Proctor EJ, Frost HR, Satapathy S, et al. Molecular characterisation of the interaction between human IgG and the M-related proteins from Streptococcus pyogenes. The Journal of biological chemistry. 2024:105623. doi:10.1016/j.jbc.2023.105623PubMedDOIGoogle Scholar
Maji B, Gangopadhyay SA, Lee M, et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell. 2019;177(4):1067-1079.e19. doi:10.1016/j.cell.2019.04.009PubMedDOIGoogle Scholar
Najm FJ, Strand C, Donovan KF, et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol. 2018;36(2):179-189. doi:10.1038/nbt.4048PubMedDOIGoogle Scholar
Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi:10.1038/nature26155PubMedDOIGoogle Scholar
Cong L, Ran A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23. doi:10.1126/science.1231143PubMedDOIGoogle Scholar
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41(15):7429-37. doi:10.1093/nar/gkt520PubMedDOIGoogle Scholar
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-32. doi:10.1038/nbt.2647PubMedDOIGoogle Scholar
Ran A, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380-9. doi:10.1016/j.cell.2013.08.021PubMedDOIGoogle Scholar
Nishimasu H, Ran A, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935-49. doi:10.1016/j.cell.2014.02.001PubMedDOIGoogle Scholar
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78. doi:10.1016/j.cell.2014.05.010PubMedDOIGoogle Scholar