Topa H, Benoit-Pilven C, Tukiainen T, Pietilainen O. X-chromosome inactivation in human iPSCs provides insight into X-regulated gene expression in autosomes. Genome biology. 2024;25(1):144. doi:10.1186/s13059-024-03286-8Google ScholarDOIPubMed
Topa H, Benoit-Pilven C, Tukiainen T, Pietilainen O. X-chromosome inactivation in human iPSCs provides insight into X-regulated gene expression in autosomes. Genome biology. 2024;25(1):144. doi:10.1186/s13059-024-03286-8Google ScholarDOIPubMed
Tukiainen T, Villani AC, Yen A, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244-248. doi:10.1038/nature24265Google ScholarDOIPubMed
Barutcu R, Maass PG, Lewandowski JP, Weiner CL, Rinn JL. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat Commun. 2018;9(1):1444. doi:10.1038/s41467-018-03614-0Google ScholarDOIPubMed
Özbek U, Lin HM, Lin Y, et al. Statistics for X-chromosome associations. Genet Epidemiol. 2018;42(6):539-550. doi:10.1002/gepi.22132Google ScholarDOIPubMed
Engreitz JM, Pandya-Jones A, McDonel P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 2013;341(6147):1237973. doi:10.1126/science.1237973Google ScholarDOIPubMed
Hacisuleyman E, Goff LA, Trapnell C, et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 2014;21(2):198-206. doi:10.1038/nsmb.2764Google ScholarDOIPubMed
Tukiainen T, Pirinen M, Sarin AP, et al. Chromosome X-wide association study identifies Loci for fasting insulin and height and evidence for incomplete dosage compensation. PLoS Genet. 2014;10(2):e1004127. doi:10.1371/journal.pgen.1004127Google ScholarDOIPubMed
McHugh CA, Chen CK, Chow A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521(7551):232-6. doi:10.1038/nature14443Google ScholarDOIPubMed