1.
Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017;23(9):1095-1101. doi:10.1038/nm.4377.
1.
Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Mol Cell. 2017;67(4):633-645.e3. doi:10.1016/j.molcel.2017.06.035.
1.
Yeo NC, Chavez A, Lance-Byrne A, et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods. 2018;15(8):611-616. doi:10.1038/s41592-018-0048-5.
1.
Meier JA, Zhang F, Sanjana NE. GUIDES: sgRNA design for loss-of-function screens. Nat Methods. 2017;14(9):831-832. doi:10.1038/nmeth.4423.
1.
Pyzocha NK, Chen S. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chem Biol. 2018;13(2):347-356. doi:10.1021/acschembio.7b00800.
1.
Lessard S, Francioli L, Alföldi J, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci U S A. 2017;114(52):E11257-E11266. doi:10.1073/pnas.1714640114.
1.
Najm FJ, Strand C, Donovan KF, et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol. 2018;36(2):179-189. doi:10.1038/nbt.4048.
1.
Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells. Science. 2018;360(6385). doi:10.1126/science.aap8992.
1.
Chavez A, Pruitt BW, Tuttle M, et al. Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. 2018;115(14):3669-3673. doi:10.1073/pnas.1718148115.
1.
Fulco CP, Nasser J, Jones TR, et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet. 2019;51(12):1664-1669. doi:10.1038/s41588-019-0538-0.