Guasch-Ferré M, Ruiz-Canela M, Li J, et al. Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk. J Clin Endocrinol Metab. 2019;104(5):1508-1519. doi:10.1210/jc.2018-01000.
Chung M, Bruno VM, Rasko DA, et al. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol. 2021;22(1):121. doi:10.1186/s13059-021-02337-8.
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807.
Song W, Huang H, Zhang C-Z, Bates DW, Wright A. Using whole genome scores to compare three clinical phenotyping methods in complex diseases. Sci Rep. 2018;8(1):11360. doi:10.1038/s41598-018-29634-w.
Scott KM, Koenen KC, King A, et al. Post-traumatic stress disorder associated with sexual assault among women in the WHO World Mental Health Surveys. Psychol Med. 2018;48(1):155-167. doi:10.1017/S0033291717001593.
Merino J, Leong A, Liu C-T, et al. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia. 2018;61(6):1315-1324. doi:10.1007/s00125-018-4599-x.
Hindy G, Wiberg F, Almgren P, Melander O, Orho-Melander M. Polygenic Risk Score for Coronary Heart Disease Modifies the Elevated Risk by Cigarette Smoking for Disease Incidence. Circ Genom Precis Med. 2018;11(1):e001856. doi:10.1161/CIRCGEN.117.001856.
Abbatiello SE, Mani DR, Keshishian H, Carr SA. Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. Clin Chem. 2010;56(2):291-305. doi:10.1373/clinchem.2009.138420.
Ibrahim-Verbaas CA, Fornage M, Bis JC, et al. Predicting stroke through genetic risk functions: the CHARGE Risk Score Project. Stroke. 2014;45(2):403-12. doi:10.1161/STROKEAHA.113.003044.