Pupak A, Rodríguez-Navarro I, Sathasivam K, et al. mA modification of mutant huntingtin RNA promotes the biogenesis of pathogenic huntingtin transcripts. EMBO reports. 2024. doi:10.1038/s44319-024-00283-7PubMedDOIGoogle Scholar
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science. 2017;358(6366):1019-1027. doi:10.1126/science.aaq0180PubMedDOIGoogle Scholar
Lammert DB, Middleton FA, Pan J, Olson EC, Howell BW. The de novo autism spectrum disorder RELN R2290C mutation reduces Reelin secretion and increases protein disulfide isomerase expression. J Neurochem. 2017;142(1):89-102. doi:10.1111/jnc.14045PubMedDOIGoogle Scholar
Schmid-Burgk JL. Disruptive non-disruptive applications of CRISPR/Cas9. Curr Opin Biotechnol. 2017;48:203-209. doi:10.1016/j.copbio.2017.06.001PubMedDOIGoogle Scholar
Sanjana NE, Levanon EY, Hueske EA, Ambrose JM, Li JB. Activity-dependent A-to-I RNA editing in rat cortical neurons. Genetics. 2012;192(1):281-7. doi:10.1534/genetics.112.141200PubMedDOIGoogle Scholar
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344-52. doi:10.1038/nature12986PubMedDOIGoogle Scholar
Pyzocha NK, Ran A, Hsu PD, Zhang F. RNA-guided genome editing of mammalian cells. Methods Mol Biol. 2014;1114:269-77. doi:10.1007/978-1-62703-761-7_17PubMedDOIGoogle Scholar
Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods. 2014;11(9):915-8. doi:10.1038/nmeth.3063PubMedDOIGoogle Scholar
Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One. 2014;9(9):e108424. doi:10.1371/journal.pone.0108424PubMedDOIGoogle Scholar
Mandal PK, Ferreira LMR, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15(5):643-52. doi:10.1016/j.stem.2014.10.004PubMedDOIGoogle Scholar