1.
Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A. 2018;115(38):9545-9550. doi:10.1073/pnas.1811727115.
1.
Shee K, Jiang A, Varn FS, et al. Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER breast cancer. FASEB J. 2019;33(2):1644-1657. doi:10.1096/fj.201801241R.
1.
Wolfson RL, Sabatini DM. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab. 2017;26(2):301-309. doi:10.1016/j.cmet.2017.07.001.
1.
Karmaus PWF, Herrada AA, Guy C, et al. Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated myelopoiesis. J Exp Med. 2017;214(9):2629-2647. doi:10.1084/jem.20161855.
1.
Bove RM, Patrick E, Aubin CM, et al. Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS One. 2018;13(7):e0199073. doi:10.1371/journal.pone.0199073.
1.
Newton RH, Shrestha S, Sullivan JM, et al. Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat Immunol. 2018;19(8):838-848. doi:10.1038/s41590-018-0157-4.
1.
Wyant GA, Abu-Remaileh M, Wolfson RL, et al. mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell. 2017;171(3):642-654.e12. doi:10.1016/j.cell.2017.09.046.
1.
Shen K, Choe A, Sabatini DM. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Mol Cell. 2017;68(3):552-565.e8. doi:10.1016/j.molcel.2017.09.026.
1.
Abu-Remaileh M, Wyant GA, Kim C, et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science. 2017;358(6364):807-813. doi:10.1126/science.aan6298.
1.
Sabatini DM. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc Natl Acad Sci U S A. 2017;114(45):11818-11825. doi:10.1073/pnas.1716173114.