1.
Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018;10(1):93. doi:10.1186/s13073-018-0605-7.
1.
Iorgulescu B, Braun D, Oliveira G, Keskin DB, Wu CJ. Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med. 2018;10(1):87. doi:10.1186/s13073-018-0598-2.
1.
Sinha R, Ahsan H, Blaser M, et al. Next steps in studying the human microbiome and health in prospective studies, Bethesda, MD, May 16-17, 2017. Microbiome. 2018;6(1):210. doi:10.1186/s40168-018-0596-z.
1.
Dubrot J, Du PP, Lane-Reticker SK, et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat Immunol. 2022;23(10):1495-1506. doi:10.1038/s41590-022-01315-x.
1.
Chen RJ, Lu MY, Williamson DFK, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022;40(8):865-878.e6. doi:10.1016/j.ccell.2022.07.004.
1.
Grishin D, Gusev A. Allelic imbalance of chromatin accessibility in cancer identifies candidate causal risk variants and their mechanisms. Nat Genet. 2022;54(6):837-849. doi:10.1038/s41588-022-01075-2.
1.
Stewart C, Leshchiner I, Hess J, Getz G. Comment on "DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification". Science. 2018;361(6409). doi:10.1126/science.aas9824.
1.
Korkut A, Zaidi S, Kanchi RS, et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst. 2018;7(4):422-437.e7. doi:10.1016/j.cels.2018.08.010.
1.
Vazquez F, Sellers WR. Are CRISPR Screens Providing the Next Generation of Therapeutic Targets?. Cancer Res. 2021;81(23):5806-5809. doi:10.1158/0008-5472.CAN-21-1784.
1.
Ito T, Young MJ, Li R, et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat Genet. 2021;53(12):1664-1672. doi:10.1038/s41588-021-00967-z.