1.
Yousri NA, Bayoumy K, Elhaq WG, et al. Large Scale Metabolic Profiling identifies Novel Steroids linked to Rheumatoid Arthritis. Sci Rep. 2017;7(1):9137. doi:10.1038/s41598-017-05439-1.
1.
Margolin AA, Ong S-E, Schenone M, et al. Empirical Bayes analysis of quantitative proteomics experiments. PLoS One. 2009;4(10):e7454. doi:10.1371/journal.pone.0007454.
1.
Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA. PEPPeR, a platform for experimental proteomic pattern recognition. Mol Cell Proteomics. 2006;5(10):1927-41. doi:10.1074/mcp.M600222-MCP200.
1.
Ho HJ, Lin TI, Chang HH, Haase SB, Huang S, Pyne S. Parametric modeling of cellular state transitions as measured with flow cytometry. BMC Bioinformatics. 2012;13 Suppl 5:S5. doi:10.1186/1471-2105-13-S5-S5.
1.
Järvstråt L, Johansson M, Gullberg U, Nilsson B. Ultranet: efficient solver for the sparse inverse covariance selection problem in gene network modeling. Bioinformatics. 2013;29(4):511-2. doi:10.1093/bioinformatics/bts717.
1.
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. J Biomol Screen. 2014;19(5):640-50. doi:10.1177/1087057114528537.
1.
Sul JH, Raj T, de Jong S, et al. Accurate and fast multiple-testing correction in eQTL studies. Am J Hum Genet. 2015;96(6):857-68. doi:10.1016/j.ajhg.2015.04.012.
1.
Kruglyak L, Lander ES. A nonparametric approach for mapping quantitative trait loci. Genetics. 1995;139(3):1421-8.