1.
Kany S, Rämö JT, Friedman SF, et al. Integrating Clinical, Genetic, and Electrocardiogram-Based Artificial Intelligence to Estimate Risk of Incident Atrial Fibrillation. medRxiv : the preprint server for health sciences. 2024. doi:10.1101/2024.08.13.24311944.
1.
Honigberg MC, Faaborg-Andersen CC. Integrating Indices of Genetic Risk for Cardiovascular Disease. JACC. Advances. 2023;2(7):100568. doi:10.1016/j.jacadv.2023.100568.
1.
Natarajan P, Bellomo TR. Clonal Hematopoiesis Among Patients With Asymptomatic Carotid Stenosis Compounds Risk of Cardiovascular Death. Journal of the American College of Cardiology. 2024;83(18):1728-1730. doi:10.1016/j.jacc.2024.03.389.
1.
Jurgens SJ, Funke B. Towards Proactive "Sequence-First" Risk Prediction for Inherited Cardiomyopathies. JACC. Heart failure. 2023. doi:10.1016/j.jchf.2023.08.031.
1.
Khurshid S, Churchill TW, Diamant N, et al. Deep learned representations of the resting 12-lead electrocardiogram to predict V̇O2 at peak exercise. European journal of preventive cardiology. 2023. doi:10.1093/eurjpc/zwad321.
1.
Weng L-C, Khurshid S, Gunn S, et al. Clinical and Genetic Atrial Fibrillation Risk and Discrimination of Cardioembolic From Noncardioembolic Stroke. Stroke. 2023;54(7):1777-1785. doi:10.1161/STROKEAHA.122.041533.
1.
Cho SMJ, Koyama S, Honigberg MC, et al. Genetic, sociodemographic, lifestyle, and clinical risk factors of recurrent coronary artery disease events: a population-based cohort study. European heart journal. 2023. doi:10.1093/eurheartj/ehad380.
1.
Pipilas D, Friedman SF, Khurshid S. The Use of Artificial Intelligence to Predict the Development of Atrial Fibrillation. Current cardiology reports. 2023;25(5):381-389. doi:10.1007/s11886-023-01859-w.