Hedreen JC, Berretta S, White CL Iii. Postmortem neuropathology in early Huntington disease. Journal of neuropathology and experimental neurology. 2024. doi:10.1093/jnen/nlae022Google ScholarPubMedDOI
Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, et al. Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport. Neuron. 2017;94(1):48-57.e4. doi:10.1016/j.neuron.2017.03.027Google ScholarPubMedDOI
Wallace ML, Saunders A, Huang KW, et al. Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron. 2017;94(1):138-152.e5. doi:10.1016/j.neuron.2017.03.017Google ScholarPubMedDOI
Pirhaji L, Milani P, Dalin S, et al. Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nat Commun. 2017;8(1):623. doi:10.1038/s41467-017-00353-6PubMedDOIGoogle Scholar
Peça J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437-42. doi:10.1038/nature09965PubMedDOIGoogle Scholar
Shema R, Kulicke R, Cowley GS, Stein R, Root DE, Heiman M. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease. Proc Natl Acad Sci U S A. 2015;112(1):268-72. doi:10.1073/pnas.1417231112PubMedDOIGoogle Scholar
Mei Y, Monteiro P, Zhou Y, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530(7591):481-4. doi:10.1038/nature16971Google ScholarPubMedDOI