1.
Xu J, Liu D, Hassan A, et al. Evaluation of imputation performance of multiple reference panels in a Pakistani population. medRxiv : the preprint server for health sciences. 2023. doi:10.1101/2023.12.22.23300448.
1.
Kany S, Schnabel RB. [Genetic basis of atrial fibrillation-on the road to precision medicine]. Herzschrittmachertherapie & Elektrophysiologie. 2023. doi:10.1007/s00399-023-00974-z.
1.
Ajufo EC, Aragam KG. Improving Polygenic Risk Scores for Coronary Artery Disease: What Helps and by How Much?. JACC. Basic to translational science. 2023;8(12):1500-1502. doi:10.1016/j.jacbts.2023.10.005.
1.
Lai R-Y, Su M-H, Lin Y-F, et al. Relationship between mood disorders and substance involvement and the shared genetic liabilities: A population-based study in Taiwan. Journal of affective disorders. 2023. doi:10.1016/j.jad.2023.10.141.
1.
Wang Y, Kanai M, Tan T, et al. Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology. Cell genomics. 2023;3(10):100408. doi:10.1016/j.xgen.2023.100408.
1.
Weng L-C, Khurshid S, Gunn S, et al. Clinical and Genetic Atrial Fibrillation Risk and Discrimination of Cardioembolic From Noncardioembolic Stroke. Stroke. 2023;54(7):1777-1785. doi:10.1161/STROKEAHA.122.041533.
1.
Bi W, Zhou W, Zhang P, Sun Y, Yue W, Lee S. Scalable mixed model methods for set-based association studies on large-scale categorical data analysis and its application to exome-sequencing data in UK Biobank. American journal of human genetics. 2023;110(5):762-773. doi:10.1016/j.ajhg.2023.03.010.