Raghu A, Raghu A, Wise JF. Deep Learning-Based Identification of Tissue of Origin for Carcinomas of Unknown Primary Using MicroRNA Expression: Algorithm Development and Validation. JMIR bioinformatics and biotechnology. 2024;5:e56538. doi:10.2196/56538Google ScholarPubMedDOI
Emdin CA, Khera AV, Aragam K, et al. DNA Sequence Variation in Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. Diabetes. 2019;68(1):226-234. doi:10.2337/db18-0857Google ScholarPubMedDOI
de Boer CG, Ray JP, Hacohen N, Regev A. MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biol. 2020;21(1):134. doi:10.1186/s13059-020-02046-8Google ScholarPubMedDOI
Chen RJ, Lu MY, Williamson DFK, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022;40(8):865-878.e6. doi:10.1016/j.ccell.2022.07.004Google ScholarPubMedDOI
Filby A, Carpenter AE. A New Image for Cell Sorting. N Engl J Med. 2022;386(18):1755-1758. doi:10.1056/NEJMcibr2200971Google ScholarPubMedDOI
Chow YL, Singh S, Carpenter AE, Way GP. Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic. PLoS Comput Biol. 2022;18(2):e1009888. doi:10.1371/journal.pcbi.1009888Google ScholarPubMedDOI
Bodea CA, Mitchell AA, Bloemendal A, Day-Williams AG, Runz H, Sunyaev SR. PINES: phenotype-informed tissue weighting improves prediction of pathogenic noncoding variants. Genome Biol. 2018;19(1):173. doi:10.1186/s13059-018-1546-6Google ScholarPubMedDOI
Mohanty AK, Vuzman D, Francioli L, et al. novoCaller: a Bayesian network approach for de novo variant calling from pedigree and population sequence data. Bioinformatics. 2019;35(7):1174-1180. doi:10.1093/bioinformatics/bty749Google ScholarPubMedDOI
Tan L, Xing D, Chang CH, Li H, Xie S. Three-dimensional genome structures of single diploid human cells. Science. 2018;361(6405):924-928. doi:10.1126/science.aat5641Google ScholarPubMedDOI
Enache OM, Lahr DL, Natoli TE, et al. The GCTx format and cmap{Py, R, M, J} packages: resources for optimized storage and integrated traversal of annotated dense matrices. Bioinformatics. 2019;35(8):1427-1429. doi:10.1093/bioinformatics/bty784Google ScholarPubMedDOI