1.
Shoba VM, Godage DNPM, Chaudhary SK, Deb A, Siriwardena SU, Choudhary A. Synthetic Reprogramming of Kinases Expands Cellular Activities of Proteins. Angewandte Chemie (International ed. in English). 2022;61(29):e202202770. doi:10.1002/anie.202202770.
1.
Liu S, Marneth AE, Alexe G, et al. The kinases IKBKE and TBK1 regulate MYC-dependent survival pathways through YB-1 in AML and are targets for therapy. Blood Adv. 2018;2(23):3428-3442. doi:10.1182/bloodadvances.2018016733.
1.
Ravikumar V, Nalpas NC, Anselm V, et al. In-depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Sci Rep. 2018;8(1):17246. doi:10.1038/s41598-018-35589-9.
1.
Wu C-H, Tatavarty V, Beltran PMJ, et al. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. Elife. 2022;11. doi:10.7554/eLife.74277.
1.
Krahmer N, Najafi B, Schueder F, et al. Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Dev Cell. 2018;47(2):205-221.e7. doi:10.1016/j.devcel.2018.09.017.
1.
Qin W, Myers SA, Carey DK, Carr SA, Ting AY. Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nat Commun. 2021;12(1):4980. doi:10.1038/s41467-021-25259-2.
1.
Xu D, Jin T, Zhu H, et al. TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging. Cell. 2018;174(6):1477-1491.e19. doi:10.1016/j.cell.2018.07.041.
1.
Perraki A, DeFalco TA, Derbyshire P, et al. Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature. 2018;561(7722):248-252. doi:10.1038/s41586-018-0471-x.
1.
Sadler JBA, Wenzel DM, Strohacker LK, et al. A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc Natl Acad Sci U S A. 2018;115(38):E8900-E8908. doi:10.1073/pnas.1805504115.
1.
Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A. 2018;115(38):9545-9550. doi:10.1073/pnas.1811727115.