Billings LK, Jablonski KA, Warner S, et al. Variation in Maturity-Onset Diabetes of the Young Genes Influence Response to Interventions for Diabetes Prevention. J Clin Endocrinol Metab. 2017;102(8):2678-2689. doi:10.1210/jc.2016-3429PubMedDOIGoogle Scholar
Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579-89. doi:10.1038/ng.609PubMedDOIGoogle Scholar
Winckler W, Weedon MN, Graham RR, et al. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes. 2007;56(3):685-93. doi:10.2337/db06-0202PubMedDOIGoogle Scholar
Flannick J, Beer NL, Bick AG, et al. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet. 2013;45(11):1380-5. doi:10.1038/ng.2794PubMedDOIGoogle Scholar
Consortium STD 2, Estrada K, Aukrust I, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305-14. doi:10.1001/jama.2014.6511PubMedDOIGoogle Scholar
Schick UM, Auer PL, Bis JC, et al. Association of exome sequences with plasma C-reactive protein levels in >9000 participants. Hum Mol Genet. 2015;24(2):559-71. doi:10.1093/hmg/ddu450PubMedDOIGoogle Scholar
Yi F, Pereira L, Hoffman JA, et al. Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol. 2011;13(7):762-70. doi:10.1038/ncb2283PubMedDOIGoogle Scholar