1.
Iyer KR, Camara K, Daniel-Ivad M, et al. An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nat Commun. 2020;11(1):6429. doi:10.1038/s41467-020-20183-3.
1.
Bing J, Hu T, Zheng Q, Muñoz JF, Cuomo CA, Huang G. Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother. 2020;65(1). doi:10.1128/AAC.01466-20.
1.
Youngsaye W, Dockendorff C, Vincent B, et al. Overcoming fluconazole resistance in Candida albicans clinical isolates with tetracyclic indoles. Bioorg Med Chem Lett. 2012;22(9):3362-5. doi:10.1016/j.bmcl.2012.02.035.
1.
Youngsaye W, Vincent B, Hartland CL, et al. Piperazinyl quinolines as chemosensitizers to increase fluconazole susceptibility of Candida albicans clinical isolates. Bioorg Med Chem Lett. 2011;21(18):5502-5. doi:10.1016/j.bmcl.2011.06.105.
1.
Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol. 2010;5(3):321-32. doi:10.1021/cb900243b.
1.
Shapiro RS, Chavez A, Porter CBM, et al. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nat Microbiol. 2018;3(1):73-82. doi:10.1038/s41564-017-0043-0.
1.
Rybak JM, Muñoz JF, Barker KS, et al. Mutations in TAC1B: a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio. 2020;11(3). doi:10.1128/mBio.00365-20.
1.
Ford CB, Funt JM, Abbey D, et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife. 2015;4:e00662. doi:10.7554/eLife.00662.