1.
Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature. 2002;416(6881):653-7. doi:10.1038/416653a.
1.
Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A. 1999;96(26):14866-70.
1.
Jarosz DF, Khurana V. Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell. 2017;171(5):1001-1014. doi:10.1016/j.cell.2017.10.047.
1.
Guo L, Kim HJ, Wang H, et al. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell. 2018;173(3):677-692.e20. doi:10.1016/j.cell.2018.03.002.
1.
Minikel EV, Zerr I, Collins SJ, et al. Ascertainment bias causes false signal of anticipation in genetic prion disease. Am J Hum Genet. 2014;95(4):371-82. doi:10.1016/j.ajhg.2014.09.003.
1.
Muona M, Berkovic SF, Dibbens LM, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015;47(1):39-46. doi:10.1038/ng.3144.
1.
Minikel EV, Vallabh SM, Lek M, et al. Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med. 2016;8(322):322ra9. doi:10.1126/scitranslmed.aad5169.
1.
Nuvolone M, Hermann M, Sorce S, et al. Strictly co-isogenic C57BL/6J-Prnp-/- mice: A rigorous resource for prion science. J Exp Med. 2016;213(3):313-27. doi:10.1084/jem.20151610.