Mehr AP, Tran MT, Ralto KM, et al. De novo NAD biosynthetic impairment in acute kidney injury in humans. Nat Med. 2018;24(9):1351-1359. doi:10.1038/s41591-018-0138-zPubMedDOIGoogle Scholar
Marini S, Anderson CD, Rosand J. Genetics of Cerebral Small Vessel Disease. Stroke. 2020;51(1):12-20. doi:10.1161/STROKEAHA.119.024151PubMedDOIGoogle Scholar
Smith G, Melander O, Lövkvist H, et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ Cardiovasc Genet. 2009;2(2):159-64. doi:10.1161/CIRCGENETICS.108.835173PubMedDOIGoogle Scholar
Johnson CA, Hatfield M, Pulido JS. Retinal vasculopathy in a family with autosomal dominant dyskeratosis congenita. Ophthalmic Genet. 2009;30(4):181-4. doi:10.3109/13816810903148012PubMedDOIGoogle Scholar
Holliday EG, Traylor M, Malik R, et al. Genetic overlap between diagnostic subtypes of ischemic stroke. Stroke. 2015;46(3):615-9. doi:10.1161/STROKEAHA.114.007930PubMedDOIGoogle Scholar
Kim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 2015;520(7547):363-7. doi:10.1038/nature14363PubMedDOIGoogle Scholar
Olenchock BA, Moslehi J, Baik AH, et al. EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection. Cell. 2016;164(5):884-95. doi:10.1016/j.cell.2016.02.006PubMedDOIGoogle Scholar
Tran MT, Zsengeller ZK, Berg AH, et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528-32. doi:10.1038/nature17184PubMedDOIGoogle Scholar