Kobayashi T, Young C, Zhou W, Rhee EP. Reduced glycolysis links resting zone chondrocyte proliferation in the growth plate. bioRxiv : the preprint server for biology. 2023. doi:10.1101/2023.01.18.524550PubMedDOIGoogle Scholar
Krishnan Y, Rees HA, Rossitto CP, et al. Green fluorescent proteins engineered for cartilage-targeted drug delivery: Insights for transport into highly charged avascular tissues. Biomaterials. 2018;183:218-233. doi:10.1016/j.biomaterials.2018.08.050PubMedDOIGoogle Scholar
Marsich E, Mozetic P, Ortolani F, et al. Galectin-1 in cartilage: expression, influence on chondrocyte growth and interaction with ECM components. Matrix Biol. 2008;27(6):513-25. doi:10.1016/j.matbio.2008.04.003PubMedDOIGoogle Scholar
Marcon P, Marsich E, Vetere A, et al. The role of Galectin-1 in the interaction between chondrocytes and a lactose-modified chitosan. Biomaterials. 2005;26(24):4975-84. doi:10.1016/j.biomaterials.2005.01.044PubMedDOIGoogle Scholar
Donati I, Stredanska S, Silvestrini G, et al. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials. 2005;26(9):987-98. doi:10.1016/j.biomaterials.2004.04.015PubMedDOIGoogle Scholar
Guo M, Liu Z, Willen J, et al. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height. Elife. 2017;6. doi:10.7554/eLife.29329PubMedDOIGoogle Scholar
Maass PG, Barutcu R, Shechner DM, Weiner CL, Melé M, Rinn JL. Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat Struct Mol Biol. 2018;25(2):176-184. doi:10.1038/s41594-017-0015-3PubMedDOIGoogle Scholar
Wagner BK, Schreiber SL. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol. 2016;23(1):3-9. doi:10.1016/j.chembiol.2015.11.008PubMedDOIGoogle Scholar