1.
Rodriguez-Broadbent H, Law PJ, Sud A, et al. Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer. Int J Cancer. 2017;140(12):2701-2708. doi:10.1002/ijc.30709.
1.
Nikkola E, Ko A, Alvarez M, et al. Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family. Atherosclerosis. 2017;264:58-66. doi:10.1016/j.atherosclerosis.2017.07.024.
1.
Newton RH, Shrestha S, Sullivan JM, et al. Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat Immunol. 2018;19(8):838-848. doi:10.1038/s41590-018-0157-4.
1.
Widenmaier SB, Snyder NA, Nguyen TB, et al. NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis. Cell. 2017;171(5):1094-1109.e15. doi:10.1016/j.cell.2017.10.003.
1.
Cefalù AB, Pirruccello JP, Noto D, et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arterioscler Thromb Vasc Biol. 2013;33(8):2021-5. doi:10.1161/ATVBAHA.112.301101.
1.
Stitziel NO, Fouchier SW, Sjouke B, et al. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2013;33(12):2909-14. doi:10.1161/ATVBAHA.113.302426.
1.
Service SK, Teslovich TM, Fuchsberger C, et al. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. PLoS Genet. 2014;10(1):e1004147. doi:10.1371/journal.pgen.1004147.
1.
Ran A, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186-91. doi:10.1038/nature14299.
1.
Kalim S, Clish CB, Deferio JJ, et al. Cross-sectional examination of metabolites and metabolic phenotypes in uremia. BMC Nephrol. 2015;16:98. doi:10.1186/s12882-015-0100-y.
1.
Wang C, Yosef N, Gaublomme J, et al. CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell. 2015;163(6):1413-27. doi:10.1016/j.cell.2015.10.068.