1.
Mekhdjian AH, Kai F, Rubashkin MG, et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell. 2017;28(11):1467-1488. doi:10.1091/mbc.E16-09-0654.
1.
Golfmann K, Meder L, Koker M, et al. Synergistic anti-angiogenic treatment effects by dual FGFR1 and VEGFR1 inhibition in FGFR1-amplified breast cancer. Oncogene. 2018;37(42):5682-5693. doi:10.1038/s41388-018-0380-3.
1.
Banerji S, Cibulskis K, Rangel-Escareño C, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405-9. doi:10.1038/nature11154.
1.
Qin Y, McAllister SS. SPSB1 may have MET its match during breast cancer recurrence. Cancer Discov. 2014;4(7):760-1. doi:10.1158/2159-8290.CD-14-0505.
1.
Day FR, Ruth KS, Thompson DJ, et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet. 2015;47(11):1294-303. doi:10.1038/ng.3412.
1.
Waldron L, Ogino S, Hoshida Y, et al. Expression profiling of archival tumors for long-term health studies. Clin Cancer Res. 2012;18(22):6136-46. doi:10.1158/1078-0432.CCR-12-1915.
1.
Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216-20. doi:10.1126/science.1253533.
1.
Rees MG, Seashore-Ludlow B, Cheah JH, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12(2):109-16. doi:10.1038/nchembio.1986.
1.
Kim SY, Dunn IF, Firestein R, et al. CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One. 2010;5(2):e8979. doi:10.1371/journal.pone.0008979.
1.
Li Q, Seo J-H, Stranger B, et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell. 2013;152(3):633-41. doi:10.1016/j.cell.2012.12.034.