1.
Packer MS, Rees HA, Liu DR. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun. 2017;8(1):956. doi:10.1038/s41467-017-01055-9.
1.
Wang T, Badran AH, Huang TP, Liu DR. Continuous directed evolution of proteins with improved soluble expression. Nat Chem Biol. 2018;14(10):972-980. doi:10.1038/s41589-018-0121-5.
1.
Brown EM, Arellano-Santoyo H, Temple ER, et al. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe. 2021;29(9):1351-1365.e11. doi:10.1016/j.chom.2021.07.011.
1.
Henn MR, Sullivan MB, Stange-Thomann N, et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One. 2010;5(2):e9083. doi:10.1371/journal.pone.0009083.
1.
Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32(11):1141-5. doi:10.1038/nbt.3011.
1.
Cochrane K, McGuire AM, Priest ME, et al. Complete genome sequences and analysis of the Fusobacterium nucleatum subspecies animalis 7-1 bacteriophage ɸFunu1 and ɸFunu2. Anaerobe. 2016;38:125-9. doi:10.1016/j.anaerobe.2015.10.013.
1.
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016;353(6299):aad5147. doi:10.1126/science.aad5147.
1.
Badran AH, Guzov VM, Huai Q, et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. 2016;533(7601):58-63. doi:10.1038/nature17938.
1.
Carlson JC, Badran AH, Guggiana-Nilo DA, Liu DR. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. 2014;10(3):216-22. doi:10.1038/nchembio.1453.