1.
Do BT, Hsu PP, Vermeulen SY, et al. Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress. Developmental cell. 2024. doi:10.1016/j.devcel.2024.05.010.
1.
Cox AG, Tsomides A, Yimlamai D, et al. Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J. 2018;37(22). doi:10.15252/embj.2018100294.
1.
Herrera KNG, Zaganjor E, Ishikawa Y, et al. Small-Molecule Screen Identifies De Novo Nucleotide Synthesis as a Vulnerability of Cells Lacking SIRT3. Cell Rep. 2018;22(8):1945-1955. doi:10.1016/j.celrep.2018.01.076.
1.
Choudhary A, Kamer KJ, Powner MW, Sutherland JD, Raines RT. A stereoelectronic effect in prebiotic nucleotide synthesis. ACS Chem Biol. 2010;5(7):655-7. doi:10.1021/cb100093g.
1.
Fekete E, Flipphi M, Ág N, et al. A mechanism for a single nucleotide intron shift. Nucleic Acids Res. 2017;45(15):9085-9092. doi:10.1093/nar/gkx520.
1.
Kanarek N, Keys HR, Cantor JR, et al. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature. 2018;559(7715):632-636. doi:10.1038/s41586-018-0316-7.
1.
Zhang S, Samocha KE, Rivas MA, et al. Base-specific mutational intolerance near splice sites clarifies the role of nonessential splice nucleotides. Genome Res. 2018;28(7):968-974. doi:10.1101/gr.231902.117.
1.
Gu H, Bock C, Mikkelsen TS, et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods. 2010;7(2):133-6. doi:10.1038/nmeth.1414.
1.
Rhee EP, Souza A, Farrell L, et al. Metabolite profiling identifies markers of uremia. J Am Soc Nephrol. 2010;21(6):1041-1051. doi:10.1681/ASN.2009111132.
1.
Washietl S, Hofacker IL, Stadler PF, Kellis M. RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res. 2012;40(10):4261-72. doi:10.1093/nar/gks009.