1.
Zheng C, Wang Y, Cheng Y, et al. scNovel: a scalable deep learning-based network for novel rare cell discovery in single-cell transcriptomics. Briefings in bioinformatics. 2024;25(3). doi:10.1093/bib/bbae112.
1.
Kimmerling RJ, Prakadan SM, Gupta AJ, et al. Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol. 2018;19(1):207. doi:10.1186/s13059-018-1576-0.
1.
Biancalani T, Scalia G, Buffoni L, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods. 2021;18(11):1352-1362. doi:10.1038/s41592-021-01264-7.
1.
Li B, Gould J, Yang Y, et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat Methods. 2020;17(8):793-798. doi:10.1038/s41592-020-0905-x.
1.
Ding J, Regev A. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nat Commun. 2021;12(1):2554. doi:10.1038/s41467-021-22851-4.
1.
Frangieh CJ, Melms JC, Thakore PI, et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat Genet. 2021;53(3):332-341. doi:10.1038/s41588-021-00779-1.
1.
Chung H, Parkhurst CN, Magee EM, et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat Methods. 2021;18(10):1204-1212. doi:10.1038/s41592-021-01278-1.
1.
Delorey TM, Ziegler CGK, Heimberg G, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107-113. doi:10.1038/s41586-021-03570-8.
1.
Brody Y, Kimmerling RJ, Maruvka YE, et al. Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Res. 2018;28(12):1901-1918. doi:10.1101/gr.238543.118.
1.
Bagheri N, Carpenter AE, Lundberg E, Plant AL, Horwitz R. The new era of quantitative cell imaging-challenges and opportunities. Mol Cell. 2022;82(2):241-247. doi:10.1016/j.molcel.2021.12.024.