Guerra RM, Bird GH, Harvey EP, et al. Precision Targeting of BFL-1/A1 and an ATM Co-dependency in Human Cancer. Cell Rep. 2018;24(13):3393-3403.e5. doi:10.1016/j.celrep.2018.08.089DOIGoogle ScholarPubMed
Nghiem P, Park PK, Ys Y son K, Desai BN, Schreiber SL. ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem. 2002;277(6):4428-34. doi:10.1074/jbc.M106113200PubMedDOIGoogle Scholar
Schmidt DR, Schreiber SL. Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry. 1999;38(44):14711-7.Google ScholarPubMed
Cimprich KA, Shin TB, Keith CT, Schreiber SL. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A. 1996;93(7):2850-5.Google ScholarPubMed
Cliby WA, Roberts CJ, Cimprich KA, et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 1998;17(1):159-69. doi:10.1093/emboj/17.1.159DOIGoogle ScholarPubMed
Tiao G, Improgo MR, Kasar S, et al. Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia. 2017;31(10):2244-2247. doi:10.1038/leu.2017.201DOIGoogle ScholarPubMed
Kawasumi M, Bradner JE, Tolliday N, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74(24):7534-45. doi:10.1158/0008-5472.CAN-14-2650DOIGoogle ScholarPubMed
Buisson R, Lawrence MS, Benes CH, Zou L. APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition. Cancer Res. 2017;77(17):4567-4578. doi:10.1158/0008-5472.CAN-16-3389DOIGoogle ScholarPubMed
Gupta M, Concepcion CP, Fahey CG, et al. BRG1 Loss Predisposes Lung Cancers to Replicative Stress and ATR Dependency. Cancer Res. 2020;80(18):3841-3854. doi:10.1158/0008-5472.CAN-20-1744DOIGoogle ScholarPubMed