Tome-Garcia J, Erfani P, Nudelman G, et al. Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun. 2018;9(1):4020. doi:10.1038/s41467-018-06258-2PubMedGoogle ScholarDOI
Younger ST, Rinn JL. p53 regulates enhancer accessibility and activity in response to DNA damage. Nucleic Acids Res. 2017;45(17):9889-9900. doi:10.1093/nar/gkx577PubMedGoogle ScholarDOI
Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi:10.1038/nature26155PubMedGoogle ScholarDOI
Kheradpour P, Kellis M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 2014;42(5):2976-87. doi:10.1093/nar/gkt1249PubMedGoogle ScholarDOI
Slattery M, Ma L, Spokony RF, et al. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster. Genome Res. 2014;24(7):1224-35. doi:10.1101/gr.168807.113DOIPubMedGoogle Scholar
1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65. doi:10.1038/nature11632PubMedGoogle ScholarDOI
Engreitz JM, Sirokman K, McDonel P, et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell. 2014;159(1):188-99. doi:10.1016/j.cell.2014.08.018PubMedGoogle ScholarDOI
Farh KKH, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337-43. doi:10.1038/nature13835PubMedGoogle ScholarDOI
Krebs W, Schmidt SV, Goren A, et al. Optimization of transcription factor binding map accuracy utilizing knockout-mouse models. Nucleic Acids Res. 2014;42(21):13051-60. doi:10.1093/nar/gku1078PubMedGoogle ScholarDOI
Minch KJ, Rustad TR, Peterson EJR, et al. The DNA-binding network of Mycobacterium tuberculosis. Nat Commun. 2015;6:5829. doi:10.1038/ncomms6829PubMedGoogle ScholarDOI