Postek W, Staśkiewicz K, Lilja E, Wacław B. Substrate geometry affects population dynamics in a bacterial biofilm. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(17):e2315361121. doi:10.1073/pnas.2315361121DOIPubMedGoogle Scholar
Rabe DC, Ho U, Choudhury A, et al. Aryl-diazonium salts offer a rapid and cost-efficient method to functionalize plastic microfluidic devices for increased immunoaffinity capture. Advanced materials technologies. 2023;8(16). doi:10.1002/admt.202300210DOIPubMedGoogle Scholar
McCue C, Atari A, Parks S, Tseng YY, Varanasi KK. Reducing Cancer Cell Adhesion using Microtextured Surfaces. Small (Weinheim an der Bergstrasse, Germany). 2023:e2302401. doi:10.1002/smll.202302401DOIPubMedGoogle Scholar
Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell ’omics’ with microfluidic devices. Nat Rev Genet. 2017;18(6):345-361. doi:10.1038/nrg.2017.15DOIPubMedGoogle Scholar
Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. Elife. 2017;6. doi:10.7554/eLife.26580DOIPubMedGoogle Scholar
Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216-20. doi:10.1126/science.1253533DOIPubMedGoogle Scholar
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760-72. doi:10.1038/nbt.2989DOIPubMedGoogle Scholar
Rotem A, Ram O, Shoresh N, et al. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics. PLoS One. 2015;10(5):e0116328. doi:10.1371/journal.pone.0116328DOIPubMedGoogle Scholar
Ozkumur AY, Goods BA, Love C. Development of a High-Throughput Functional Screen Using Nanowell-Assisted Cell Patterning. Small. 2015;11(36):4643-50. doi:10.1002/smll.201500674DOIPubMedGoogle Scholar