Rees MG, Seashore-Ludlow B, Clemons PA. Computational Analyses Connect Small-Molecule Sensitivity to Cellular Features Using Large Panels of Cancer Cell Lines. Methods Mol Biol. 2019;1888:233-254. doi:10.1007/978-1-4939-8891-4_14.
Fitipaldi H, McCarthy MI, Florez JC, Franks PW. A Global Overview of Precision Medicine in Type 2 Diabetes. Diabetes. 2018;67(10):1911-1922. doi:10.2337/dbi17-0045.
Pevzner PA, Mulyukov Z, Dančík V, Tang CL. Efficiency of database search for identification of mutated and modified proteins via mass spectrometry. Genome Res. 2001;11(2):290-9. doi:10.1101/gr.154101.
Landry LG, Ali N, Williams DR, Rehm HL, Bonham VL. Lack Of Diversity In Genomic Databases Is A Barrier To Translating Precision Medicine Research Into Practice. Health Aff (Millwood). 2018;37(5):780-785. doi:10.1377/hlthaff.2017.1595.
Dančík V, Addona TA, Clauser KR, Vath JE, Pevzner PA. De novo peptide sequencing via tandem mass spectrometry. J Comput Biol. 1999;6(3-4):327-42. doi:10.1089/106652799318300.
Hsu Y-HH, Churchhouse C, Pers TH, et al. PAIRUP-MS: Pathway analysis and imputation to relate unknowns in profiles from mass spectrometry-based metabolite data. PLoS Comput Biol. 2019;15(1):e1006734. doi:10.1371/journal.pcbi.1006734.
Lounkine E, Wawer M, Wassermann AM, Bajorath J. SARANEA: a freely available program to mine structure-activity and structure-selectivity relationship information in compound data sets. J Chem Inf Model. 2010;50(1):68-78. doi:10.1021/ci900416a.
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581-1592. doi:10.1016/j.cell.2018.05.015.
Wawer M, Peltason L, Bajorath J. Elucidation of structure-activity relationship pathways in biological screening data. J Med Chem. 2009;52(4):1075-80. doi:10.1021/jm8014102.
Emdin CA, Klarin D, Natarajan P, et al. Genetic Variation at the Sulfonylurea Receptor, Type 2 Diabetes, and Coronary Heart Disease. Diabetes. 2017;66(8):2310-2315. doi:10.2337/db17-0149.