D3 0.3072 54 RABL2 0.4727 85 TIMM9 2.2565 FXR1 77 LRRC8D 37 FAM192A 2.2561 M6PR 53 CPNE5 0.4729 5 CPA6 2.2548 CDIPT 6.200 55 WFDC5 0.4734 ACO1 6 GM10120 55 1110008J 0.4738 31 SUCLA2 7 ME2	1	1	1 03 CUNCI 66 MIDIL 47 MID 02

		Differenti	ally expr	essed gene	es for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		AC08722 9.1	0.4776 27 2.0932	MKKS	0.4481 36 2.2306	FBXO22	3.2272 9 3.2258	GM6404	1.7810 3 1.7785		
		FTL1 GM6177	2.0932	HDAC7 2610002J	2.2300	USP7 ST13	5 0.3100	NUFIP2 PAM16	0.5622		
		EIF1AX	0.4782	02RIK GM10222	0.4489	CCDC47	3.2250	ACBD4	97 0.5624		
		OXSR1	25 0.4784 24	СОХ7В	0.4496 12	AC15855 9.1	0.3103 31	PICK1	0.5624 46		
		GM11011	0.4784 26	ARPP19	0.4496 95	CDK16	0.3103 56	LRP1B	0.5626 24		
		ZWILCH	2.0896 7 2.0854	PYGB 1110004E	2.2222 3 0.4516	2410022L 05RIK	3.2169 5 0.3108	TMEM14 1	0.5628 88 0.5629		
		APH1B	9 0.4799	09RIK MRPS36	34 0.4520	IGFBP4 SRSF2	54 3.2154	GADD45A PCGF1	89 0.5632		
		FNDC7 NUDT16L	46 0.4799	P4HB	0.4524	D1BWG0	0,3111	MGAT4C	08 1.7752		
		1 AL589878 .1	73 0.4800 25	FAM103A	2.2077 4	212E FEN1	08 0.3112 56	NVL	1.7751 6		
		2010106 G01RIK	0.4807 18	MCFD2	2.2070 4	YBX1	0.3112 69	PRPF40A	1.7731 3		
		AC15359 4.1 RPL21-	0.4808 31 2.0775	SLC35A2	0.4533 34 0.4534	CCNG1	3.2108 8 3.2092	TMEM10 1	0.5647 39 0.5649		
		PS11	2.0767	HAUS7	0.4334	FAM40A 5830433	0.3117	CDCA3	75 1.7695		
		ATF4 EMD	8 2.0754	TMEM49 SMAD3	0.4546	M19RIK CTSS	26 3.2079	SLFN8 FUNDC2	0.5652		
		ABHD4	2.0675 5	MADD	2.1950 1	CLIP1	3,2069 2	1810013 D10RIK	0.5652 96		
		PATZ1	0.4839 44	ZFP277	2.1946 8	GM10482	0.3118 82	RNASEH2 A	0.5653 95		
		1700061 G19RIK	0.4839 6	5930416I 19RIK	2.1942 1 0.4557	PRAMEL5	3,2061	GSN	0.5655 71		
		ERH	2.0662	HDGF	78 2.1898	GM10088	3.2058 1 0.3121	PLCG1 1600002	1.768 0.5656		
		SNX17 RHBDD2	0.4842 0.4844	CHRAC1 NUP214	2.1897	ZC3HAV1	79 3.2032	H07RIK SYNGR1	3 0.5656		
		ILF2	2.0641 4	AGPAT6	2.1895 3	ING3	0.3122 52	MRPL13	32 1.7663 5		
		GM5045	2.0625 2	CUL1	0.4567 42	UPF3B	3.2021	CLPTM1L	0.5661 79		
		TRPM1	0.4851 93	FAM48A	2.1886	GM4885	3.1991 9	ATP5G1	0.5662 13		
		FURIN	0.4863 29 2.0560	ADAMTSL 4	0.4575	D2WSU81 E	3,1970 7 0.3128	ERN1	0.5668 27 1.7639		
		GM7964	8	PRDM11	2.1834	SMC4	89	SMYD3	4		

		Differenti	ally expr	essed gene	s for GPI	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP- IL1B+IL6 48h	5+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	5+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
		GPKOW	2.0529 4	BC026585	2.1830 2	POT1A	0.3130 51	PLAGL1	0.5673 79		
		IRGM1	2.0513	AKAP9	0.4582	PRKAB1	3.1937	MARCKSL 1	1.762		
		METTL5	2.0511 4	DSTN	0.4584	BANF1	3.1915	ALDOART 2	0.5677 35		
		PGAM1	2.0511	GOT2	0.4598 47	CDC20	3.1891	SELP	0.5678		
		MYBBP1A	0.4875 49	POLR2J	2.1702 0.4615	TRMT61A	0.3136 89 3.1845	DCTN4	0.5685 42 0.5685		
		NUDT7 2410017P	2.0507 0.4877	GM15887	0.4613 31 0.4632	MKKS 1110002	7	CDK2	0.5686		
		09RIK	72 0.4878	CREB3	33	N22RIK 4930555F	3.1836 3.1817	PLA2G16 6720489	0.5698		
		NXT1	64 0.4879	NUP54	2.1555	03RIK	9 3.1797	N17RIK 1110007C	15 0.5701		
		HNRNPAB PPP1R3F	41 2.0476	GM10495 INPP5F	2.1468	CGN KRT222	2 3.1794	09RIK USE1	79 0.5703		
		LEO1	9 2.0470	LGALS1	7 2.1465	SARNP	3.1791	VPS39	37 0.5708		
		CMTM6	7 2.0464	TIMM17A	0.4668	ARL6	3.1779	ATG9A	0.5709		
		MFF	8 0.4886 5	SURF4	0.4671	P2RX4	3.1772 1	ILF2	1.7510		
		PCBP3	0.4888 93	PSMC6	0.4677 73	COX18	3.1761 5	42068	0.5713 51		
		KLC1	0.4890 24	NDUFB11	2.1347	TADA2A	0.3148	YIF1A	0.5717 51		
		GM9808	2.0445 3	PSMD13	0.4685 83	TUFT1	0.3149 84	CIB1	1.7484		
		CBX1	2.0445	SSB	0.4751 77	RIOK1	3.1734 3	TNFRSF14	1.7480 6		
		IL4RA	2. 041 7 6	SDF4	0.4790 01	NUDT16L 1	0.3151 5	AC09012 3.1	1.7471 5		
		2310045 N01RIK	0.4898 97	RPL22L1	0.4846 88	0610009B 22RIK	3.1723 8	AMFR	0.5724 72		
		CCT4	2.0397 1	NME1	2.0583	NAPA	3.1711 4	МАРКАР1	0.5725		
		BDH1	2.0394	RPS15A	0.4890	FNBP1	3.1692	GM13154	1.7458		
		GM10845	0.4904 5	ANP32A	0.4957 53	CTPS	3.1681	PAFAH2	0.5730 79		
		NUDC	2.0372 2 2.0353	GM10036	0.5011 26 1.9869	FAM195A ATP6V1E	3.1673 3 0.3160	EVI2A	0.5730 9 0.5730		
		TSFM	2.0333 2 0.4916	KDM5A	1.9869	1 C330021F	3.1635	CD69 4930453	96 0.5731		
		UHRF1	55 0.4918	MRPL20	3 0.5085	23RIK 2810004	3.1586	N24RIK	76		
		CHD3	89 0.4919	UBA1	06	N23RIK	3.1366	PLEK	59 0.5739		
		PI4KA	91	CRIP1	2	FUT8	65	PIK3CD	88		

		Differenti	ally expr	essed gene	s for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	6+ IL23-	GPR65 TGFB1+II 1		PLZP- IL1B+IL6 48h	+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	5+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		CD247	0.4920 74	ATP5B	0.5161 33	PSMB5	0,3167 76	AKTIP	0.5741 24		
		PSG29	0.4922 56	томм5	1.9221	RNF14	0.3168 79	NUP50	0.5743		
		DDX56	0.4928 81	VPS29	1.8982	GM6498	3.1550 5	GM10108	0.5746 38		
		MGST2	0.4931 99	LY6A	1.8902	PPOX	3.1546 9	SF3B4	0.5747		
		PIP5K1A	0.4934 39	GPI1	0.5297 36	LIAS	0.3171 21	BC05204 0	1.7399 3		
		SCD2	2.0251 4	APEX1	0.5366 89	LIN37	0.3171 55	MFSD2A	1.7398 1		
		TNN11	0.4940 42	1810009A 15RIK	0.5370 57	CACNA1F	3.1528 8	PHLDA3	0.5747 92		
		SAA1	0.4944 37			FBXO18	3.1528 8	GFPT1	0.5749 73		
		GM11092	0.4945 18			ARHGDIA	3.1523 4	CDC26	1.7384 7		
		OLFR316	0.4950 2			BCL3	3.1508 6	CYP11A1	0.5755 84		
		MARCKSL 1	0.4950 66			NUBPL	3,1491	MKKS	0.5766 72		
		CCDC61	0.4960 47			NARS2	3.1483 7	TMEM12 3	1.7312 9		
		HIST1H1E	0.4968 19			POP4	0.3176 53	SF3A2	0.5776 04		
		SIGMAR1	0.4968 55			RNF34	3.1472 4	RNF125	0.5777 1		
		EIF4G3	0.4969 1			EIF2B5	3.1456 7	A630033 E08RIK	0.5778 35		
		NFKBID	0.4969 46			MYG1	0.3179 4	CIR1	0.5779 34		
		UNC50	0.4969 63			MS4A15	0,3179 94	RCSD1	0.5779 76		
		Al314976	2.0111 3			DDX41	0.3181 46	MANEA	1.7290 5		
		TRIM43A	0.4973			ARL3	3.1410 4	GIMAP9	0.5786 76		
		RAB7L1	0.4978 91			AEN	3.1372 3	TMEM13 8	0.5788 09		
		PI16	0.4981 77			BPGM	0.3187 53	JMJD6	0.5790 51		
		1110007 A13RIK	0.4983 18			ARMC10	0.3188 67	ALDH7A1	0.5793 9		
		BTBD11	0.4988 89			SNUPN	3.1361	LZIC	0.5794 08		
		WDR69	0.4992 66			6330416 G13RIK	3.1360 3	NAT9	1.7256 1		
		CDK2	0.4993 06			GORASP2	0.3190 13	UNC13D	0.5797		
		SEPW1	0.4993 44			WDR53	3.1337 8	MSI2	1.7249 3		
		ZBTB43	0.4993 55			CCDC58	0.3192 08	UBE2B	0.5798 06		

GPR65 IL1B+IL6 96h	5+ IL23- 1-1	GPR65 TGFB1+II	-KO- .6-96h-	PLZP IL1B+IL 48l	-KO- 6+IL23- 1-1	R65-/-, PLZ PLZP- TGFB1+II 1	KO- L6-48h-	TOSO IL1B+IL6 96	-KO- 5+IL23- h	TOSO IL1B+IL1 96	6+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.C ange (KO/W T)
		RELB	2.0024 3			KDM1A	3,1324 2	STK16	0.5800		
		RPL10 AL845291	2.0021 7 0.4996			BC011426 TMEM16	0.3192 63 0.3195	RAB14 AA46719	0.5802 9 0.5815		
		.1	0.4999			4	3.1277	7	73 0.5816		
		GM4883 FAM160A	29			MBTPS2	3.1263	EPN2	42 1.7170		
		2 SLC22A23	59 0.5011			QDPR TFIP11	5 3.1247	MTMR1 FLII	5 0.5825		
		ECHDC1	66 0.5015			BC003267	3.1230	A630007	56 1.7153		
		EFCAB1	0.5017 29			2210404J 11RIK	0.3203 22	B06RIK GPR98	9 1.7142 9		
		CIAPIN1	0.5020 94			NSG2	0.3206 17	ISYNA1	0.5838 08		
		PGAM5	0.5023 82			SGIP1	3,1188 4	SNRNP20 0	1.7109 2		
		ZDHHC19	0.5023 93 1.9902			GIMAP6	3.1162 6 3.1147	HIST1H3C	1.7103 0.5850		
		PRDM10	0.5025			ATG16L2	3.1147	TFPI	92 0.5862		
		RPL39L RDH9	04 0.5026			NUPR1	4 0.3218	COX6A1	33 0.5862		
		ITPA	3 1.9886			GM10343 TSPAN18	3.1072	GFM2 PPIL3	76 0.5866		
		PTGES3	1 1.9859 6			KIF5B	9 0.3219 3	1810032 008RIK	25 1.7036 8		
		PTMS	0.5035 84			RPL27A- PS1	3.1062 5	KHDRBS1	0.5871 85		+
		RNF135	0.5039 2			VPS72	3.1062 4	TMEM15 9	1.7013 3		
		MRPL50	1.9842			GM4978	0.3221	ALDOC	1.7011		
		BRAP TMEM45	0.5040 61 0.5041			FASTKD2	0.3224 65 3.1009	SMAP1	0.5880 77		
		В	85 0.5043			LUC7L3	0.3224	TM9SF4	1.7001 0.5883		
		COMMD9 CNTN1	61 0.5044			STX11 NME7	83 3.0987	SUPT5H TMEM14	2 1.6981		
		ANO3	0.5046			TGFBR1	3.0973	9 ATP6V1H	0.5892		
		DCTN4	02 0.5047 03			SHQ1	3.0960 3	KCTD11	0.5895 28		
		MAPRE2	0.5047 27			LMAN1	3.0946 5	SOCS4	0.5896 16		
		HIST4H4	0.5051 59			HIP1R	3.0934 9	WASL	1.6959 9		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	.P-/- and	TOSO-/- TI	117 cells		
GPR65 IL1B+IL6 96h	5+ IL23- 1-1	GPR65 TGFB1+II		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+I	L6-48h-	TOSO IL1B+IL6 96	5+IL23-	TOSC IL1B+IL 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		1500032L 24RIK	0.5052 28			CSTB	3,0920	SMPD4	0.5898		
		DOK2	0.5053 14 1.9787			GM5145	3.0882 2 3.0864	FAM125A	0.5900 39 1.6947		
		LIN37 DCXR	9 1.9787			PDIA3 KYNU	3,0849	SIGMAR1 UHRF1BP	0.5901		
		RPS6-PS1	3 1.9786			CHD4	0.3243	1L EZH1	0.5902 85		
		PMS1	0.5056 08			AC11718 4.1	3.0820 7	SDCCAG8	1.6936 8		
		GPI1	1.9777 1 1.9770			SERINC1	0.3247 44 3.0789	PSMB9	1.6918 6 0.5910		
		INSIG2	0.5059			UBE2E1 YWHAH	3.0779	MRPL19 A130022J	74 0.5914		
		CEP250	32 0.5068			OXNAD1	3.0775	15RIK DNAJC11	0.5914		
		AU01745 5	3 0.5 0 73 3			TTC5	0.3250 23	SRSF4	91 0.5916 55		
		8430426 H19RIK	0.5074 9			RWDD4A	3.0746 4	GM8973	0.5917 73		
		9030625 A04RIK	0.5078 81 0.5086			RPL26- PS2	3.0728 5 3.0727	ARHGAP4	0.5923 26 1.6881		
		ELMOD2	0.5086 84 0.5088			PDHX	3.0727	SEPHS1	0.5924		
		MFN1 GNGT1	52 1.9651			GALE RHOH	3.0707	IL2 PRNP	04 1.6880		
		LRRTM4	0.5092 06			TAF1B	3.0693 4	LSP1	0.5924 15		
		HBXIP	1.9637 7			GM10916	0.3259 85	QPRT	0.5924 38		
		OBSL1	0.5094 04			CCDC132	0.3263	C80913	0.5924 81		
		RRP9	0.5095 27 1.9622			SMCHD1	3.0635 6 3.0635	LRRC24	0.5929 3 0.5929		
		SRI 4930579K	5 0.5096			CRIP2 GRPEL2	0.3265	YTHDF2 PYGB	45 0.5931		
		19RIK 1700016 D06RIK	65 0.5096 99			PARP4	35 3.0624 5	SEMA4F	02 0.5931 94		
		SEPHS1	0.5097 82			MSL3	0,3266 56	RILPL2	0.5933 97		
		OXNAD1	0.5 0 98 27			AARS	0.3267 62	ATIC	0.5938		
		RPE RPL7A-	0.5109 97			TMEM17 9B	3.0600 1 0.3270	CPNE3	1.6838 3 0.5940		
		PS8	1.954			PYCRL	28	IKBKG	93		

GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II		PLZP IL1B+IL 48i	6+IL23-	PLZP- TGFB1+II		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	6+IL23-
3011	Fold.Ch	1	Fold.Ch	401	Fold.Ch	1	Fold.Ch	30	Fold.Ch	30	
Gene	ange (KO/W	Gene	ange (KO/W T)	Gene	ange (KO/W	Gene	ange (KO/W T)	Gene	ange (KO/W	Gene	Fold.C ange (KO/W T)
		SLC15A3	0.5117 77			LPL	3,0576 7	VHL	0.5941 21		
		GM561	0.5119 22			CO30046E 11RIK	3.0574 6	MRPL35	1.6822		
		FBXO3	1.9530			ZC3H12D	0.3273 01	H47	0.5944		
		OSGIN2	0.5120 6			2700007P 21RIK	0.3275 12	ZNHIT1	0.5945 96		
		PXMP4	0.5121 82			4930583 H14RIK	3.0526	ITPR2	1.6815		
		FXYD3	0.5123 75 0.5126			ACAP2	0.3275 87 0.3278	GP49A	1.6799 3 0.5952		
		PLEKHG2	95			CPNE8	0.3278 79 0.3278	XLR4C	91		
		MDH1	1.9488 0.5137			LCMT1	99 3.0489	KPNA4	7 0.5957		
		LMO3	07 1.9463			CES2B	7	DPF1	54 0.5959		
		THAP7 SLC1A7	2 0.5138			MARK2 CDK2AP1	3.0478 0.3282	ZFYVE20 FAF1	24 0.5960		
		PHPT1	53 0.5143			PLEK	36 0.3286	POLB	0.5961		
		TOMM5	1.9440			THOC1	0.3287	RPL37	1.6770		
		HNRPDL	1.9436 7			GTPBP2	3.0409 2	MOCS1	7 0.5962 94		
		WDR31	0.5146 37			CBWD1	0.3292 16	GNAI2	0.5965		
		TOR1AIP2	0.5148 74			BBS12	0.3292	YME1L1	1.6735 9		
		MYO1B	0.5150 39			TMEM16 7	0.3294 3	GPAA1	0.5977 72		
		RNF125	1.9398 5			CSDA	0.3296 24	INSL3	0.5978 42		
		2310016C 08RIK	1.9382 5			CCDC22	0,3298 76	DNLZ	1.6710 2		
		NARFL	0.5161 57			VAMP4	3.0285 9	CLK4	1.6699		
		APEX2	0.5163 21			VPS16	3.0275	APBB1IP	1.6698		
		RANBP1	1.9355 6			SH3GLB1	3.0243	MRPS11	0.5990		
		HMCN1	0.5170 13			ZC3H14	0.3306 52 0.3307	MAGED2	0.5991		
		AAGAB	0.5171 97 0.5172			TRMT11	0.3307 48 0.3310	ESCO1 AC15157	0.5992 33 1.6687		
		PSG16 2610044	63			ABI3	3.0203	8.1	7 0.6005		
		O15RIK	56 1.9319			HBA-A2	3.0200	GPN1	0.6022		
		TMEM49	2			NOP14	6	UTRN	89		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II 1		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+II	L6-48h-	TOSO IL1B+IL6 96	5+IL23-	TOSC IL1B+IL 96	5+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
		FCER1G	0.5177 59			ENOPH1	3.0190 3	BDP1	1.6586 8		
		KIF24	0.5180 46			SLC44A1	0.3312 32	AC14876 8.1	0.603		
		MEA1	0.5184 4			GM5614	3.0168 8	RPL35	1.6582		
		DHODH	0.5186 78			GM8225	0.3320	ENO2	1.6580		
		GM9574	0.5196 45			CD47	3.0096	DRAM2	1.6576		
		HNRNPK	1.9236			FTSJ1	0.3324	ATXN2	0.6035		
		NOC4L	0.5201 74			1700030K 09RIK	0.3327	ABHD10	0.6039 67		
		AW14615 4	0.5203 34 0.5209			PPP1CC	3.0044	TPRGL	0.6056 94 0.6057		
		INTU	55 1.9193			NOL8	0.3331 29 3.0014	OSGIN2	0.6057 46 0.6058		
		YPEL5	7 0.5216			WSB1	0.3332	APOO-PS	72 0.6060		
		PTOV1	26 0.5217			WBP11	0.3333	RPL34	0.6070		
		GM11057 49304298	38 0.5219			MTERFD1	07	GM16514	0.6070		
		21RIK	55 1.9148			VPS26A	75 2.9980	GNL3L	71		
		LAPTM5	3 0.5222			ADAM17	0.3335	FXYD7	67 0.6082		
		NTNG2	88 0.5227			NUP188	67 0.3335	LIMK2	76 0.6083		
		CCM2	76			ZFAND6	77 0.3341	ELAC2 AW11201	26 1.6437		
		RPL9	1.9115 0.5232			HPS5 NUP85	0.3344	0 KIF2C	8 1.6432		
		MS4A6D USH2A	27 0.5236			GM5528	04 2,9903	GM14085	1.6432		
		PANX1	84 0.5237			PEX11B	0.3344	MTOR	0.6088		
		5430437P	05 1.9078			AL593857	0.3349	IMPA2	0.6090		
		O3RIK DDX28	0.5242			.1 CYFIP1	98 0.3353	RIC8	0.6091		
		PDXDC1	0.5245			4930451C	2.9815	GPR108	0.6094		
		1700025C	0.5259			15RIK SERBP1	0.3354	CD63	1.6404		
		18RIK PIN4	1.9012			PRL8A1	2.9693	EIF2S2	1.6399		
		9130011J	3 1.9008			GIMAP3	0.3368	ТВСВ	1.6395		
		15RIK NEK11	0.5262 92			SCFD1	94 0.3370 01	USP6NL	0.6103 49		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP IL1B+IL 48ł	6+IL23-	PLZP- TGFB1+I 1	L6-48h-	TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+IL 96	6+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
	,	1700057 G04RIK	0.5265 51		,	KDM5C	0.3373 33	PIK3R5	0.6107 93		
		CSF2RA	0.527			THYN1	0.3376 68	RABIF	0.6109 04		
		CDC14B	0.5271 55			RARS2	0,3376 82	YBX1	1.6368 4		
		ARID1A	0.5271 97			MLH3	0.3376 95	IFT52	0.6110 8		
		ABTB2	0.5273 31			RUVBL2	2,9593 5	ccs	0.6111 43		
		GLIPR1	0.5277 29			GADL1	2.9570 7	ADRM1	0.6111 45		
		ABL1	0.5288 8			SMARCB1	0.3383 06	FAM69A	1.6358 7		
		LRRC31	0.5289 66			HYOU1	0.3391 43	LRRC61	1.6356 2		
		PTN	0.5293 47			6030422 M02RIK	2.9446 3	GM10257	1.6353 1		
		CTSH	1.8870 6			SPC24	0.3399	SDCBP	0.6117 15		
		STXBP2	1.8864 3			PAPD5	2.9409	DGKZ	0.6120 86		
		СНМР4В	0.5301 56			EIF2S2	0.3406 36	ZFP113	0.6122 3		
		ZBTB7B	0.5301 63			EPHA2	2.9338	YWHAE	1.6333 2		
		THNSL1	1.8854 7			RPL21- PS13	0.3418 39	GM2382	1.6316		
		ВСНЕ	0,5305 97			RALGPS1	0.3431 68	H13	0.6129 62		
		NPNT	0.5309 49			WDR34	2.9135 4	TPST2	0.6130 58		
		SLC25A12	1.8827			TCOF1	0.3434 72	UTP18	1.6308 1		
		GM11744	0.5316 59			RAMP1	0.3436	DPF2	0.6132 45		
		MEN1	0.5317 63			AC13232 0.1	2.9102 2	SRSF10	1.6294 6		
		TDG	1.8803 7			1810046J 19RIK	2.9095 9	GM6723	1.6272 7		
		SLCO1A4	0.5321 08			GM10071	2.9055 7	RPL21- PS4	0.6148 51		
		GM3150	1.8793 2			GTF2A2	2.9034	MRPL23	0.6152		
		DHTKD1	0.5322 65			RSRC1	2.9008	CKLF	1.6251		
		WFDC3	0.5324 08			ZFP738	0.3451	BCL2L12	0.6154 8		
		LY6G6C	0.5327 47			SEPW1	2.8961	SLC25A35	0.6158 25		
		SARS	1.8769			ICOS	0.3457 99	FABP5	0.6159 04		
		SMYD5	1.8756 9			CHSY1	0.3461	PRPF19	0.6164 63		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	5+ IL23- n-1	GPR65 TGFB1+II		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+II		TOSO IL1B+IL6 96	5+IL23-	TOSO IL1B+ILI 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
	·	CC2D1B	0.5335 76			LSM6	0,3465 62	ACAD9	1.6219		
		DLEC1	0.5337 93			AU02225 2	2.8830	HSF2	0.6172		
		INVS	0.5340 27 0.5343			MYO19	0.3469 02 2.8820	SDC1	0.6178 48 1.6185		
		COPA	0.5343 07 0.5344			TULP4	0.3473	GM7551	0.6180		
		HHEX	63			SCD1	62	CRELD1	95 0.6183		
		TMEM43	48			CD83	81 0.3485	IL21	23		
		TMSB4X	1.8707 0.5347			SIN3A TMEM12	85 0.3487	LSG1	79 0.6186		
		NDUFAF2 NUDT19	84 0.5349			8 ARF2	28 0.3492	BNIP1 SLC25A14	45 0.6189		
		GM10125	09 0.5349			YME1L1	0.3496	PSMG2	58 1.6150		
		SLC12A6	0.5356			PLEKHA1	0.3500	RWDD1	1.6143		
		0610011F 06RIK	77 1.8660 1			CDC23	2.8551 3	4930431F 12RIK	0.6194 71		
		TMEM14	1.8638			CWC22	0.3504	FAM53A	1.6121		
		GPR143	0.5367 53			RHOF	0.3505 05	9130011J 15RIK	0.6203 92		
		LRPAP1	0.5371 66			HMGN2	2.8527 2	AMD-PS3	0.6211 65		
		AIP	1.8609 3			PFDN1	0.3506 44	XKRX	1.6090 1		
		CCDC142	0.5373 79			DMTF1	0.3506 83	ZFP382	0.6221 07		
		ITSN1	0.5374 42			CCDC56	2.8492	COMMD1 0	0.6226		
		PRAMEL6	0.5376 28			ANAPC11	2.8492 4 0.3510	СОРА	0.6230		
		COPE	1.8586 0.5385			PPP2R3C	0.3510	IMMP1L AC11400	0.6231 21		
		SYNE1	65 1.8552			KBTBD4	0.3519 41 0.3520	7.1 2210012	1.6038 0.6244		
		HBP1	7 0.5390			ATP11A	0.3521	G02RIK	15		
		YPEL1	64 1.8535			CD226 CEP97	27 2.8356	HIPK3	04		
		TMX2 5730403	7 0.5401			FDPS	7 0.3528	ZEB1 C230096	0.6256		
		M16RIK TECTB	61 0.5408			BRCA1	0.3536	C10RIK CCDC45	0.6260		
		AC13283	28 1.8488			ZFP71-	25 2.8232	CCPG1	0.6261		
		7.1	3			RS1	1		44		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- T	h17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP IL1B+IL 48h	6+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL0 96	6+IL23-	TOSC IL1B+IL 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
	,	NDUFAF4	0.5411 02		,	DNAJA3	0.3546 83	HRAS1	0.6262 81		,
		GCDH	0.5412 61			BAZ1B	2.8191 3	EIF2B5	0.6262 83		
		SCARB1	0.5414 08			SMC3	0.3556 63	RELB	1.5964 5		
		UBASH3A	1.8468			DHODH	2.8086 1	CCDC84	0.6264 89		
		ZZZ3	0.5417 56			INO80E	0.3562 11	ARF2	0.6267		
		MEGF6	0.5434 78			SELPLG	0.3564	AP1S1	0.6286		
		RPL9-PS6	1.8381 7			BBS4	0.3567	ZFP640	0.6286 56		
		AWAT2	0.5445			2700050L 05RIK	0.3567 86	PRMT10	1.5897		
		BTBD16	0.5449 48			WDR43	0.3568	GTF3C2	0.6290		
		GCNT2	1.8350			NUDCD3	0.3569 72	DMTF1	1.5894		
		ARSK	0.5453 47 0.5454			RARS	2.7983 8 0.3574	GOSR2	0.6291 96 0.6295		
		AASDH	0.5454 82 0.5456			CYBASC3	0.3574 06 0.3576	SAAL1	0.6295		
		TRMT2B	57			BCKDK	0.3576 39 0.3579	PTMS	22		
		HIST1H4A	1.8326 0.5460			PAIP2	0.3579 25 0.3581	PSMD1	0.6303 57 1.5859		
		EFTUD2	0.5460 41 0.5461			RNMTL1	45	CD72	1.5839		
		DTWD2	28 0.5461			LSG1 1700008F	2.7903	EIF2S3Y	7 0.6317		
	-	GM10417	0.5461 55 0.5466			21RIK	2.7852 2.7848	NCBP2	0.6317 46 0.6329		
		NGDN	62 0.5470			CPA6 2700029	7 0,3594	COG8	96		
		HOXB1 D11WSU	7 0.5474			M09RIK	29	GM6396	0.6334		
		47E	55 0.5477			WDR12	0.3600	ERP29	91		
		GM10691	25 0.5480			NAT6	0.3604	NUBPL ATP5L-	0.6341 0.6346		
		DHRS2	37 1.8242			GM7627	0.3604 0.3606	PS1	33		
		SRGN	0.5481			AP1B1	0.3606	ASNS	0.6348 1.5752		
		GM14420	74 0.5483			DYNC1H1	27	DTNB	3		
		NUP210	15 1.8236			ANAPC1	2.7673	GM6843	1.5748 1.5746		
		TMEM66 4931408	0.5486			ARAF	2.7656	TPT1	0.6350		
		4931408 A02RIK	0.3480 8			GDI1	2.7636	LYRM2	92		

GPR65		GPR65 TGFB1+II		PLZP IL1B+IL		PLZP- TGFB1+II		TOSO		TOSO IL1B+IL	6+1L23-
96h	1-1	1		48l	า-1	1		96	h	96	h
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Cl ange (KO/W T)
	,	CCDC60	0.5486 9			RPL21	0.3616 63	WAC	0.6355 59		
		VTI1B	0.5496 96 1.8191			ADK	0.3629 9 0,3632	TRIOBP	0.6356 2 0.6362		
		PCYT2 RPL13A-	7 0.5497			AIFM1	56 2.7392	GSDMD	16		
		PS1	25 1.8127			PSD4	1	NFKBIA	42 0.6369		
		GM6320 UBE2A	4 0.5517			H2-K1 CEP57	2.7367 0.3656	PLEKHF2 ZMIZ1	36 0.6370		
		торзв	24 0.5518 16			USP48	0.3657 86	DFFA	0.6371 45		
		TRAPPC6	0.5524 41			NDUFA13	0.3658 19	THOP1	0.6373 65		
		RPL7	1.8100 7			PPP2R5D	0.3664 59	GSS	0.6377 1		
		DAZAP1	0.5529 63 0.5529			COMT1	2.7278 4 2.7229	BANF1	0.6378 1 0.6378		
		CHD6	91 0.5535			EYA3	7 0.3672	MAP2K2	0.6378		
		SPRR1A PHF20	82 1.8046			PECR CFDP1	85 0.3684	WSB1 CUL5	66 1.5658		
		VPS72	0.5543			IL4RA	33 0.3686	SHKBP1	0.6389		
		1700057K 13RIK	52 0.5545 7			SDF2	73 0.3694 16	TECR	0.6394 14		
		TRIM24	0.5555 22			4732418C 07RIK	2.6968 8	TMEM29	0.6394 76		
		GM14296	0.5560 9			ZFP446	0.3708 58	TWF1	0.6403		
		TXNDC11 1700093K	0.5569 15 0.5578			VGLL4	0.3708 7 0.3714	HYOU1 1810049	0.6411 83 0.6413		
		21RIK	75 0.5580			COMMD1	0.3725	H13RIK NFIA	37		
		IND	0.5580			CDC27	0.3728	DERL2	0.6416		
		YY1	0.5604 29			RPL26- PS4	0.3732 03	AKR1B3	1.5577 1		
		AC12540 5.1	0.5604 36			SLC11A2	0.3735 32	TSEN15	0.6421		
		CCDC18	0.5614 13			TUBA8	0.3740 51	ZFP593	1.5567		
		CTSC	0.5620 11			SRPR	0.3743 62	IL10RB	1.5565		
		GM4953 AL672068	1.7783 1 0.5630			STXBP2	0.3748 7 0.3750	BID	0.6424 73 0.6427		
		.1	77		1	IKZF5	49	SLC4A2	0.0427		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- T	h17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II 1		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSC IL1B+IL 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		PSRC1	1.7718 2		,	RNF20	0.3752 2	HSD17B1 2	1.5553 6		
		КАТ2В	0.565 1.7682			RPS12- PS2	0.3753 91 0.3756	SNRPB	0.6438 16 0.6448		
		TMED4 OLFR105	2 0.5657			EIF1AX	0.3756	PRDM2	0.6452		
		5	75 0.5673			NAT10	87 0.3757	PSMF1 TMEM10	37		
		ME3 ETL4	3 0.5677			GPATCH4 PFAS	55 0.3757	6B BCAS2	51 0.6456		
		LRRC33	0.5697 3			SLC35B1	96 0.3759 53	EBNA1BP	99 0.6458 91		
		FBXL21	0.5698 79			BLVRA	0.3767	RORC	0.6464		
		2810417 H13RIK	1.7507 6			KPNA3	2.6513 9	SMYD2	1.5465 3		
		DCBLD2	0.5714 83			STAG2	0.3775 64	GGA1	0.6470		
		RALGDS	0.5722 7			CRNKL1	2.6476 1	PSME3	0.6472 43 1.5448		
		SYF2	1.747 0.5725			SVOP 10C0044D	0.378 0.3780	SEL1L	0.6476		
		ALG13 FDXR	41 1.7454			17RIK TMEM80	94 2.6358	BCCIP SRA1	53 0.6482		
		TCTEX1D	0.5732			UQCC	2.6352	SERPINB1	0.6483		
		2 SLC25A42	73 0.5736 47			CCL20	0.3799 52	A PRKAB1	0.6487 23		
		ID2	1.7395 1			ISY1	0.3802 29	SYT11	1.5400 6		
		1110008P 14RIK	0.5764 5			IFI47	2.6291 6	ENTPD4	0.6496 91		
		METTL14	0.5779 51 0.5802			ASNS	0.3804 0.3804	NDUFB5 TRP53BP	0.6504 71 0.6510		
		TXNDC16	39 1.7231			NAA40	51	1	0.6513		
		RPS7 FAM184A	8 0.5804			D330012F	76 0.3817	PIP5K1C CMC1	15 0.6522		
		SNAP47	1.7222			22RIK CDK5RAP	0.3820 0.0	RPS6KC1	0.6525		
		RAD18	1.7204			2 1700123 O20RIK	0.3832 44	PAPOLA	1.5320 9		
		MAP3K7	1.7201 5			TSG101	2.6070 5	1110031I 02RIK	0.6530 34		
		H2-AB1	1.7178 9			MTHFS	2,6033	IL15RA	0.6532 15		
		COLEC12	0.5839 08			RTN4IP1	0.3843 9	DDT	0.6534 74		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- TI	n17 cells		
GPR65 IL1B+IL6 96h	6+ IL23-	GPR65 TGFB1+II 1		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL6 96	5+IL23-	TOSC IL1B+IL 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
		LIAS	0.5840 48			ADAMTSL 4	0.3844 51	LXN	0.6537 75		
		VGLL4	1.7102 1 0.5848			POLE	0.3847 93 0.3848	CAML	0.6540 98 0.6545		
		STAM2 E230001	17 0.5850			BCAP29 CD5	93 0.3857	NME6 GHDC	37 0.6551		
		NO4RIK SEL1L	26 0.5850 38			GLE1	86 0.3858 15	NT5C3L	75 1.5250 8		
		H2AFY	1.7081 5			SMC5	0.3864 45	DDX18	0.6559 43		
		R3HDM2	0.5858 66			MPI	2.5868	2900010J 23RIK	0.6565		
		SPEN	0.5862 72 0.5880			ARIH1	2.5861 3 0.3870	RB1	0.6567 29 0.6567		
		NCSTN PRL8A1	5 0.5886			OXCT1 PDPK1	07 2.5775	HIST1H3H DPP3	63 0.6571		
		MRPS15	41 1.6949 5			PRODH	0.3882 88	DLG2	0.6571		
		GIGYF2	0.5913 35			DDX47	0.3883	ZFP703	91 1.5215 5		
		DERA	1.6895			2610507B 11RIK	2.5723 7	AC09056 3.1	1.5206 9		
		GM12033	1.6890 9 0.5945			DPM1	0.3890 39 0.3890	HCFC1	0.6578 62 0.6579		
		TM9SF1	58 0.5945			ANXA7	75 0.3894	MRPS30	0.6583		
		UCHL4 XRCC4	89 0.5957			KEAP1 4930453	38 2.5677	NBR1 BC02921	47 0.6597		
		AC06800 6.1	0.5977 66			N24RIK CREM	0.3895 3	CARS2	0.6597 36		
		AUTS2	0.5983 34			RPP14	0.3895 39	SNAP47	0.6598 89		
		NPDC1	0.5990 26			IFT20	2.5642	D8ERTD7 38E	0.6600 79		
		CT033780 .1 1110001J	0.5990 51 1.6689			1810022K 09RIK	0.3902 63 0.3902	RBM33	0.6601 1 1.5148		
		03RIK AUH	6 0.5993			GALM GFM1	84 0.3903	DYNLT3 HNRNPAB	0.6603		
		GBP5	0.6015 04			PDAP1	0.3910 77	MRPS36- PS1	0.6615 43		
		OAS3	0.6027 76			CUX1	0.3916 26	PPP5C	0.6616 59		
		MTG1	0.6061			SP100	2,5497	CLN6	0.6617 41		
		PNPLA8	0.6062 06			PPP4R2	0.3922 31	MEMO1	0.6617 83		

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and	TOSO-/- T	h17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+II 1	L6-48h-	TOSO IL1B+IL6 96	5+IL23-	TOSC IL1B+IL 96	6+IL23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
	.,	1500011B 03RIK	0.6063 96		,	CAND1	2.5493 8	LSM7	0.6618 41		, , , , , , , , , , , , , , , , , , ,
		ZFP575	0.6064 93			СВХ3	2.5480 8	ELK3	1.5104 2		
		RPL30- PS6	0.6085 51			BUD13	0,3935 49	CUTA	0.6621 54		
		ZFP560	0.6104 21			SACM1L	0.3938 31	RPRD1B	1.5092 4		
		INADL	0.6110 92			PRKCH	0.3939 57	LAMP1	1.5091 5		
		CAMK2D	1.6354 5			SUMO3	2.5355 8	INPP5D	0.6627 13		
		1700054 O19RIK	0.6127 94			UBA6	0.3946 06	UTY	1.5086 9		
		ATG4A	0.6128 75			TIMELESS	2.5315 3	SMAP2	0.6628 36		
		TMEM21 9	1.6307 7			2410091C 18RIK	0.3955 25	DNAJC19	0.6629 01		
		SNF8	0.6137 73			GTF2E2	0.3961 67	GM6666	0.6631 79		
		DDX58	0.6154 91			DLGAP5	0.3966 02	MRPS10	0.6632 56		
		GPAA1	0.6178 82			SGOL1	2.5210 5	PDE6D	0.6632 86		
		MID1	1.6155 3			SRPK1	0.3968 28	PCBP1	0.6637 67		
		PSMD2	0.6194 8			HCLS1	0.3970 2	ZAP70	0.6637 92		
		EEF1E1	1.6107 1			BRD7	0.3970 33	AI480653	1.5062 8		
		SRPK1	0.6237 37			MTA3	0.3970 85	NEK2	0.6639 33		
		ZFP259	0.6239 06			WDR26	0.3977 89	PGLYRP2	1.5055 7		
		KCNH6	0.6253 41			NFRKB	0.3980 91	ANAPC4	0.6643 98		
		RPL18A	0.6258 21			TMED9	0.3981 44	UBE4A	0.6644 03		
		AC11024 7.1	0.6263 34			AC12522 1.1	2.5111 8	PRDX5	0.6650 43		
		CKS2	1.5954 7			MYBL2	0.3984 38	GTPBP3	0.6663 61		
		SEC63	0.6268 57			BAX	0.3985 21				
		MDM2	0.6303 67			USPL1	0.3986 88				
		BLOC1S2	0.6307 29			SLC31A1	0.3990 03				
		TMEM15 4	0.6311 56			ELAVL1	0.4004 68				
		SBNO1	1.5767			GM14443	2,4962 1				
		RPRD1B	0.6342 63			LY6C1	2.4920 2				

		Differenti	ally expre	ssed gen	es for GP	R65-/-, PLZ	P-/- and ¹	roso-/- t	h17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II		PLZP IL1B+IL 48I	6+IL23-	PLZP- TGFB1+I		TOSC IL1B+IL 96	6+IL23-	TOSO IL1B+IL0 96	5+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
	<u> </u>	CFLAR	0.6386 29			DCPS	0.4013 08		.,		:7
		MAP3K5	0.6388 37			INPP5F	2.4870 2				
		ATP6V1B 2	0.6393 71			THOC5	0.4029 52				
		ALDH7A1	0.6401 59			GM6736	2.4789				
		WBP7	1.5573 2			HIPK3	2.4774				
		EXOC4	0.6424 36			HSPA4	0.4037 47				
		AIFM1	0.6437 59			NDUFV1	0.4037 61				
		PUM1	0.6455 38			SYT11	2.4764 1				
		SLC38A6	0.6463 37			COX8A	0.4038 3				
		NMT1	0.6480 82			E230001 N04RIK	0.4041 13				
		ING1	0.6495 7			ELOF1	0.4041 82				
		STX1A	0.6500 26			VBP1	0.4042 42				
		AA96043 6	1.5326 9			TDP1	0.4046 04				
		HMGCR	0.6525 42			COPS7A	2.4714 5				
		TUFM	0.6538 59			TBRG1	0.4048				
		RBMS2	0.6540 71			RAD54L	0.4050 62				
		ABHD5	0.6546 91			GM15887	0.4052				
		ITGB1BP3	0.6562 26			GPR171	0.4055 33				
		H2-DMA	1.5222			RFWD3	0.4055 37				
		DSN1	0.6571 36			SMEK2	0.4064 38				
		FAM18B	0.6576 81			D19ERTD 386E	0.4065				
		FXYD5	1.5195 8			PMF1	0.4071 69				
		PEX1	0.6594 58			COMMD8	2.4558				
		PAFAH2	0.6634			ACOX2	2.4555 8				
		AP2S1	0.6634 64			FAM54A	0.4072 83				
		CT025683	0.6640 94			WDR89	0.4073 85				
		TIGIT	0.6651 11			SAMSN1	2.4502 7				

GPR65	5-KO-	GPR65		PLZP	******	R65-/-, PLZ PLZP-		TOSO		TOSO	-KO-
IL1B+IL6	5+ IL23-	TGFB1+II	.6-96h-	IL1B+IL0	6+IL23-	TGFB1+II	L6-48h-	IL1B+IL	6+IL23-	IL1B+IL6	5+IL23-
96h	Fold.Ch	1	Fold.Ch	48h	Fold.Ch	1	Fold.Ch	96	Fold.Ch	96	n Fold.Ch
Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W	Gene	ange (KO/W
		GM5436	0.6661 6			ATP6V1D	2.4487 3				
		AC12195 9.1	0.6665 29			FYTTD1	2.4486 7				
						NDUFB2	2,4481 3				
						RAD1	0.4084 77				
						OTUD6B	0.4089 22				
						RBM39	2.4445				
						EBNA1BP	0.4095 52				
						1810013L 24RIK	0.4100 77				
						STAT3	0.4101 32				
						RNASEH2	2.4324				
						MLL1	0.4114 38				
						PIGA	0.4116 34				
						KIF24	2.4267				
						AP3B1	0.4122				
						RAD21	0.4127 59				
						ZFP330	0.4129 68				
						ACER2	2.4159				
						DHX9	0.4141				
						INTS9	0.4142 7				
						BC031781	0.4156 11				
						RCBTB1	0.4169 23				
						SUPT7L	2,3951 5				
						NARF	0.4176 43				
						MCM10	0.4179 36				
						TGTP2	2.3910 5				
						FADS6	2.3904				
						2310035K 24RIK	2.3831				

		Differenti	ally expre	essed gen	es for GPI	R65-/-, PLZ	P-/- and	TOSO-/- T	h17 cells		
GPR65 IL1B+IL6 96h	+ IL23-	GPR65 TGFB1+II		PLZP IL1B+IL 48l	6+IL23-	PLZP- TGFB1+II 1		TOSO IL1B+IL0 96	6+IL23-	IL1B+IL)-KO- 6+IL23- 5h
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold Ch ange (KO/W T)
	,		,			FAM60A	2.3816 2		,		
						PSMC3IP	0.4199 9				
						RNF25	2.379				
						LPXN	2.3754 9				
						IL17A	0.4212 47				
						TMEM17 6B	2,3708 4				
						GNL2	0.4224				
						MYCBP2	63 2.3649				
						ALKBH5	2.3602				
						CALU	2.3600				
						RBPJ	0,4238				
						RINT1	64 0.4240				
						GM9396	41 2.3525				
						GCSH	0.4256				
						SPARC	17 2.3491				
						GLO1	7 2.3482				
						2410089E	2.3473				
						O3RIK DPY19L3	2.3468				
						MCM6	2.3455				
						B020018	3 0.4268				
						G12RIK	89 2.3422				
						SNRPF	9 2.3416				
						TRP53	3				
						C79407	2.3402 4				
						PAM16	0.4274 58				
						SNRNP27	2.3387 5				
						TMEM11	0.4291 65				
						CRIP1	2.3295 6				
						RPL18	2.3270 9				

GPR6! IL1B+IL6 96l	6+ IL23-	GPR65 TGFB1+II	-KO- L6-96h-	PLZP IL1B+IL0 48h	-KO- 6+IL23-	R65-/-, PLZ PLZP- TGFB1+I 1	KO- L6-48h-	TOSO IL1B+IL0 96	-KO- 6+IL23-	TOSO IL1B+IL0 96	5+1L23-
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
	<u> </u>				,	MT2	2.3265		, , , , , , , , , , , , , , , , , , ,		,
						ітк	2.3216				
						CTSA	2.3207				
						MPP1	0.4312				
						DERL2	71 0.4318				
							0.4320				
						CUL1	2.3127				
						UHRF1	8				
						ALDOART 1	2.3123 4				
						USP14	0.4327				
						FAM172A	2.3077 5				
						GM4825	0.4334 18				
						PDCD5	0.4334				
						MED12	0.4336				
						PPIL2	2.3037				
							2.3012				
						INTS10	7 0.4346				
						CCNL2	66				
						LY6A 1110057K	2.2994 2.2992				
						04RIK 2310028	2.2964				
						011RIK	3				
						SCAI	2.2930				
						GRK4	2.2927 7				
						BIRC5	2.2924				
						RAD23A	2.2918				
						G3BP1	9 2.2910				
						SDCCAG1	0.437				
						SMC6	0.4371				
						NSUN5	2.2852				
							3 0.4380				
						FAM48A	03				

CDDC:	- 1/0	***************************************		<u></u>	es for GP	***************************************		T000	· ·		V.O
GPR6!		GPR65		PLZP IL1B+IL		PLZP- TGFB1+II		TOSO		TOSO	
96ł	1-1	1		481	า-1	1		96	ih .	96	h
	Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch		Fold.Ch
Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)	Gene	ange (KO/W T)
	''		.,			NSF	0.4383				.,
						HAR5	2.2809				
						2510006 D16RIK	2.2780				
						TRABD	2.2755 9				
						SYNCRIP	0.4395				
						SNX10	2.2720				
						SEC11A	0.4402 21				
						5EC61A1	2.2693				
						CSTF3	2.2691				
						HELLS	2.2688				
						LIG3	0.4410 41				
						ARL1	2.2671 7				
						ZFP488	2.2645 3				
						HCFC2	0.4421 79				
						CDC7	0.4425 91				
						HEATR6	2.2577 5				
						ETFDH	2.2574 2				
					+	GM9034	2.2546 2.2542				
						TAPBPL	2.2529				
						IER3IP1 BTRC	1 0.4439				
						AFF4	0.4441				1
						WDR11	0.4444 67				
						CDC26	0.4453 53				
						HAGH	2.2448				
						NUP205	0.4458 05				
						BRIX1	2.2413 9				
						2310016 M24RIK	2.2395 8				

		Differenti	ally expre	ssed gen	es for GPI	R65-/-, PLZ	P-/- and 1	roso-/- T	h17 cells		
GPR65 IL1B+IL6 96h	5+ IL23-	GPR65 TGFB1+II 1		PLZP IL1B+IL 48ł	6+IL23-	PLZP- TGFB1+II 1	L6-48h-	TOSO IL1B+IL0 96	6+IL23-	TOSO IL1B+ILI 96	5+IL23-
Gene	Fold.Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold Ch ange (KO/W
	Т)		T)		T)	PRDX6	T) 2.2383 8		T)		T)
						CHMP2A	0.4470				
						MRPS21	0.4470 83				
						TTPAL	2.2338 8				
						МУО1В	2.2337				
						EMB	2.2336				
						ANAPC16	2.2321 3 2.2293				
						LSP1	2.2288				
						BRP44L	7 2.2279				
						ASL	2 2.2263				
						XPNPEP2 SOAT2	8 0.4498				
						GM5745	2.2219				
						LPCAT3	0.4502				
						TOMM5	0.4509 63				
						PSMA3	2.2152				
						DENR	0.4529 26				
						NEK6	2.2078 4				
						POGLUT1	0.4533 88				
						BCL2A1A	0.4538 14				
						1110007A 13RIK	2.2018				
						GGTA1	0.4544 25				
						HK2 BSG	0.4547 14 2.1981				
						WDR76	0.4550 91				
						BAT2L2	0.4554 59				
						IARS	0.4554 91				

		***************************************		<u>aanaanaanaanaanaanaanaanaanaanaanaanaan</u>	<u> </u>	R65-/-, PLZ					
GPR6! IL1B+IL6 96ł	5+ IL23-	GPR65 TGFB1+II 1		PLZP IL1B+IL 481	6+IL23-	PLZP- TGFB1+I 1	L6-48h-	TOSC IL1B+IL 96	6+IL23-	TOSO IL1B+IL6 96	6+1L23-
Gene	Fold.Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold:Ch ange (KO/W	Gene	Fold.Ch ange (KO/W	Gene	Fold Ch ange (KO/W
	T)		T)		T)	GM6483	T) 2.1917 3		T)		T)
						PNP	0.4562 78				
	1					TMX1	2.1891				
						TBRG4	2,1888 8				
						SDHD	0.4568 6				
						RPP21	2.1 8 70 7				
						PLCG1	0.4574				
						TRAP1	2.1858				
						ACO1	0.4580				
						GTF2H5	2.1775				
						LCP2	0.4598				
						GM10719	2.1718				
						METTL2	2,1685				
						GM7263	0.4613				
						TMEM10	2.1670				
						9 TSTA3	2.1643				
						2310003F	2.1637				
						16RIK MRPL12	2.1621				
						RPS7	0.4634				
						0610010K	62 0.4650				
						14RIK	93 2.1319				
						ASF1B	7 0.4700				
						EBP	37 2.1236				
						AC0T7 AC10187	9 2.1228				
						5.1	9 0.4725				
						ARL5C	55 0.4726				
						TCEB2	86				
						LARS2	0.4730 56				

		1		***********	**********	R65-/-, PLZ			***********	ı	
GPR65-KO- IL1B+IL6+ IL23- 96h-1		GPR65-KO- TGFB1+IL6-96h- 1		PLZP-KO- IL1B+IL6+IL23- 48h-1		PLZP-KO- TGFB1+IL6-48h- 1		TOSO-KO- IL1B+IL6+IL23- 96h		TOSO-KO- IL1B+IL6+IL23- 96h	
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
	,				,	EIF3D	0.4786 82		, , , , , , , , , , , , , , , , , , ,		,
						PA2G4	0.4819 72				
						CAPZA2	0.4820 67				
						GM4838	0.4866				
						CD82	2.0539				
						NDUFA2	0.4876				
						SELK	0.4897				
						COX7C	94 2.0404				
						2610024	2.0264				
						G14RIK 0610007P	2.0264 0.4970				
						14RIK	32				
						TIMP1 GM4987	1.9987 0.5010				
						AC13178	73 1.9906				
						0.3	5 0.5031				
						NEDD8	59 1.9819				
						GCN1L1	2				
						MRPL18	0.5068 98				
						UBR1	1.9683 3				
						ARF1	1.9363 9				
						PPP1CA	1.9279 5				
						RP\$25	0.5193 59				
						SNRPD2	0.5198 97				
						COX7A2	1.9177				
						DAZAP2	1.9103 4				
						сох7в	1.9020 4				
						GM16382	1.9016 1				
						RPN2	1.8967				
						RPL30	1.8912				
							1.8849				
						IL9	1.8849 1				

Differentially expressed genes for GPR65-/-, PLZP-/- and TOSO-/- Th17 cells											
GPR65-KO- IL1B+IL6+ IL23- 96h-1		GPR65-KO- TGFB1+IL6-96h- 1		PLZP-KO- IL1B+IL6+IL23- 48h-1		PLZP-KO- TGFB1+IL6-48h- 1		TOSO-KO- IL1B+IL6+IL23- 96h		TOSO-KO- IL1B+IL6+IL23- 96h	
Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)	Gene	Fold.Ch ange (KO/W T)
					,	8430427 H17RIK	1.8840 7		,		
						RPS12- PS3	0.5311 31				
						PSMD13	0.5356 43				
						TUBB2C	1.8652 6				
						GM6807	0.5364 2				
						UQCR11	1.8579 7				

[00266] REFERENCES

Ahmed, M., and Gaffen, S.L. (2010). IL-17 in obesity and adipogenesis. Cytokine & growth factor reviews *21*, 449-453.

Amit, I., Citri, A., Shay, T., Lu, Y., Katz, M., Zhang, F., Tarcic, G., Siwak, D., Lahad, J., Jacob-Hirsch, J., *et al.* (2007). A module of negative feedback regulators defines growth factor signaling. Nature genetics *39*, 503-512.

Amit, I., Garber, M., Chevrier, N., Leite, A.P., Donner, Y., Eisenhaure, T., Guttman, M., Grenier, J.K., Li, W., Zuk, O., *et al.* (2009). Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science *326*, 257-263.

Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E., Fili, L., Ferri, S., Frosali, F., *et al.* (2007). Phenotypic and functional features of human Th17 cells. The Journal of experimental medicine *204*, 1849-1861.

Antebi, Y.E., Reich-Zeliger, S., Hart, Y., Mayo, A., Eizenberg, I., Rimer, J., Putheti, P., Pe'er, D., and Friedman, N. (2013). Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS biology *11*, e1001616.

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J., *et al.* (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature *504*, 451-455.

Aust, G., Kamprad, M., Lamesch, P., and Schmucking, E. (2005). CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves' disease (GD). European journal of endocrinology / European Federation of Endocrine Societies *152*, 635-643.

Awasthi, A., Riol-Blanco, L., Jager, A., Korn, T., Pot, C., Galileos, G., Bettelli, E., Kuchroo, V.K., and Oukka, M. (2009). Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. Journal of immunology *182*, 5904-5908.

Bachmann, M.F., Barner, M., and Kopf, M. (1999). CD2 sets quantitative thresholds in T cell activation. The Journal of experimental medicine 190, 1383-1392.

Baeten, D.L., and Kuchroo, V.K. (2013). How Cytokine networks fuel inflammation: Interleukin-17 and a tale of two autoimmune diseases. Nature medicine *19*, 824-825.

Bending, D., De la Pena, H., Veldhoen, M., Phillips, J.M., Uyttenhove, C., Stockinger, B., and Cooke, A. (2009). Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. The Journal of clinical investigation *119*, 565-572.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 289-300.

Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., Sandouk, A., Hesse, C., Castro, C.N., Bahre, H., *et al.* (2014). De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nature medicine *20*, 1327-1333.

Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature *441*, 235-238.

Bettelli, E., Pagany, M., Weiner, H.L., Linington, C., Sobel, R.A., and Kuchroo, V.K. (2003). Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. The Journal of experimental medicine *197*, 1073-1081.

Blaschitz, C., and Raffatellu, M. (2010). Th17 cytokines and the gut mucosal barrier. Journal of clinical immunology *30*, 196-203.

Brenner, D., Brustle, A., Lin, G.H., Lang, P.A., Duncan, G.S., Knobbe-Thomsen, C.B., St Paul, M., Reardon, C., Tusche, M.W., Snow, B., *et al.* (2014). Toso controls encephalitogenic immune responses by dendritic cells and regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America *111*, 1060-1065.

Cellot, S., and Sauvageau, G. (2007). Zfx: at the crossroads of survival and self-renewal. Cell *129*, 239-241.

Chai, J.G., and Lechler, R.I. (1997). Immobilized anti-CD3 mAb induces anergy in murine naive and memory CD4+ T cells in vitro. International immunology *9*, 935-944.

Chen, L., Wu, G., and Ji, H. (2011). hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data. Bioinformatics *27*, 1447-1448.

Cho, J.H. (2008). The genetics and immunopathogenesis of inflammatory bowel disease. Nature reviews Immunology *8*, 458-466.

Chung, Y., Chang, S.H., Martinez, G.J., Yang, X.O., Nurieva, R., Kang, H.S., Ma, L., Watowich, S.S., Jetten, A.M., Tian, Q., *et al.* (2009). Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity *30*, 576-587.

Ciofani, M., Madar, A., Galan, C., Sellars, M., Mace, K., Pauli, F., Agarwal, A., Huang, W., Parkurst, C.N., Muratet, M., *et al.* (2012a). A validated regulatory network for Th17 cell specification. Cell *151*, 289-303.

Ciofani, M., Madar, A., Galan, C., Sellars, M., Mace, K., Pauli, F., Agarwal, A., Huang, W., Parkurst, Christopher N., Muratet, M., *et al.* (2012b). A Validated Regulatory Network for Th17 Cell Specification. Cell.

Codarri, L., Gyulveszi, G., Tosevski, V., Hesske, L., Fontana, A., Magnenat, L., Suter, T., and Becher, B. (2011). RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature immunology *12*, 560-567.

Crawford, A., Angelosanto, J.M., Kao, C., Doering, T.A., Odorizzi, P.M., Barnett, B.E., and Wherry, E.J. (2014). Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity *40*, 289-302.

Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., *et al.* (2011). Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell *146*, 772-784.

De Rosa, S.C., Herzenberg, L.A., Herzenberg, L.A., and Roederer, M. (2001). 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nature medicine *7*, 245-248.

Deng, Q., Ramskold, D., Reinius, B., and Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science *343*, 193-196.

Dolfi, D.V., Boesteanu, A.C., Petrovas, C., Xia, D., Butz, E.A., and Katsikis, P.D. (2008). Late signals from CD27 prevent Fas-dependent apoptosis of primary CD8+ T cells. Journal of immunology *180*, 2912-2921.

El-Behi, M., Ciric, B., Dai, H., Yan, Y., Cullimore, M., Safavi, F., Zhang, G.X., Dittel, B.N., and Rostami, A. (2011). The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature immunology *12*, 568-575.

Esfandiari, E., McInnes, I.B., Lindop, G., Huang, F.P., Field, M., Komai-Koma, M., Wei, X., and Liew, F.Y. (2001). A proinflammatory role of IL-18 in the development of spontaneous autoimmune disease. Journal of immunology *167*, 5338-5347.

Fang, X., Huang, Z., Zhou, W., Wu, Q., Sloan, A.E., Ouyang, G., McLendon, R.E., Yu, J.S., Rich, J.N., and Bao, S. (2014). The zinc finger transcription factor ZFX Is required for maintaining the tumorigenic potential of glioblastoma stem cells. Stem cells.

Franke, A., McGovern, D.P., Barrett, J.C., Wang, K., Radford-Smith, G.L., Ahmad, T., Lees, C.W., Balschun, T., Lee, J., Roberts, R., *et al.* (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature genetics *42*, 1118-1125.

Galan-Caridad, J.M., Harel, S., Arenzana, T.L., Hou, Z.E., Doetsch, F.K., Mirny, L.A., and Reizis, B. (2007). Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell *129*, 345-357.

Gaffen, S.L., Hernandez-Santos, N., and Peterson, A.C. (2011). IL-17 signaling in host defense against Candida albicans. Immunologic research *50*, 181-187.

Gattinoni, L., Zhong, X.S., Palmer, D.C., Ji, Y., Hinrichs, C.S., Yu, Z., Wrzesinski, C., Boni, A., Cassard, L., Garvin, L.M., *et al.* (2009). Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature medicine *15*, 808-813.

Genovese, M.C., Van den Bosch, F., Roberson, S.A., Bojin, S., Biagini, I.M., Ryan, P., and Sloan-Lancaster, J. (2010). LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-ofconcept study. Arthritis and rheumatism *62*, 929-939.

Ghoreschi, K., Laurence, A., Yang, X.P., Tato, C.M., McGeachy, M.J., Konkel, J.E., Ramos, H.L., Wei, L., Davidson, T.S., Bouladoux, N., *et al.* (2010). Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature *467*, 967-971.

Ghosh, S., Elder, A., Guo, J., Mani, U., Patane, M., Carson, K., Ye, Q., Bennett, R., Chi, S., Jenkins, T., *et al.* (2006). Design, synthesis, and progress toward optimization of potent small molecule antagonists of CC chemokine receptor 8 (CCR8). Journal of medicinal chemistry *49*, 2669-2672.

Gilmore, T.D., and Gerondakis, S. (2011). The c-Rel Transcription Factor in Development and Disease. Genes & cancer 2, 695-711.

Hamann, I., Zipp, F., and Infante-Duarte, C. (2008). Therapeutic targeting of chemokine signaling in Multiple Sclerosis. Journal of the neurological sciences *274*, 31-38.

Harant, H., and Lindley, I.J. (2004). Negative cross-talk between the human orphan nuclear receptor Nur77/NAK-1/TR3 and nuclear factor-kappaB. Nucleic acids research *32*, 5280-5290.

Harel, S., Tu, E.Y., Weisberg, S., Esquilin, M., Chambers, S.M., Liu, B., Carson, C.T., Studer, L., Reizis, B., and Tomishima, M.J. (2012). ZFX controls the self-renewal of human embryonic stem cells. PloS one 7, e42302.

Harrington, L.E., Janowski, K.M., Oliver, J.R., Zajac, A.J., and Weaver, C.T. (2008). Memory CD4 T cells emerge from effector T-cell progenitors. Nature *452*, 356-360.

Hendriks, J., Gravestein, L.A., Tesselaar, K., van Lier, R.A., Schumacher, T.N., and Borst, J. (2000). CD27 is required for generation and long-term maintenance of T cell immunity. Nature immunology *1*, 433-440.

Hendriks, J., Xiao, Y., and Borst, J. (2003). CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. The Journal of experimental medicine *198*, 1369-1380.

Hernandez-Santos, N., and Gaffen, S.L. (2012). Th17 cells in immunity to Candida albicans. Cell host & microbe 11, 425-435.

Hilliard, B.A., Mason, N., Xu, L., Sun, J., Lamhamedi-Cherradi, S.E., Liou, H.C., Hunter, C., and Chen, Y.H. (2002). Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. The Journal of clinical investigation *110*, 843-850.

Hitoshi, Y., Lorens, J., Kitada, S.I., Fisher, J., LaBarge, M., Ring, H.Z., Francke, U., Reed, J.C., Kinoshita, S., and Nolan, G.P. (1998). Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity *8*, 461-471.

Hock, H., Meade, E., Medeiros, S., Schindler, J.W., Valk, P.J., Fujiwara, Y., and Orkin, S.H. (2004). Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes & development *18*, 2336-2341.

Hueber, W., Sands, B.E., Lewitzky, S., Vandemeulebroecke, M., Reinisch, W., Higgins, P.D., Wehkamp, J., Feagan, B.G., Yao, M.D., Karczewski, M., *et al.* (2012). Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut *61*, 1693-1700.

Hundt, M., Tabata, H., Jeon, M.S., Hayashi, K., Tanaka, Y., Krishna, R., De Giorgio, L., Liu, Y.C., Fukata, M., and Altman, A. (2006). Impaired activation and localization of LAT in anergic T cells as a consequence of a selective palmitoylation defect. Immunity *24*, 513-522.

Huntley, R.P., Binns, D., Dimmer, E., Barrell, D., O'Donovan, C., and Apweiler, R. (2009). QuickGO: a user tutorial for the web-based Gene Ontology browser. Database: the journal of biological databases and curation *2009*, bap010.

Ichii, H., Sakamoto, A., Arima, M., Hatano, M., Kuroda, Y., and Tokuhisa, T. (2007). Bcl6 is essential for the generation of long-term memory CD4+ T cells. International immunology *19*, 427-433.

International Genetics of Ankylosing Spondylitis, C., Cortes, A., Hadler, J., Pointon, J.P., Robinson, P.C., Karaderi, T., Leo, P., Cremin, K., Pryce, K., Harris, J., *et al.* (2013). Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nature genetics *45*, 730-738.

International Multiple Sclerosis Genetics, C., Wellcome Trust Case Control, C., Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C.C., Patsopoulos, N.A., Moutsianas, L., Dilthey, A., Su, Z., *et al.* (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature *476*, 214-219.

Ioannidis, V., Beermann, F., Clevers, H., and Held, W. (2001). The beta-catenin--TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nature immunology *2*, 691-697.

Ivanov, II, Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., *et al.* (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell *139*, 485-498.

Jager, A., Dardalhon, V., Sobel, R.A., Bettelli, E., and Kuchroo, V.K. (2009). Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. Journal of immunology *183*, 7169-7177.

Jarboe, J.S., Anderson, J.C., Duarte, C.W., Mehta, T., Nowsheen, S., Hicks, P.H., Whitley, A.C., Rohrbach, T.D., McCubrey, R.O., Chiu, S., *et al.* (2012). MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma. Clinical cancer research: an official journal of the American Association for Cancer Research *18*, 3030-3041.

Jhun, J.Y., Yoon, B.Y., Park, M.K., Oh, H.J., Byun, J.K., Lee, S.Y., Min, J.K., Park, S.H., Kim, H.Y., and Cho, M.L. (2012). Obesity aggravates the joint inflammation in a collagen-induced

arthritis model through deviation to Th17 differentiation. Experimental & molecular medicine 44, 424-431.

Jin, L., Martynowski, D., Zheng, S., Wada, T., Xie, W., and Li, Y. (2010). Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Molecular endocrinology *24*, 923-929.

Johnson, W.E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127.

Jostins, L., Ripke, S., Weersma, R.K., Duerr, R.H., McGovern, D.P., Hui, K.Y., Lee, J.C., Schumm, L.P., Sharma, Y., Anderson, C.A., *et al.* (2012). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature *491*, 119-124.

Kandasamy, K., Mohan, S.S., Raju, R., Keerthikumar, S., Kumar, G.S., Venugopal, A.K., Telikicherla, D., Navarro, J.D., Mathivanan, S., Pecquet, C., *et al.* (2010). NetPath: a public resource of curated signal transduction pathways. Genome biology *11*, R3.

Kaplan, M.H., Sun, Y.L., Hoey, T., and Grusby, M.J. (1996). Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature *382*, 174-177.

Komatsu, N., Okamoto, K., Sawa, S., Nakashima, T., Oh-hora, M., Kodama, T., Tanaka, S., Bluestone, J.A., and Takayanagi, H. (2014). Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nature medicine *20*, 62-68.

Konkel, J.E., and Chen, W. (2011). Balancing acts: the role of TGF-beta in the mucosal immune system. Trends in molecular medicine *17*, 668-676.

Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T.B., Oukka, M., and Kuchroo, V.K. (2007). IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature *448*, 484-487.

Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K. (2009). IL-17 and Th17 Cells. Annu Rev Immunol *27*, 485-517.

Kryczek, I., Zhao, E., Liu, Y., Wang, Y., Vatan, L., Szeliga, W., Moyer, J., Klimczak, A., Lange, A., and Zou, W. (2011). Human TH17 cells are long-lived effector memory cells. Science translational medicine *3*, 104ra100.

Kurachi, M., Barnitz, R.A., Yosef, N., Odorizzi, P.M., DiIorio, M.A., Lemieux, M.E., Yates, K., Godec, J., Klatt, M.G., Regev, A., *et al.* (2014). The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nature immunology *15*, 373-383.

Lachmann, A., Xu, H., Krishnan, J., Berger, S.I., Mazloom, A.R., and Ma'ayan, A. (2010). ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics *26*, 2438-2444.

Lalmansingh, A.S., Arora, K., Demarco, R.A., Hager, G.L., and Nagaich, A.K. (2013). High-throughput RNA FISH analysis by imaging flow cytometry reveals that pioneer factor Foxal reduces transcriptional stochasticity. PloS one 8, e76043.

Lamb, J.R., Zanders, E.D., Sewell, W., Crumpton, M.J., Feldmann, M., and Owen, M.J. (1987). Antigen-specific T cell unresponsiveness in cloned helper T cells mediated via the CD2 or CD3/Ti receptor pathways. European journal of immunology *17*, 1641-1644.

Lang, K.S., Lang, P.A., Meryk, A., Pandyra, A.A., Boucher, L.M., Pozdeev, V.I., Tusche, M.W., Gothert, J.R., Haight, J., Wakeham, A., *et al.* (2013). Involvement of Toso in activation of monocytes, macrophages, and granulocytes. Proceedings of the National Academy of Sciences of the United States of America *110*, 2593-2598.

Latta, M., Mohan, K., and Issekutz, T.B. (2007). CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis. Immunology *121*, 555-564.

Laurence, A., Tato, C.M., Davidson, T.S., Kanno, Y., Chen, Z., Yao, Z., Blank, R.B., Meylan, F., Siegel, R., Hennighausen, L., *et al.* (2007). Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity *26*, 371-381.

Lee, Y., Awasthi, A., Yosef, N., Quintana, F.J., Xiao, S., Peters, A., Wu, C., Kleinewietfeld, M., Kunder, S., Hafler, D.A., *et al.* (2012). Induction and molecular signature of pathogenic TH17 cells. Nature immunology *13*, 991-999.

Lee, Y.K., Turner, H., Maynard, C.L., Oliver, J.R., Chen, D., Elson, C.O., and Weaver, C.T. (2009). Late developmental plasticity in the T helper 17 lineage. Immunity *30*, 92-107.

Lees, C.W., Barrett, J.C., Parkes, M., and Satsangi, J. (2011). New IBD genetics: common pathways with other diseases. Gut *60*, 1739-1753.

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., and Mesirov, J.P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics *27*, 1739-1740.

Leonardi, C., Matheson, R., Zachariae, C., Cameron, G., Li, L., Edson-Heredia, E., Braun, D., and Banerjee, S. (2012). Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. The New England journal of medicine *366*, 1190-1199.

Lin, L., Ibrahim, A.S., Xu, X., Farber, J.M., Avanesian, V., Baquir, B., Fu, Y., French, S.W., Edwards, J.E., Jr., and Spellberg, B. (2009). Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS pathogens *5*, e1000703.

Linhart, C., Halperin, Y., and Shamir, R. (2008). Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome research *18*, 1180-1189.

Liu, Y., Wang, X., Jiang, J., Cao, Z., Yang, B., and Cheng, X. (2011). Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Molecular immunology *48*, 1084-1090.

Mahad, D.J., and Ransohoff, R.M. (2003). The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Seminars in immunology *15*, 23-32.

Maity, A., and Koumenis, C. (2006). HIF and MIF--a nifty way to delay senescence? Genes & development 20, 3337-3341.

Martinez, V.G., Escoda-Ferran, C., Tadeu Simoes, I., Arai, S., Orta Mascaro, M., Carreras, E., Martinez-Florensa, M., Yelamos, J., Miyazaki, T., and Lozano, F. (2014). The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression. Cellular & molecular immunology *11*, 343-354.

Mathews, J.A., Wurmbrand, A.P., Ribeiro, L., Neto, F.L., and Shore, S.A. (2014). Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D. Frontiers in immunology *5*, 440.

Maynard, C.L., Harrington, L.E., Janowski, K.M., Oliver, J.R., Zindl, C.L., Rudensky, A.Y., and Weaver, C.T. (2007). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nature immunology *8*, 931-941.

McGeachy, M.J., Chen, Y., Tato, C.M., Laurence, A., Joyce-Shaikh, B., Blumenschein, W.M., McClanahan, T.K., O'Shea, J.J., and Cua, D.J. (2009). The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature immunology *10*, 314-324.

Miaw, S.C., Choi, A., Yu, E., Kishikawa, H., and Ho, I.C. (2000). ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity *12*, 323-333.

Miyazaki, T., Hirokami, Y., Matsuhashi, N., Takatsuka, H., and Naito, M. (1999). Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily. The Journal of experimental medicine *189*, 413-422.

Mo, C., Chearwae, W., O'Malley, J.T., Adams, S.M., Kanakasabai, S., Walline, C.C., Stritesky, G.L., Good, S.R., Perumal, N.B., Kaplan, M.H., *et al.* (2008). Stat4 isoforms differentially regulate inflammation and demyelination in experimental allergic encephalomyelitis. Journal of immunology *181*, 5681-5690.

Monk, J.M., Hou, T.Y., Turk, H.F., McMurray, D.N., and Chapkin, R.S. (2013). n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells. J Nutr *143*, 1501-1508.

Monk, J.M., Jia, Q., Callaway, E., Weeks, B., Alaniz, R.C., McMurray, D.N., and Chapkin, R.S. (2012). Th17 cell accumulation is decreased during chronic experimental colitis by (n-3) PUFA in Fat-1 mice. J Nutr *142*, 117-124.

Muranski, P., Borman, Z.A., Kerkar, S.P., Klebanoff, C.A., Ji, Y., Sanchez-Perez, L., Sukumar, M., Reger, R.N., Yu, Z., Kern, S.J., *et al.* (2011). Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity *35*, 972-985.

Nakae, S., Iwakura, Y., Suto, H., and Galli, S.J. (2007). Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. Journal of leukocyte biology *81*, 1258-1268.

Nguyen, X.H., Lang, P.A., Lang, K.S., Adam, D., Fattakhova, G., Foger, N., Kamal, M.A., Prilla, P., Mathieu, S., Wagner, C., *et al.* (2011). Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood *118*, 598-608.

Nishikomori, R., Usui, T., Wu, C.Y., Morinobu, A., O'Shea, J.J., and Strober, W. (2002). Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling. Journal of immunology *169*, 4388-4398.

Novershtern, N., Subramanian, A., Lawton, L.N., Mak, R.H., Haining, W.N., McConkey, M.E., Habib, N., Yosef, N., Chang, C.Y., Shay, T., *et al.* (2011). Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell *144*, 296-309.

Nurieva, R., Yang, X.O., Martinez, G., Zhang, Y., Panopoulos, A.D., Ma, L., Schluns, K., Tian, Q., Watowich, S.S., Jetten, A.M., *et al.* (2007). Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature *448*, 480-483.

Palmer, M.T., and Weaver, C.T. (2010). Autoimmunity: increasing suspects in the CD4+ T cell lineup. Nature immunology *11*, 36-40.

Papp, K.A., Leonardi, C., Menter, A., Ortonne, J.P., Krueger, J.G., Kricorian, G., Aras, G., Li, J., Russell, C.B., Thompson, E.H., *et al.* (2012). Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. The New England journal of medicine *366*, 1181-1189.

Patel, D.D., Lee, D.M., Kolbinger, F., and Antoni, C. (2013). Effect of IL-17A blockade with secukinumab in autoimmune diseases. Annals of the rheumatic diseases *72 Suppl 2*, ii116-123.

Pe'er, D., Regev, A., and Tanay, A. (2002). Minreg: inferring an active regulator set. Bioinformatics 18 Suppl 1, S258-267.

Pepper, M., Linehan, J.L., Pagan, A.J., Zell, T., Dileepan, T., Cleary, P.P., and Jenkins, M.K. (2010). Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nature immunology *11*, 83-89.

Perfetto, S.P., Chattopadhyay, P.K., and Roederer, M. (2004). Seventeen-colour flow cytometry: unravelling the immune system. Nature reviews Immunology *4*, 648-655.

Peters, A., Burkett, P.R., Sobel, R.A., Buckley, C.D., Watson, S.P., Bettelli, E., and Kuchroo, V.K. (2014). Podoplanin negatively regulates CD4+ effector T cell responses. The Journal of clinical investigation.

Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2007). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res *35*, D61-65.

Quintana, F.J., Jin, H., Burns, E.J., Nadeau, M., Yeste, A., Kumar, D., Rangachari, M., Zhu, C., Xiao, S., Seavitt, J., *et al.* (2012). Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nature immunology *13*, 770-777.

Ramskold, D., Luo, S., Wang, Y.-C., Li, R., Deng, Q., Faridani, O.R., Daniels, G.A., Khrebtukova, I., Loring, J.F., Laurent, L.C., *et al.* (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature biotechnology *30*, 777-782.

Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature *423*, 409-414.

Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. (2011). GC-content normalization for RNA-Seq data. BMC bioinformatics *12*, 480.

Rocha, P.P., Scholze, M., Bleiss, W., and Schrewe, H. (2010). Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling. Development *137*, 2723-2731.

Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature *401*, 708-712.

Salminen, A., and Kaarniranta, K. (2011). Control of p53 and NF-kappaB signaling by WIP1 and MIF: role in cellular senescence and organismal aging. Cellular signalling *23*, 747-752.

Santori, F.R., Huang, P., van de Pavert, S.A., Douglass, E.F., Jr., Leaver, D.J., Haubrich, B.A., Keber, R., Lorbek, G., Konijn, T., Rosales, B.N., *et al.* (2015). Identification of natural RORgamma ligands that regulate the development of lymphoid cells. Cell metabolism *21*, 286-297.

Sarkar, S., Kalia, V., Haining, W.N., Konieczny, B.T., Subramaniam, S., and Ahmed, R. (2008). Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. The Journal of experimental medicine *205*, 625-640.

Sarrias, M.R., Gronlund, J., Padilla, O., Madsen, J., Holmskov, U., and Lozano, F. (2004). The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Critical reviews in immunology *24*, 1-37.

Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D., and Friedman, N. (2003). Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature genetics *34*, 166-176.

Sester, U., Presser, D., Dirks, J., Gartner, B.C., Kohler, H., and Sester, M. (2008). PD-1 expression and IL-2 loss of cytomegalovirus- specific T cells correlates with viremia and reversible functional anergy. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 8, 1486-1497.

Shalek, A.K., Satija, R., Adiconis, X., Gertner, R.S., Gaublomme, J.T., Raychowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., Gnirke, A., *et al.* (2013). Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature *in press*.

Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, R.S., Gaublomme, J.T., Yosef, N., *et al.* (2014). Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature *509*, 363-369.

Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., and Chi, H. (2011). HIF1alphadependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. The Journal of experimental medicine *208*, 1367-1376.

Shin, H.J., Lee, J.B., Park, S.H., Chang, J., and Lee, C.W. (2009). T-bet expression is regulated by EGR1-mediated signaling in activated T cells. Clinical immunology *131*, 385-394.

Shinohara, M.L., Kim, J.H., Garcia, V.A., and Cantor, H. (2008). Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity *29*, 68-78.

Snyder, C.M., Cho, K.S., Bonnett, E.L., van Dommelen, S., Shellam, G.R., and Hill, A.B. (2008). Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity *29*, 650-659.

Song, Y., and Jacob, C.O. (2005). The mouse cell surface protein TOSO regulates Fas/Fas ligand-induced apoptosis through its binding to Fas-associated death domain. The Journal of biological chemistry 280, 9618-9626.

Soroosh, P., Wu, J., Xue, X., Song, J., Sutton, S.W., Sablad, M., Yu, J., Nelen, M.I., Liu, X., Castro, G., *et al.* (2014). Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation. Proceedings of the National Academy of Sciences of the United States of America *111*, 12163-12168.

Stumhofer, J.S., Silver, J.S., Laurence, A., Porrett, P.M., Harris, T.H., Turka, L.A., Ernst, M., Saris, C.J., O'Shea, J.J., and Hunter, C.A. (2007). Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nature immunology 8, 1363-1371.

Sutton, C., Brereton, C., Keogh, B., Mills, K.H., and Lavelle, E.C. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. The Journal of experimental medicine *203*, 1685-1691.

Symons, A., Budelsky, A.L., and Towne, J.E. (2012). Are Th17 cells in the gut pathogenic or protective? Mucosal immunology *5*, 4-6.

Thierfelder, W.E., van Deursen, J.M., Yamamoto, K., Tripp, R.A., Sarawar, S.R., Carson, R.T., Sangster, M.Y., Vignali, D.A., Doherty, P.C., Grosveld, G.C., *et al.* (1996). Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature *382*, 171-174.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature biotechnology *32*, 381-386.

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. In Bioinformatics, pp. 1105-1111.

Trimble, L.A., Kam, L.W., Friedman, R.S., Xu, Z., and Lieberman, J. (2000). CD3zeta and CD28 down-modulation on CD8 T cells during viral infection. Blood *96*, 1021-1029.

Tsuzuki, S., and Seto, M. (2013). TEL (ETV6)-AML1 (RUNX1) initiates self-renewing fetal pro-B cells in association with a transcriptional program shared with embryonic stem cells in mice. Stem cells *31*, 236-247.

Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., and Stockinger, B. (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity *24*, 179-189.

Waite, J.C., and Skokos, D. (2012). Th17 response and inflammatory autoimmune diseases. International journal of inflammation *2012*, 819467.

Wang, H., Geng, J., Wen, X., Bi, E., Kossenkov, A.V., Wolf, A.I., Tas, J., Choi, Y.S., Takata, H., Day, T.J., *et al.* (2014). The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nature immunology *15*, 667-675.

Wei, G., Wei, L., Zhu, J., Zang, C., Hu-Li, J., Yao, Z., Cui, K., Kanno, Y., Roh, T.Y., Watford, W.T., *et al.* (2009). Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity *30*, 155-167.

Weisberg, S.P., Smith-Raska, M.R., Esquilin, J.M., Zhang, J., Arenzana, T.L., Lau, C.M., Churchill, M., Pan, H., Klinakis, A., Dixon, J.E., *et al.* (2014). ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia. Cell reports *6*, 528-540.

Welford, S.M., Bedogni, B., Gradin, K., Poellinger, L., Broome Powell, M., and Giaccia, A.J. (2006). HIF1alpha delays premature senescence through the activation of MIF. Genes & development *20*, 3366-3371.

Wells, A.D., Walsh, M.C., Bluestone, J.A., and Turka, L.A. (2001). Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. The Journal of clinical investigation *108*, 895-903.

Wherry, E.J., Ha, S.J., Kaech, S.M., Haining, W.N., Sarkar, S., Kalia, V., Subramaniam, S., Blattman, J.N., Barber, D.L., and Ahmed, R. (2007). Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity *27*, 670-684.

Willinger, T., Freeman, T., Herbert, M., Hasegawa, H., McMichael, A.J., and Callan, M.F. (2006). Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. Journal of immunology *176*, 1439-1446.

Winer, S., Paltser, G., Chan, Y., Tsui, H., Engleman, E., Winer, D., and Dosch, H.M. (2009). Obesity predisposes to Th17 bias. European journal of immunology *39*, 2629-2635.

Wu, C., Yosef, N., Thalhamer, T., Zhu, C., Xiao, S., Kishi, Y., Regev, A., and Kuchroo, V.K. (2013). Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature *496*, 513-517.

Xiao, S., Yosef, N., Yang, J., Wang, Y., Zhou, L., Zhu, C., Wu, C., Baloglu, E., Schmidt, D., Ramesh, R., *et al.* (2014). Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity *40*, 477-489.

Xu, J., Yang, Y., Qiu, G., Lal, G., Wu, Z., Levy, D.E., Ochando, J.C., Bromberg, J.S., and Ding, Y. (2009). c-Maf regulates IL-10 expression during Th17 polarization. Journal of immunology *182*, 6226-6236.

Yosef, N., Shalek, A.K., Gaublomme, J.T., Jin, H., Lee, Y., Awasthi, A., Wu, C., Karwacz, K., Xiao, S., Jorgolli, M., *et al.* (2013). Dynamic regulatory network controlling TH17 cell differentiation. Nature *496*, 461-468.

Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., Leonard, W.J., and Littman, D.R. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature immunology *8*, 967-974.

Zingoni, A., Soto, H., Hedrick, J.A., Stoppacciaro, A., Storlazzi, C.T., Sinigaglia, F., D'Ambrosio, D., O'Garra, A., Robinson, D., Rocchi, M., *et al.* (1998). The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. Journal of immunology *161*, 547-551.

* * *

[00267] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.

WHAT IS CLAIMED IS:

- 1. A method of diagnosing, prognosing and/or staging an immune response involving T cell balance, comprising detecting a first level of expression, activity and/or function of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination thereof Gpr65, Plzp, Toso or Cd5l or one or more products of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l and comparing the detected level to a control of level of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination thereof Gpr65, Plzp, Toso or Cd5l or gene product expression, activity and/or function, wherein a difference in the detected level and the control level indicates that the presence of an immune response in the subject.
- 2. A method of monitoring an immune response in a subject comprising detecting a level of expression, activity and/or function of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination of *Gpr65*, *Plzp* or *Cd51* in any combination thereof *Gpr65*, *Plzp*, *Toso* or *Cd51* or one or more products of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any

combination thereof *Gpr65*, *Plzp or Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* at a first time point, detecting a level of expression, activity and/or function of one or more signature genes or one or more products of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp or Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* at a second time point, and comparing the first detected level of expression, activity and/or function with the second detected level of expression, activity and/or function, wherein a change in the first and second detected levels indicates a change in the immune response in the subject.

3. A method of identifying a patient population at risk or suffering from an immune response comprising detecting a level of expression, activity and/or function of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination thereof Gpr65, Plzp, Toso or Cd5l or one or more products of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the patient population and comparing the level of expression, activity and/or function of one or more signature genes or one or more products of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5lin a patient population not at risk or suffering from an immune response, wherein a difference in the level of expression, activity and/or function of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm,

Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination thereof Gpr65, Plzp, Toso or Cd5l or one or more products of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more thereof Gpr65, Plzp or Cd5l or any combination of Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the patient populations identifies the patient population as at risk or suffering from an immune response.

4. A method for monitoring subjects undergoing a treatment or therapy specific for a target gene selected from the group consisting of candidates comprising a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l for an aberrant immune response to determine whether the patient is responsive to the treatment or therapy comprising detecting a level of expression, activity and/or function of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the absence of the treatment or therapy and comparing the level of expression, activity and/or function of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in the presence of the treatment or therapy, wherein a difference in the level of expression, activity and/or function of a gene in a herein Table or a combination of genes in

herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd5l* or any combination of *Gpr65*, *Plzp* or *Cd5l* in any combination thereof *Gpr65*, *Plzp*, *Toso* or *Cd5l* or one or more products of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more thereof *Gpr65*, *Plzp* or *Cd5l* or any combination of *Gpr65*, *Plzp* or *Cd5l* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd5l* in the presence of the treatment or therapy indicates whether the patient is responsive to the treatment or therapy.

- 5. The method of any one of claims 1 to 4 wherein the immune response is an autoimmune response or an inflammatory response.
- 6. The method of claim 5 wherein the inflammatory response is associated with an autoimmune response, an infectious disease and/or a pathogen-based disorder.
- 7. The method of any one of claims 1 to 6 wherein the signature genes are Th17-associated genes.
- 8. The method of any one of claims 4 to 7, wherein the treatment or therapy is an antagonist as to expression of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in an amount sufficient to induce differentiation toward regulatory T cells (Tregs), Th1 cells, or a combination of Tregs and Th1 cells.
- 9. The method of any one of claims 4 to 7, wherein the treatment or therapy is an agonist that enhances or increases the expression of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the

foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd5l* or any combination thereof *Gpr65*, *Plzp* or *Cd5l* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd5l* in an amount sufficient to induce T cell differentiation toward Th17 cells.

- 10. The method of claim 4 to 7, wherein the treatment or therapy is an antagonist of a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* in an amount sufficient to switch Th17 cells from a pathogenic to non-pathogenic signature.
- 11. The method of claim 4 to 7, wherein the treatment or therapy is an agonist that enhances or increases the expression of a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* in an amount sufficient to switch Th17 cells from a non-pathogenic to a pathogenic signature.
- 12. The method according to any one of claims 8 to 11, wherein the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent.
- 13. A method of modulating T cell balance, the method comprising contacting a T cell or a population of T cells with a T cell modulating agent in an amount sufficient to modify differentiation, maintenance and/or function of the T cell or population of T cells by altering balance between Th17 cells, regulatory T cells (Tregs) and other T cell subsets as compared to differentiation, maintenance and/or function of the T cell or population of T cells in the absence of the T cell modulating agent; wherein the T cell modulating agent is an antagonist for or of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*,

Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5lin an amount sufficient to induce differentiation toward regulatory T cells (Tregs), Th1 cells, or a combination of Tregs and Th1 cells, or wherein the T cell modulating agent is an agonist that enhances or increases the expression of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to induce T cell differentiation toward Th17 cells, or wherein the T cell modulating agent is specific for a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l, or wherein the T cell modulating agent is an antagonist of a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot11, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5l in an amount sufficient to switch Th17 cells from a pathogenic to non-pathogenic signature, or wherein the T cell modulating agent is an agonist that enhances or increases the expression of a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13, Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more of Gpr65, Plzp or Cd5l or any combination thereof Gpr65, Plzp or Cd5l in any combination of Gpr65, Plzp, Toso or Cd5lin an amount sufficient to switch Th17 cells from a non-pathogenic to a pathogenic signature.

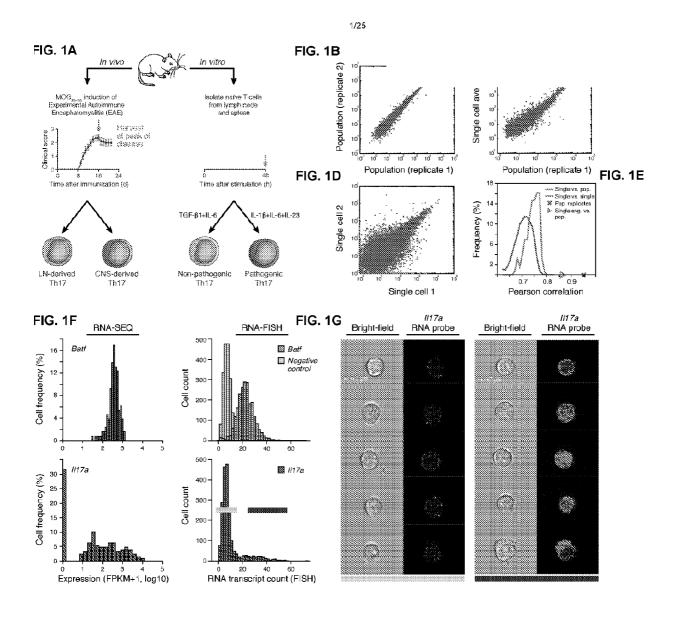
14. The method according to claim 13, wherein the T cell modulating agent is an antibody, a soluble polypeptide, a polypeptide agent, a peptide agent, a nucleic acid agent, a nucleic acid ligand, or a small molecule agent.

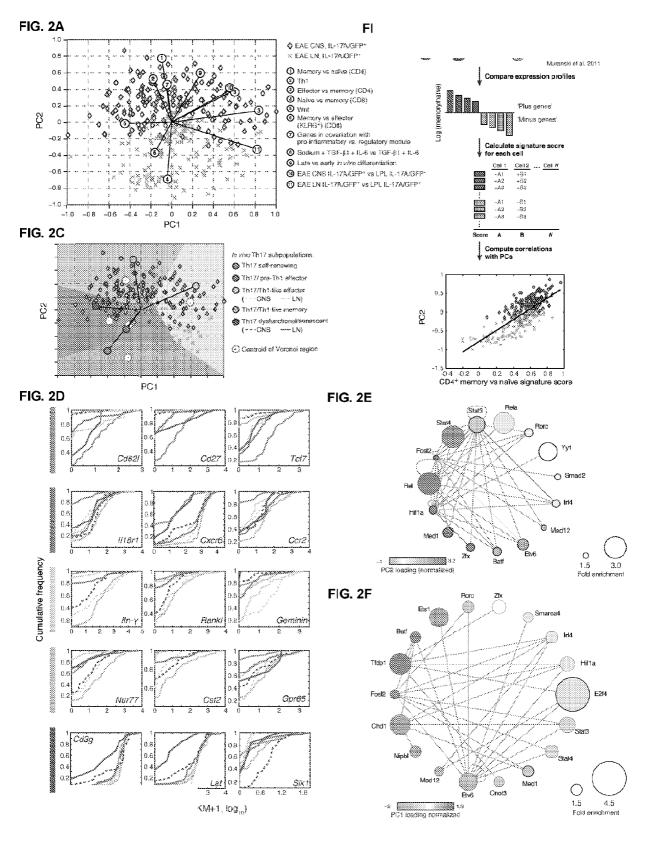
- 15. The method according to claim 13, wherein the T cells are naïve T cells, partially differentiated T cells, differentiated T cells, a combination of naïve T cells and partially differentiated T cells, a combination of naïve T cells and differentiated T cells, a combination of partially differentiated T cells and differentiated T cells, or a combination of naïve T cells, partially differentiated T cells and differentiated T cells.
- A method of enhancing Th17 differentiation in a cell population, increasing expression, activity and/or function of one or more Th17-associated cytokines or one or more Th17-associated transcription regulators selected from interleukin 17F (IL-17F), interleukin 17A (IL-17A), STAT3, interleukin 21 (IL-21) and RAR-related orphan receptor C (RORC), and/or decreasing expression, activity and/or function of one or more non-Th17-associated cytokines or non-Th17-associated transcription regulators selected from FOXP3, interferon gamma (IFN-γ), GATA3, STAT4 and TBX21, comprising contacting a T cell with an agent that enhances expression, activity and/or function of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51*.
- 17. The method of claim 16, wherein the agent enhances expression, activity and/or function of at least *Toso*.
- 18. The method of claim 16 or 17, wherein the agent is an antibody, a soluble polypeptide, a polypeptide agonist, a peptide agonist, a nucleic acid agonist, a nucleic acid ligand, or a small molecule agonist.
- 19. The method of claim 18, wherein the agent is an antibody.
- 20. The method of claim 19 wherein the antibody is a monoclonal antibody.

21. The method of claim 20, wherein the antibody is a chimeric, humanized or fully human monoclonal antibody.

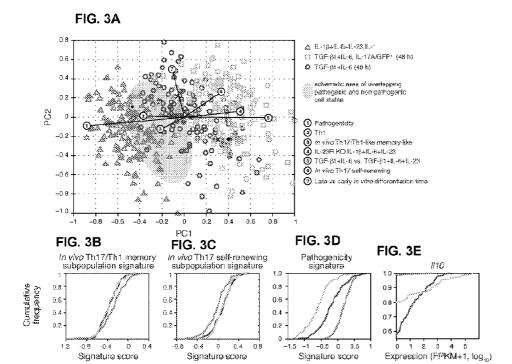
- Use of an antagonist for or of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd5l* or any combination thereof *Gpr65*, *Plzp* or *Cd5l* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd5l* in an amount sufficient to induce differentiation toward regulatory T cells (Tregs), Th1 cells, or a combination of Tregs and Th1 cells for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.
- Use of an agonist that enhances or increases the expression of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* in an amount sufficient to induce T cell differentiation toward Th17 cells for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.
- Use of an antagonist of a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51* in an amount sufficient to switch Th17 cells from a pathogenic to non-pathogenic signature for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.
- Use of an agonist that enhances or increases the expression of a target gene selected from the group consisting of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso, Ctla2b, Gatm, Bdh2, Bcat1, Zfp36, Acsl4, Acat3, Adi1, Dot1l, Mett10d, Sirt6, Slc25a13*,

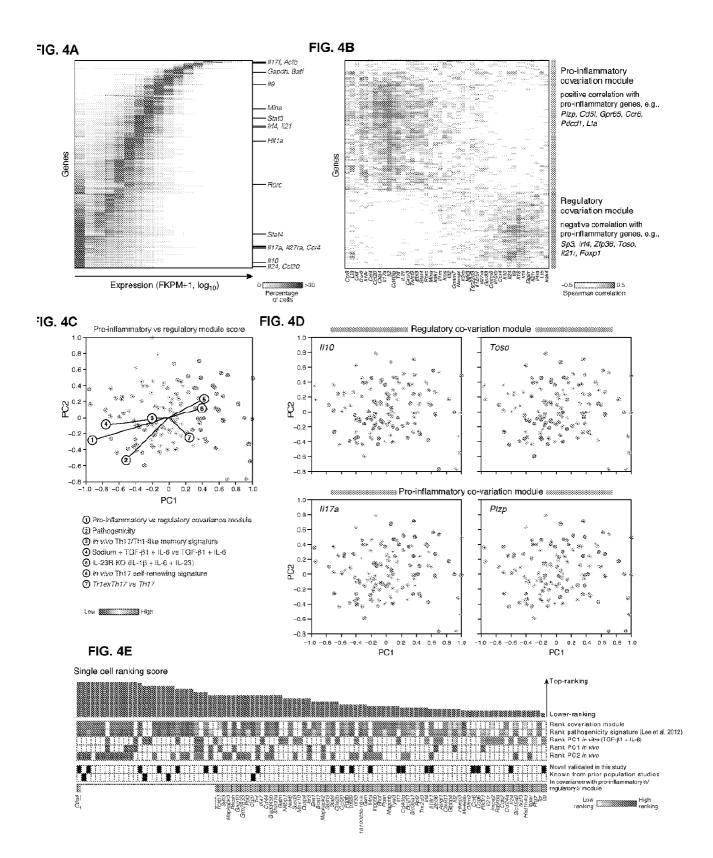
Chd2, Ino80c, Med21, Pdss1, Galk1, Gnpda2 or Mtpap or any one of the foregoing or any combination thereof with one or more thereof Gpr65, Plzp or Cd51 or any combination of Gpr65, Plzp or Cd51 in any combination of Gpr65, Plzp, Toso or Cd51 in an amount sufficient to switch Th17 cells from a non-pathogenic to a pathogenic signature for treating or Drug Discovery of or formulating or preparing a treatment for an aberrant immune response in a patient.

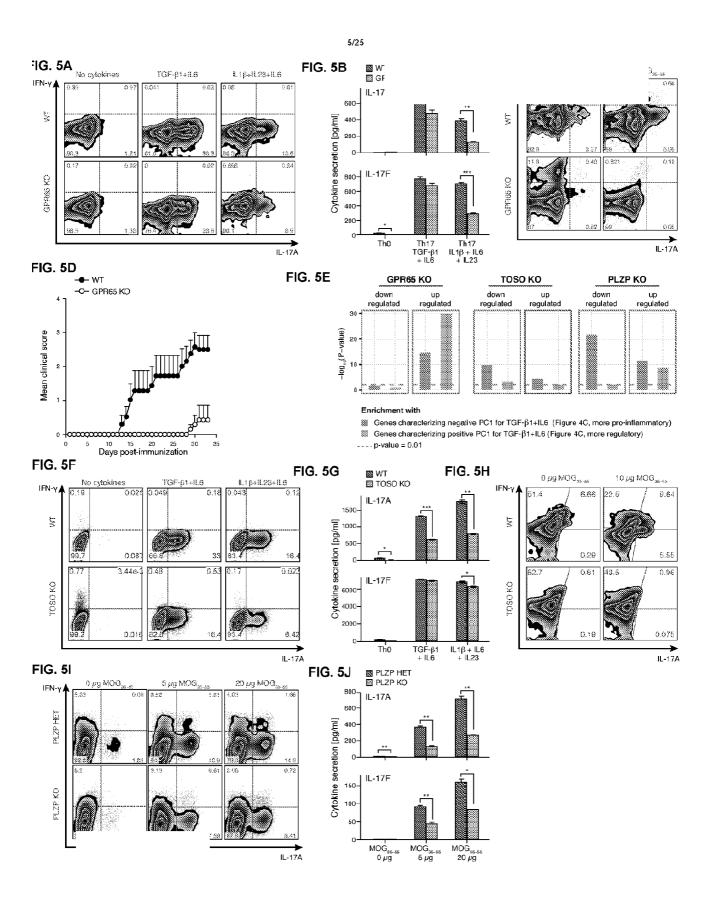

- 26. A treatment method or Drug Discovery method or method of formulating or preparing a treatment comprising any one of the methods or uses of any of the preceding claims.
- 27. The method of claim 26 or the use of claim 27wherein an agent, agonist or antagonist of any of the preceding claims is a putative drug or treatment in Drug Discovery or formulating or preparing a treatment; and formulating or preparing a treatment comprises admixing the agent, agonist or antagonist with a pharmaceutically acceptable carrier or excipient.
- 28. A method of drug discovery for the treatment of a disease or condition involving an immune response involving T cell balance in a population of cells or tissue which express one or more of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination of *Gpr65*, *Plzp* or *Cd51* in any combination thereof *Gpr65*, *Plzp*, *Toso* or *Cd51* comprising the steps of:
- (a) providing a compound or plurality of compounds to be screened for their efficacy in the treatment of said disease or condition;
- (b) contacting said compound or plurality of compounds with said population of cells or tissue;
- (c) detecting a first level of expression, activity and/or function of one or more of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot1l*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination of *Gpr65*, *Plzp* or *Cd51* in any combination thereof *Gpr65*, *Plzp*, *Toso* or *Cd51* or one or more products of one or more of a gene in a herein Table or

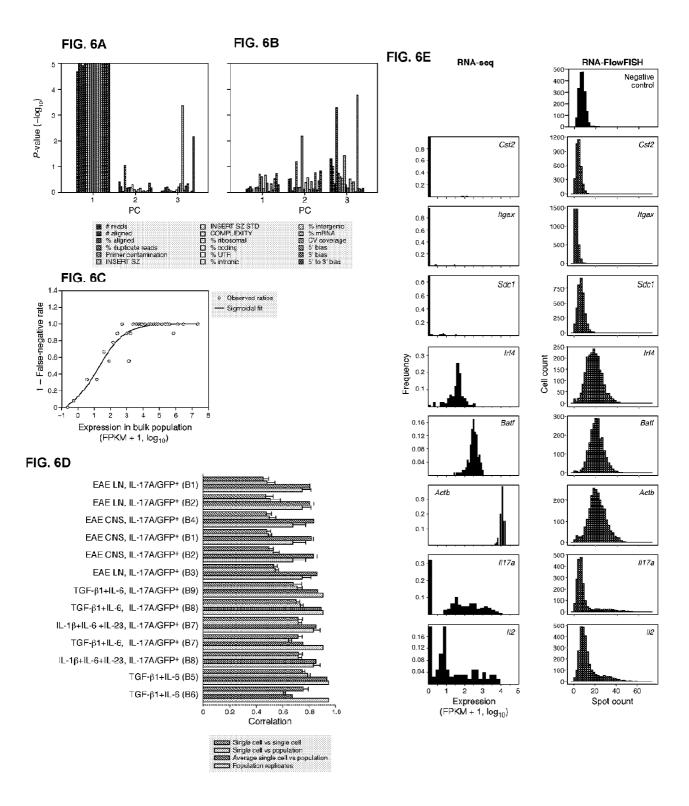

a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination thereof *Gpr65*, *Plzp* or *Cd51* in any combination of *Gpr65*, *Plzp*, *Toso* or *Cd51*;

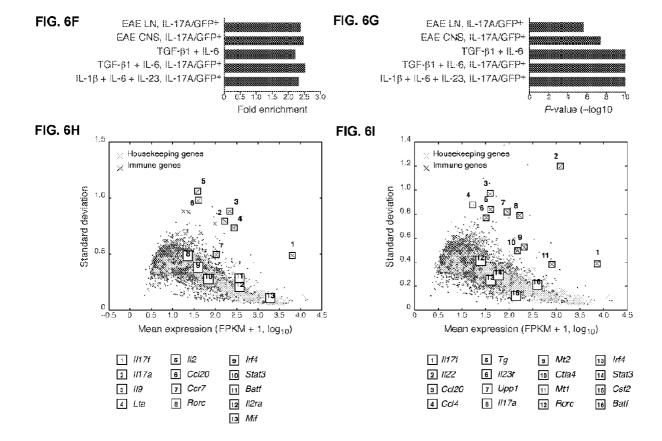
- (d) comparing the detected level to a control of level of a gene in a herein Table or a combination of genes in herein Table(s) or *Toso*, *Ctla2b*, *Gatm*, *Bdh2*, *Bcat1*, *Zfp36*, *Acsl4*, *Acat3*, *Adi1*, *Dot11*, *Mett10d*, *Sirt6*, *Slc25a13*, *Chd2*, *Ino80c*, *Med21*, *Pdss1*, *Galk1*, *Gnpda2* or *Mtpap* or any one of the foregoing or any combination thereof with one or more of *Gpr65*, *Plzp* or *Cd51* or any combination of *Gpr65*, *Plzp* or *Cd51* in any combination thereof *Gpr65*, *Plzp*, *Toso* or *Cd51* or gene product expression, activity and/or function; and,
- (e) evaluating the difference between the detected level and the control level to determine the immune response elicited by said compound or plurality of compounds.
- 29. A method of diagnosing, prognosing and/or staging an immune response involving Th17 T cell balance in a subject, comprising detecting a first level of expression of one or more of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in Th17 cells, and comparing the detected level to a control level of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA), wherein a change in the first level of expression and the control level detected indicates a change in the immune response in the subject.
- 30. The method of claim 29, further comprising determining the ratio of SFA to PUFA and comparing the ratio to a control level, wherein a shift in the ratio indicates a change in the immune response in the subject.
- 31. The method of claim 29 or 30, wherein a shift torwards polyunsaturated fatty acids (PUFA) and/or away from saturated fatty acids (SFA) indicates a non-pathogenic Th17 response.
- 32. A method for monitoring subjects undergoing a treatment or therapy involving T cell balance comprising, detecting a first level of expression of one or more of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in Th17 cells in the absence of the treatment or

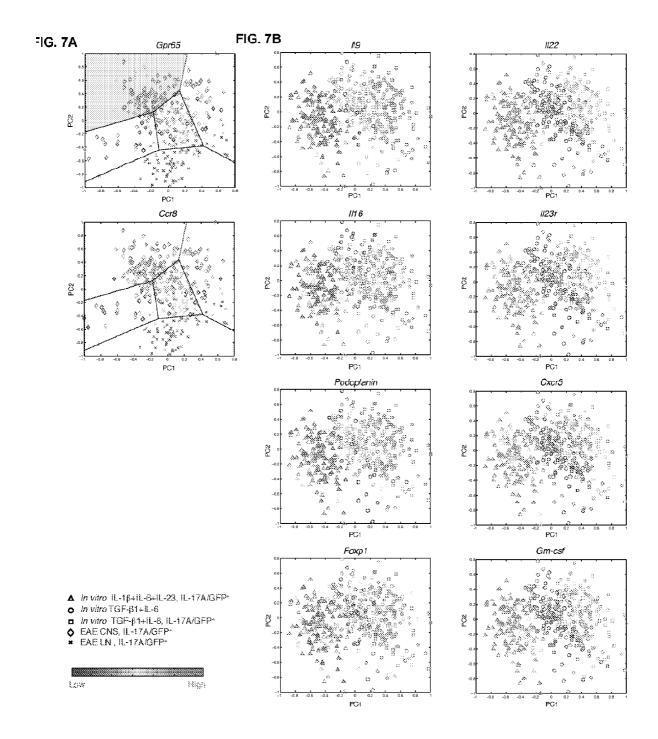

therapy and comparing the detected level to a level of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in the presence of the treatment or therapy, wherein a difference in the level of expression in the presence of the treatment or therapy indicates whether the subject is responsive to the treatment or therapy.

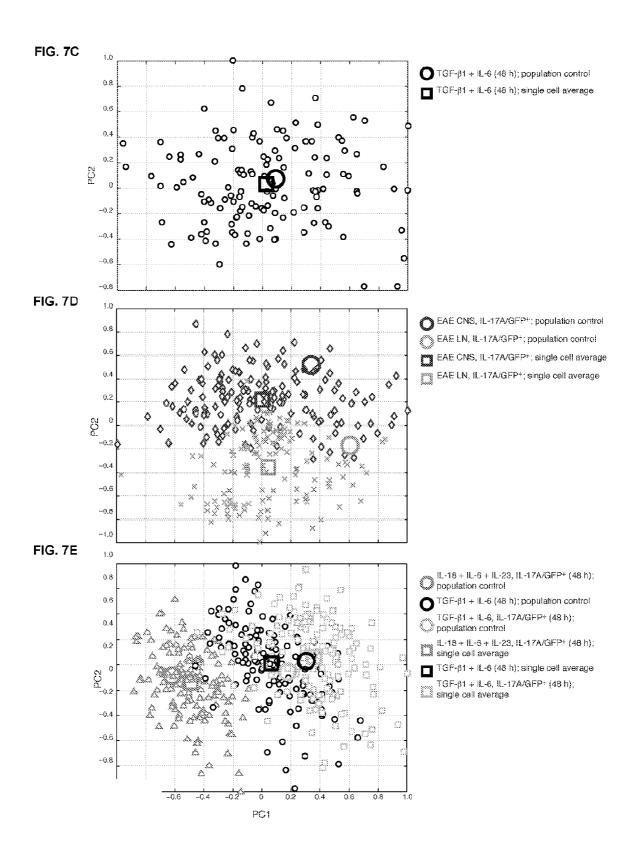

- 33. The method of claim 32, wherein the treatment or therapy involving T cell balance is for a subject undergoing treatment or therapy for cancer or an autoimmune disease.
- 34. A method of drug discovery for the treatment of a disease or condition involving an immune response involving Th17 T cell balance in a population of cells or tissue comprising:
- (a) providing a compound or plurality of compounds to be screened for their efficacy in the treatment of said disease or condition;
- (b) contacting said compound or plurality of compounds with said population of cells or tissue;
- (c) detecting a first level of expression of one or more of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA) in Th17 cells;
- (d) comparing the detected level to a control level of saturated fatty acids (SFA) and/or polyunsaturated fatty acids (PUFA); and,
- (e) evaluating the difference between the detected level and the control level to determine the immune response elicited by said compound or plurality of compounds.
- A method of treatment of a disease or condition involving an immune response involving Th17 T cell balance comprising administering at least one lipid to a patient in need thereof, wherein the at least one lipid is sufficient to cause a shift in the ratio of SFA to PUFA, whereby there is a change in T cell balance.

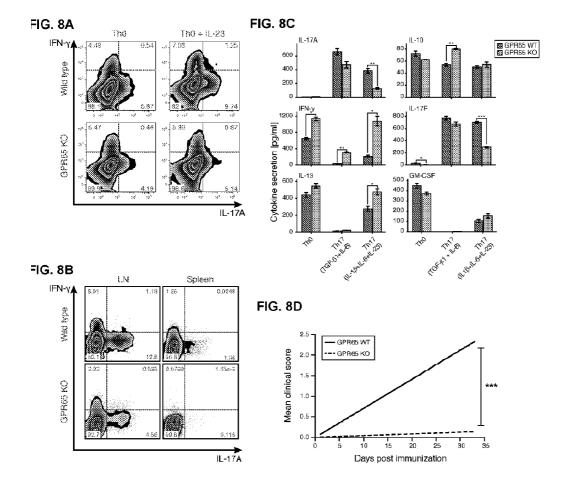


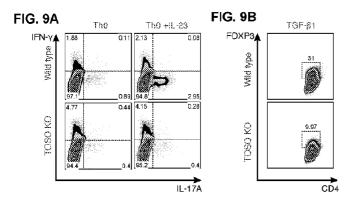


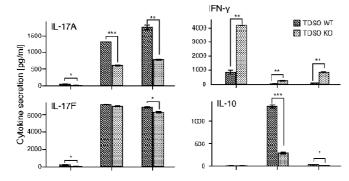

3/25

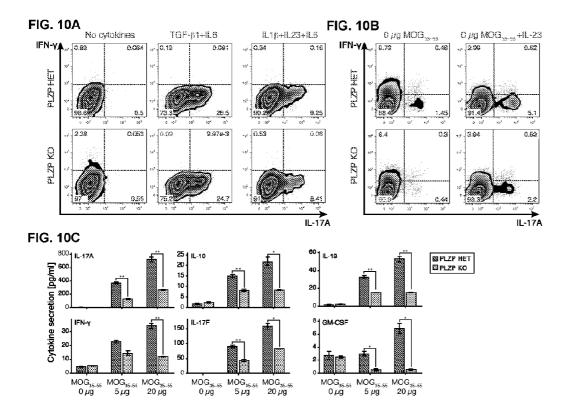


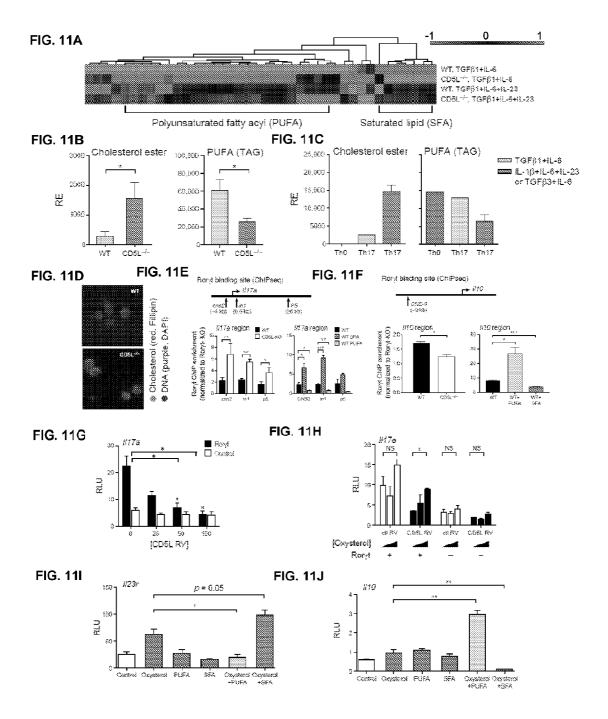












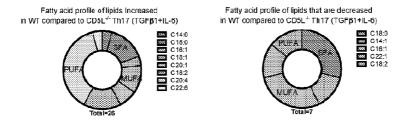
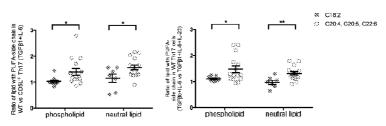
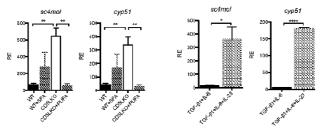
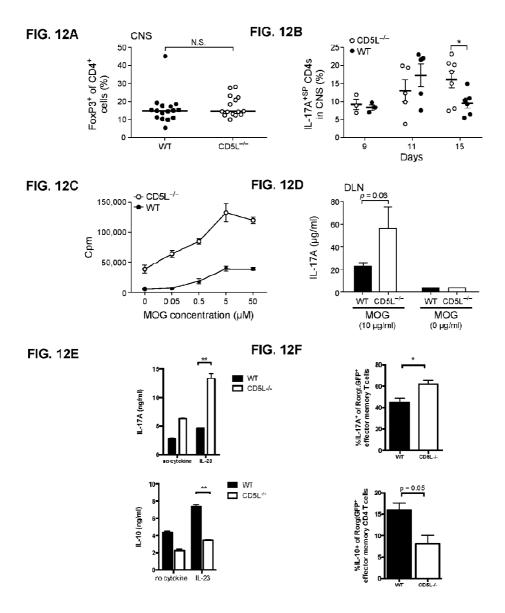
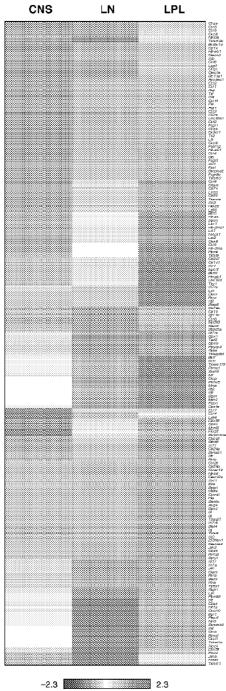
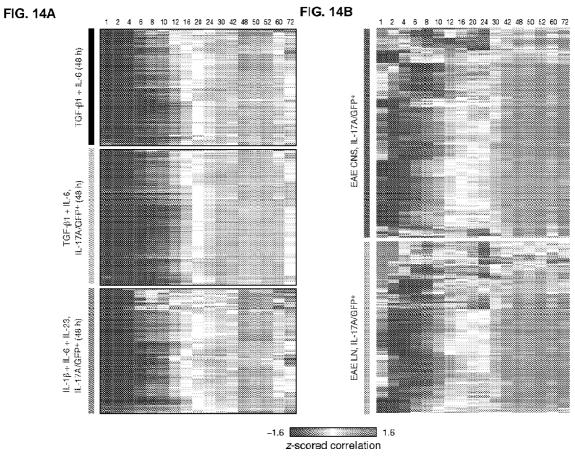
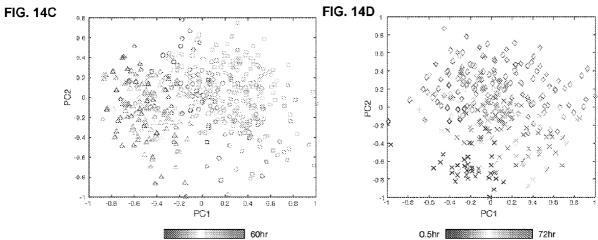
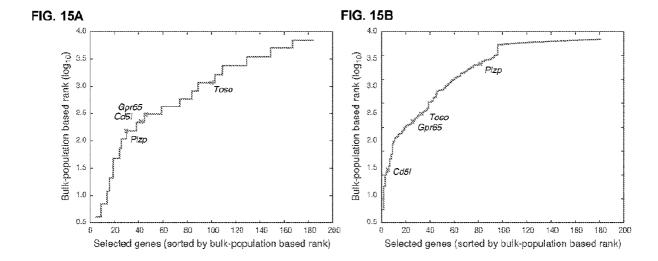


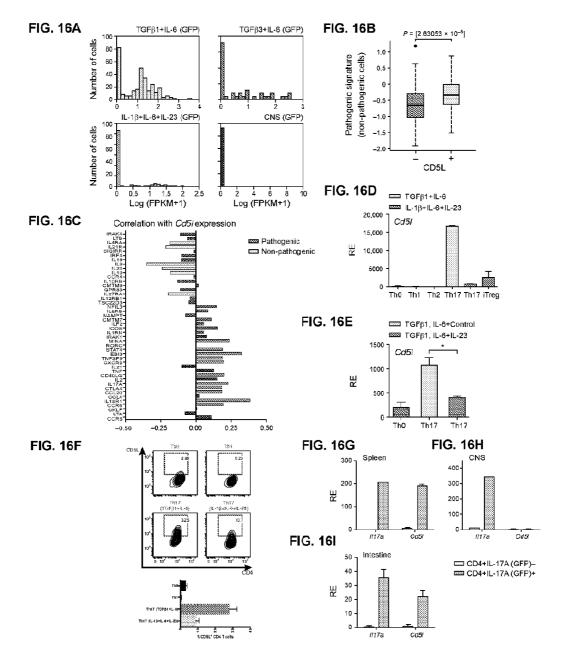
FIG. 11L

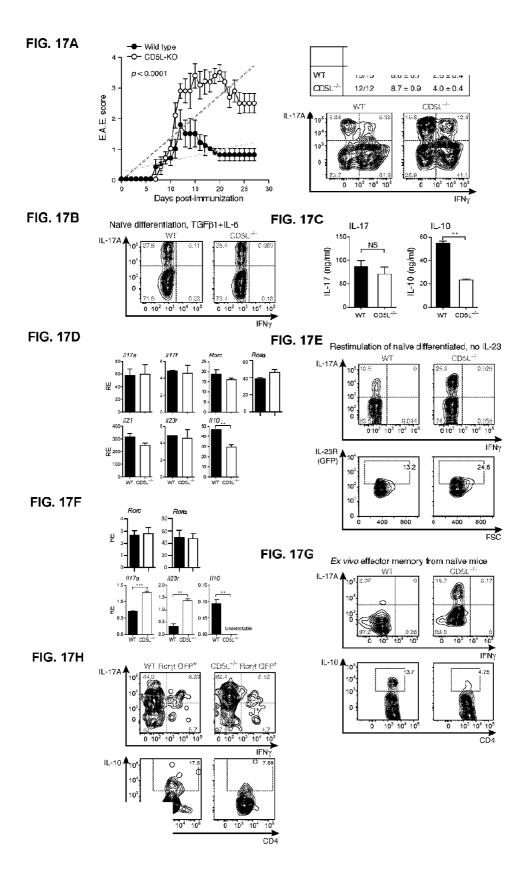





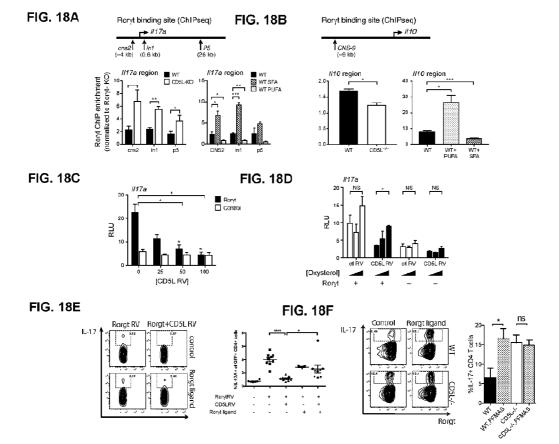

FIG. 11M








z-score



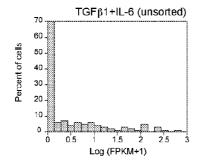


FIG. 19B

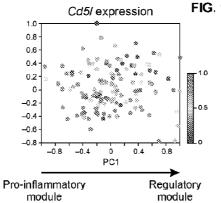


FIG. 19C

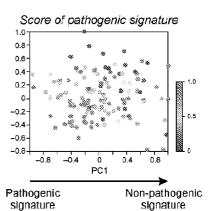
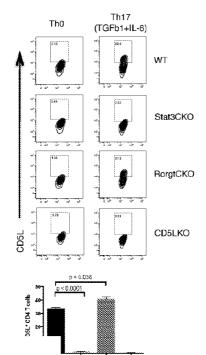
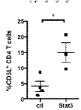
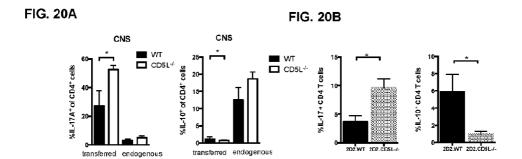
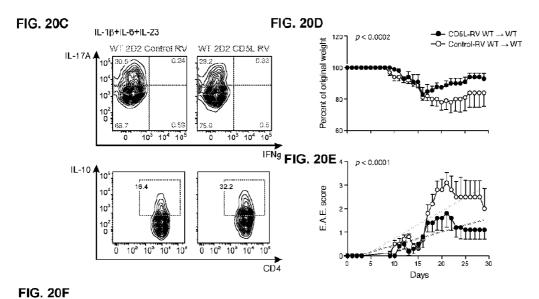
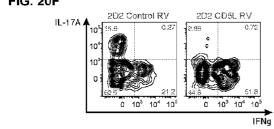
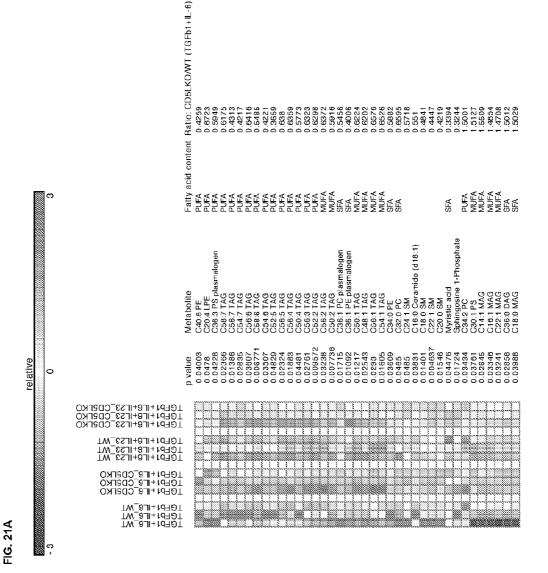




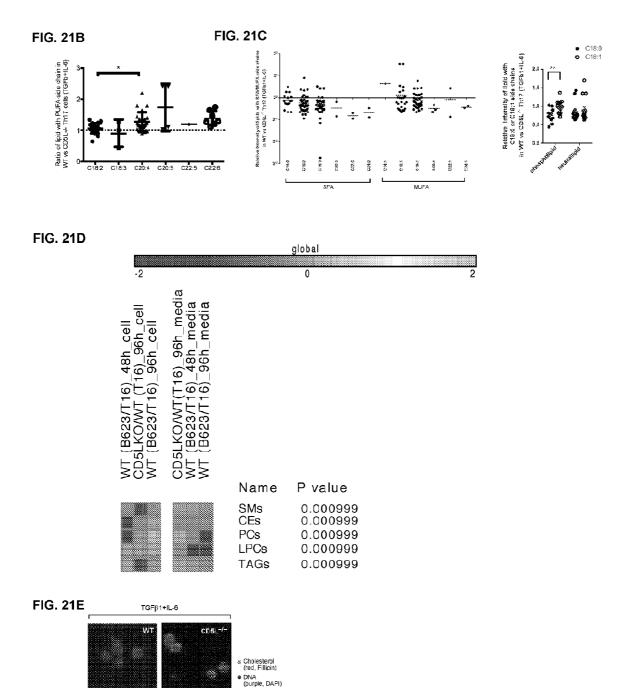
FIG. 19E




Th0


Ctl BV


Stat3 RV


TGFb1+IL-6 ctl

