1.
Gilbert TM, Zürcher NR, Wu CJ, et al. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J Clin Invest. 2019;129(1):364-372. doi:10.1172/JCI123743.
1.
Schroeder FA, Chonde DB, Riley MM, et al. FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors. Neurosci Lett. 2013;550:119-24. doi:10.1016/j.neulet.2013.06.016.
1.
Riester M, Xu Q, Moreira A, Zheng J, Michor F, Downey RJ. The Warburg effect: persistence of stem-cell metabolism in cancers as a failure of differentiation. Ann Oncol. 2018;29(1):264-270. doi:10.1093/annonc/mdx645.
1.
Latva-Rasku A, Honka M-J, Stančáková A, et al. A Partial Loss-of-Function Variant in Is Associated With Reduced Insulin-Mediated Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback Positron Emission Tomography Study. Diabetes. 2018;67(2):334-342. doi:10.2337/db17-1142.
1.
Lin PL, Ford CB, Coleman T, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med. 2014;20(1):75-9. doi:10.1038/nm.3412.
1.
Ramanan VK, Risacher SL, Nho K, et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain. 2015;138(Pt 10):3076-88. doi:10.1093/brain/awv231.
1.
Kim W, Le TM, Wei L, et al. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity. Proc Natl Acad Sci U S A. 2016;113(15):4027-32. doi:10.1073/pnas.1524212113.
1.
Seo YJ, Kang Y, Muench L, et al. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chem Neurosci. 2014;5(7):588-96. doi:10.1021/cn500021p.
1.
Wang C, Schroeder FA, Wey H-Y, et al. In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem. 2014;57(19):7999-8009. doi:10.1021/jm500872p.