Pineda S, Lee H, Ulloa-Navas MJ, et al. Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD. Cell. 2024. doi:10.1016/j.cell.2024.02.031PubMedDOIGoogle Scholar
Kaivola K, Chia R, Ding J, et al. Genome-wide structural variant analysis identifies risk loci for non-Alzheimer’s dementias. Cell genomics. 2023;3(6):100316. doi:10.1016/j.xgen.2023.100316PubMedGoogle ScholarDOI
Conlon EG, Fagegaltier D, Agius P, et al. Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. Elife. 2018;7. doi:10.7554/eLife.37754PubMedGoogle ScholarDOI
Seo J, Kritskiy O, Watson A, et al. Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia. J Neurosci. 2017;37(41):9917-9924. doi:10.1523/JNEUROSCI.0621-17.2017PubMedDOIGoogle Scholar
Fay MM, Anderson PJ, Ivanov P. ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells. Cell Rep. 2017;21(12):3573-3584. doi:10.1016/j.celrep.2017.11.093PubMedDOIGoogle Scholar
Tabet R, Schaeffer L, Freyermuth F, et al. CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat Commun. 2018;9(1):152. doi:10.1038/s41467-017-02643-5PubMedDOIGoogle Scholar
Nguyen AD, Nguyen TA, Zhang J, et al. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A. 2018;115(12):E2849-E2858. doi:10.1073/pnas.1722344115Google ScholarPubMedDOI