1.
Kimmerling RJ, Prakadan SM, Gupta AJ, et al. Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol. 2018;19(1):207. doi:10.1186/s13059-018-1576-0.
1.
Li J, Feng J, Ma L, Núñez C de la F, Gölz G, Lu X. Effects of meat juice on biofilm formation of Campylobacter and Salmonella. Int J Food Microbiol. 2017;253:20-28. doi:10.1016/j.ijfoodmicro.2017.04.013.
1.
Kim M, Wu L, Kim B, Hung DT, Han J. Continuous and High-Throughput Electromechanical Lysis of Bacterial Pathogens Using Ion Concentration Polarization. Anal Chem. 2018;90(1):872-880. doi:10.1021/acs.analchem.7b03746.
1.
Choi K, Ryu H, Siddle KJ, et al. Negative Selection by Spiral Inertial Microfluidics Improves Viral Recovery and Sequencing from Blood. Anal Chem. 2018;90(7):4657-4662. doi:10.1021/acs.analchem.7b05200.
1.
Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510(7505):363-9. doi:10.1038/nature13437.
1.
Macosko EZ, Basu A, Satija R, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202-14. doi:10.1016/j.cell.2015.05.002.
1.
Wadsworth MH, Hughes TK, Shalek AK. Marrying microfluidics and microwells for parallel, high-throughput single-cell genomics. Genome Biol. 2015;16:129. doi:10.1186/s13059-015-0695-0.
1.
Paull D, Sevilla A, Zhou H, et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods. 2015;12(9):885-92. doi:10.1038/nmeth.3507.
1.
Kimmerling RJ, Szeto GL, Li JW, et al. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat Commun. 2016;7:10220. doi:10.1038/ncomms10220.
1.
Rotem A, Ram O, Shoresh N, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 2015;33(11):1165-72. doi:10.1038/nbt.3383.