
1

Grammar-based compression
of DNA sequences

Neva Cherniavsky

Richard Ladner

2

Background
• Motivation for DNA compression

– DNA sequences are large
• Single sequences are on the order of 100M

symbols
• Take up a lot of space, would like to compress

them in an efficient (O(n)) way.

– DNA structure is crucial in understanding
its functionality
• Use hierarchical modeling to identify interesting

portions of the DNA sequence

3

Caveats

• DNA is notoriously difficult to compress
– Only 4 symbols, so the baseline to beat is

2 bits per symbol

• The most successful method averages
only 13% compression (10% w/o outlier)

• Most standard compressors expand it
(gzip, bzip2, etc.)

4

Grammar compression
• Grammar-based compression successful in

many domains
• Uses a context-free grammar to represent a

string
• The grammar is inferred from the string.
• Language of the grammar consists of only

that string.
• If there is structure and repetition in the string

then the grammar may be very small
compared to the original string.

5

Overview of Grammar Compression

Grammar
inference

String x

Context-free grammar

Grammar
encoding

Symbol stream

Entropy coder

Compressed
bit stream

Grammar
derivation

Context-free grammar

Grammar
decoding

Symbol stream

Entropy decoder

 x

Encoder Decoder

6

Our contributions

• Apply grammar-based compression to a
new domain: DNA sequences

• Exploit hidden structure of DNA to
improve grammar inference

• Optimize symbol stream design and
entropy coding for the grammar

• Improve the efficiency of the grammar

2

7

Outline
• Introduction
• Grammar inference

– Sequitur
– DNA structure
– DNA Sequitur

• Grammar encoding
• Entropy coding
• Initial experimental results
• Grammar improvement
• Conclusion

8

Grammar inference

• Sequitur: Nevill-Manning and Witten,
1996.

• Elegant, online, linear-time algorithm

• Infers grammar as it reads the string

• The language of the grammar is that
string

9

Sequitur Grammar Inference
• Digram Uniqueness:

– no pair of adjacent symbols (digram) appears
more than once in the grammar.

• Rule Utility:
– Every production rule is used more than once.

• These two principles are maintained as
invariants while inferring a grammar for the
input string.

10

Sequitur Example (1)
acgtcgacgt

S → a

Digrams

11

Sequitur Example (2)
acgtcgacgt

S → ac

Digrams
ac

12

Sequitur Example (3)
acgtcgacgt

S → acg
cg

ac

Digrams

3

13

Sequitur Example (4)
acgtcgacgt

S → acgt

gt

cg

ac

Digrams

14

Sequitur Example (5)
acgtcgacgt

S → acgtc

tc

gt

cg

ac

Digrams

15

Sequitur Example (6)
acgtcgacgt

S → acgtcg

tc

gt

cg

ac

Digrams

Enforce digram uniqueness.
cg occurs twice.
Create new rule A → cg.

16

Sequitur Example (7)
acgtcgacgt

S → aAtA
A → cg

tA

At

cg

aA

Digrams

17

Sequitur Example (8)
acgtcgacgt

S → aAtAa
A → cg

Aa

tA

At

cg

aA

Digrams

18

Sequitur Example (9)
acgtcgacgt

S → aAtAac
A → cg

ac

Aa

tA

At

cg

aA

Digrams

4

19

Sequitur Example (10)
acgtcgacgt

S → aAtAacg
A → cg

ac

Aa

tA

At

cg

aA

Digrams

Enforce digram uniqueness.
cg occurs twice.
Use existing rule A → cg.

20

Sequitur Example (11)
acgtcgacgt

S → aAtAaA
A → cg

Aa

tA

At

cg

aA

Digrams

Enforce digram uniqueness.
aA occurs twice.
Create new rule B → aA.

21

Sequitur Example (12)
acgtcgacgt

S → BtAB
A → cg
B → aA

AB

tA

Bt

cg

aA

Digrams

22

Sequitur Example (13)
acgtcgacgt

S → BtABt
A → cg
B → aA

AB

tA

Bt

cg

aA

Digrams

Enforce digram uniqueness.
Bt occurs twice.
Create new rule C → Bt.

23

Sequitur Example (14)
acgtcgacgt

S → CAC
A → cg
B → aA
C → Bt

AC

CA

Bt

cg

aA

Digrams

Enforce rule utility.
Bt occurs only once.
Remove B → aA.

24

Sequitur Example (15)
acgtcgacgt

S → CAC
A → cg
C → aAt

AC

CA

At

cg

aA

Digrams

5

25

The Inferred Grammar

S → CAC
A → cg
C → aAt

S

C A C

c ga A t a A t

c g c g

acgtcgacgt

26

Outline
• Introduction
• Grammar inference

– Sequitur
– DNA structure
– DNA Sequitur

• Grammar encoding
• Entropy coding
• Initial experimental results
• Grammar improvement
• Conclusion

27

The Structure of DNA

28

DNA vs. Arbitrary Sequences
• Only four symbols: a, t, g and c
• Each symbol has a complement form

– a’ = t; t’ = a
– c’ = g; g’ = c

• Reverse Complements
– Reverse the string and complement each symbol
– (cat)’ = atg

• Exact repetitions and reverse complement
repetitions appear often in DNA

29

Compressing Reverse
Complements

• For any DNA sequence x and y
 (xy)’ = y’x’

 (x’)’ = x

• Reverse complementing grammar rules
 A → aBCg

 A’ → cC’B’t

 C → aD’E

 C’ → E’Dt

30

DNA Sequitur vs. Sequitur
• We exploit this hidden structure of DNA

• DNA Sequitur recognizes both exact matches
and reverse complements matches
– For every rule that is created, there is an implicit

reverse complement.
 A → ca

 A’ → tg

 B → cA

 B’ → A’g

6

31

DNA Sequitur Constraints
• DNA Digram Uniqueness

– No pair of adjacent symbols can appear
more than once anywhere in the grammar.
A pair is now defined as any of:

 (XY, XY), (XY, Y’X’), (Y’X’, XY), (Y’X’, Y’X’)

• DNA Rule Utility:
– Every production rule or its reverse

complement is used more than once.

32

DNA Sequitur Example (1)
acgtcgacgt

S → a

Digrams
 Implicit
Digrams

33

DNA Sequitur Example (2)
acgtcgacgt

S → ac ac gt

Digrams
 Implicit
Digrams

34

DNA Sequitur Example (3)
acgtcgacgt

S → acg

cgcg

ac gt

Digrams
 Implicit
Digrams

35

DNA Sequitur Example (4)
acgtcgacgt

S → acgt

Enforce digram uniqueness.
gt occurs twice, first as the complement of
ac, and then explicitly.
Create new rule A → ac.

cgcg

ac gt

Digrams
 Implicit
Digrams

36

DNA Sequitur Example (5)
acgtcgacgt

S → AA’
A → ac

AA’AA’

ac gt

Digrams
 Implicit
Digrams

7

37

DNA Sequitur Example (6)
acgtcgacgt

S → AA’c
A → ac

gAA’c

AA’AA’

ac gt

Digrams
 Implicit
Digrams

38

DNA Sequitur Example (7)
acgtcgacgt

S → AA’cg
A → ac

cgcg

gAA’c

AA’AA’

ac gt

Digrams
 Implicit
Digrams

39

DNA Sequitur Example (8)
acgtcgacgt

S → AA’cga
A → ac

tcga

cgcg

gAA’c

AA’AA’

ac gt

Digrams
 Implicit
Digrams

40

DNA Sequitur Example (9)
acgtcgacgt

S → AA’cgac
A → ac

Enforce digram uniqueness.
ac occurs twice.
Use existing rule A → ac.

tcga

cgcg

gAA’c

AA’AA’

ac gt

Digrams
 Implicit
Digrams

41

DNA Sequitur Example (10)
acgtcgacgt

S → AA’cgA
A → ac

Enforce digram uniqueness.
gA occurs twice, first as the complement of
A’c, and then explicitly.
Create new rule B → A’c.

tcga

cgcg

gAA’c

AA’AA’

ac gt

Digrams
 Implicit
Digrams

42

DNA Sequitur Example (11)
acgtcgacgt

S → ABB’
A → ac
B → A’c

BB’BB’

gAA’c

B’A’AB

ac gt

Digrams
 Implicit
Digrams

8

43

DNA Sequitur Example (12)
acgtcgacgt

S → ABB’g
A → ac
B → A’c

cBB’g

BB’BB’

gAA’c

B’A’AB

ac gt

Digrams
 Implicit
Digrams

44

DNA Sequitur Example (13)
acgtcgacgt

S → ABB’gt
A → ac
B → A’c

Enforce digram uniqueness.
gt occurs twice.
Use existing rule A → ac.

cBB’g

BB’BB’

gAA’c

B’A’AB

ac gt

Digrams
 Implicit
Digrams

45

DNA Sequitur Example (14)
acgtcgacgt

S → ABB’A’
A → ac
B → A’c

Enforce digram uniqueness.
AB occurs twice.
Create new rule C → AB.

BB’BB’

gAA’c

B’A’AB

ac gt

Digrams
 Implicit
Digrams

46

DNA Sequitur Example (15)
acgtcgacgt

S → CC’
A → ac
B → A’c
C → AB

Enforce rule utility.
B occurs only once.
Remove B → A’c.

CC’CC’

gAA’c

B’A’AB

ac gt

Digrams
 Implicit
Digrams

47

DNA Sequitur Example (16)
acgtcgacgt

S → CC’
A → ac
C → AA’c

CC’CC’

gAA’c

AA’AA’

ac gt

Digrams
 Implicit
Digrams

48

The Inferred Grammar

S → CAC
A → cg
C → aAt

S

C C’

A A’ c g A A’

a c a c

acgtcgacgt

S

C A C

c ga A t a A t

c g c g

S → CC’
A → ac
C → AA’c

g t g t

9

49

Outline
• Introduction
• Grammar inference
• Grammar encoding

– Simple method
– Marker and LZ77-style methods

• Entropy coding
• Initial experimental results
• Grammar improvement
• Conclusion

50

Overview of Grammar Compression

Grammar
inference

String x

Context-free grammar

Grammar
encoding

Symbol stream

Entropy coder

Compressed
bit stream

Grammar
derivation

Context-free grammar

Grammar
decoding

Symbol stream

Entropy decoder

 x

Encoder Decoder

51

Grammar encoding
• We implemented three versions of

grammar encoding
– A simple version, mainly to use as a

baseline
– A marker method version, first proposed by

Nevill-Manning and Witten, that we
modified for DNA Sequitur (explained next)

– A version based on LZ77 ideas, which
works the best, but is more complicated

52

Basic Encoding a Grammar

S → CC’
A → ac
C → AA’c

 CC’#ac#AA’c

Grammar Send right hand sides of
rules, separated by #

Grammar Code

|Grammar Code| =  )(log)1(2 arrs +−+

r = number of rules
s = sum of right hand sides
a = number in original symbol alphabet

Arithmetically encode to achieve maximal compression

53

Encoding of the Grammar
• Nevill-Manning and Witten suggest a more efficient

encoding of the grammar that uses markers as
pointers
– Send the right hand side of the S production.
– The first time a nonterminal is sent, a marker symbol

followed by its right hand side is transmitted instead.
– The second time a nonterminal is sent as a tuple
 [i,d]

A new production rule is then added to a dictionary.
– Subsequently, the nonterminal is represented by the index of

the production rule.

Offset Length

54

Marker method
S → CC’
A → ac
C → AA’c

Grammar
Use # as the marker symbol.
Add a complement place to
the tuple.

Grammar Code

10

55

Marker method (1)
S → CC’
A → ac
C → AA’c

 #

Grammar
Send the first symbol of S.
This is a rule, so send
marker followed by rhs.

Grammar Code

56

Marker method (2)
S → CC’
A → ac
C → AA’c

 ##

Grammar
Send the first symbol of C.
This is a rule, so send
marker followed by rhs.

Grammar Code

57

Marker method (3)
S → CC’
A → ac
C → AA’c

 ##ac

Grammar
Send rhs of A.

Grammar Code

58

Marker method (4)
S → CC’
A → ac
C → AA’c

 ##ac[1,2,1]

Grammar
Send second symbol of C.
This is the second
appearance of A, so send
tuple.

Grammar Code

Offset
Length

Complement

59

Marker method (5)
S → CC’
A → ac
C → AA’c

 ##ac[1,2,1]c

Grammar
Send last symbol of C.

Grammar Code

60

Marker method (6)
S → CC’
A → ac
C → AA’c

 ##ac[1,2,1]c[0,2,1]

Grammar
Send second symbol of S.
This is the second
appearance of C, so send
tuple.

Grammar Code

Offset Length
Complement

11

61

Marker method summary
S → CC’
A → ac
C → AA’c

 ##ac[1,2,1]c[0,2,1]

Grammar

Grammar Code

Any subsequent appearance of A, A’, C, or C’ would be
sent as the nonterminal index (1, 1’, 2, or 2’).

Any new rule formed would have marker offset 0.

Arithmetically encode to achieve maximal compression.

62

Outline
• Introduction
• Grammar inference
• Grammar encoding
• Entropy coding
• Initial experimental results
• Grammar improvement
• Conclusion

63

Overview of Grammar Compression

Grammar
inference

String x

Context-free grammar

Grammar
encoding

Symbol stream

Entropy coder

Compressed
bit stream

Grammar
derivation

Context-free grammar

Grammar
decoding

Symbol stream

Entropy decoder

 x

Encoder Decoder

64

Entropy Coding
• The symbol stream has many distinct symbols.

• Arithmetic coding is a general technique that takes
advantage of the statistics of the stream to achieve
close to entropy performance.

– Adapts to statistics

– Uses context, if needed

• We treat the symbol stream as a character stream
in a large alphabet and build a custom arithmetic
coder for it.

65

Custom arithmetic encoder
• Two streams

– Arithmetically encode terminals and nonterminals

– Use a fixed prefix code for the tuples

– Use an escape symbol to switch between streams

….ac3’ 5’ [6 g 7’ % …

….001011100010101…

66

Custom arithmetic encoder
• Two streams

– Arithmetically encode terminals and nonterminals

– Use a fixed prefix code for the tuples

– Use an escape symbol to switch between streams

….ac3’ 5’ [6 g 7’ % …

….001011100010101…

12

67

Custom arithmetic encoder
• Two streams

– Arithmetically encode terminals and nonterminals

– Use a fixed prefix code for the tuples

– Use an escape symbol to switch between streams

….ac3’ 5’ [6 g 7’ % …

….001011100010101…

68

Custom arithmetic encoder
• Two streams

– Arithmetically encode terminals and nonterminals

– Use a fixed prefix code for the tuples

– Use an escape symbol to switch between streams

….ac3’ 5’ [6 g 7’ % …

….001011100010101…

69

Custom arithmetic encoder
• Two streams

– Arithmetically encode terminals and nonterminals

– Use a fixed prefix code for the tuples

– Use an escape symbol to switch between streams

….ac3’ 5’ [6 g 7’ % …

….001011100010101…
• Escape symbols differ depending on the

length - usually 2
70

Tuple Lengths in Marker Method

94%

2%
2%

1%1%

2

3

4

5

>5

71

Outline
• Introduction
• Grammar inference
• Grammar encoding
• Entropy coding
• Initial experimental results
• Grammar improvement
• Conclusion

72

Grammar inference results:
Sequitur vs. DNA Sequitur

28723856056040,65441,3034,3734,480191,737

250185282126,84327,1532,9853,077121,024

19518311511422,91023,3732,6162,795100,314

17411334622513,11113,2702,2002,28866,495

138104191610,09910,4131,1631,30838,770

DNA
Seq

SeqDNA
Seq

SeqDNA
Seq

SeqDNA
Seq

Seq

Max
repeats

Longest
Repeat

Length RHSProductionsSequence
length

13

73

Basic Compression Results

0

0.5

1

1.5

2

2.5

Human
dystrophin

Human
growth

Plant
mitochondry

Plant
chloroplast

Vaccinia
virus

B
it

s
p

e
r

sy
m

b
o

l

Sequitur

Marker
method

Bzip2

DNA
Compress

74

Grammar Improvement

• Basic idea: remove inefficiencies in the
grammar

• Two approaches:
– Kieffer-Yang: sound theory, no practical

evaluation until now

– Cost measure: our grammar efficiency
yardstick

75

Kieffer-Yang Improvement
• Kieffer and Yang developed a theoretical

framework for studying these types of
grammars in 2000.
– KY is universal; it achieves entropy in the limit

• Add to Sequitur Reduction Rule 5:
S → AB
A → CD
B → aE
C → ac
D → gt
E → cD

<A> = = acgt

S → AA
A → CD
B → aE
C → ac
D → gt
E → cD

Adding this
constraint

makes Sequitur
universal.

⇒
<C> = ac
<D> = gt
<E> = cgt

76

Implementation of Kieffer-
Yang

S → …E’t…A…aE
A → CD
C → ac
D → gt
E → cD

<A> = = acgt

⇒

S → …B…A…B’
A → CD
B → E’t
C → ab
D → cd
E → bD ……

aEE’t

… …

Digrams
 Implicit
Digrams

• Add a string table that contains the derivation <A> of
rule A

• Before a new rule is formed, check table
• Leads to smaller grammar sizes but can increase

entropy:

77

Implementation of Kieffer-
Yang

• Add a string table that contains the derivation <A> of
rule A

• Before a new rule is formed, check table
• Leads to smaller grammar sizes but can increase

entropy:

S → …E’t…A…aE
A → CD
C → ab
D → cd
E → bD

<A> = = abcd

⇒

S → …B…A…B’
A → CD
B → E’t
C → ab
D → cd
E → bD

78

Implementation of Kieffer-
Yang

• Add a string table that contains the derivation <A> of
rule A

• Before a new rule is formed, check table
• Leads to smaller grammar sizes but can increase

entropy:

S → …E’t…A…aE
A → CD
C → ab
D → cd
E → bD

<A> = = abcd

⇒

S → …A’…A…A
A → CD
C → ab
D → cd
E → bD

14

79

Our cost measure
• Sometimes it is more expensive to code the

rule than send the right-hand side as is
I(s) = information of symbol s
N(s) = # times s appears in the symbol stream
T = total number of symbols in the stream
Let A → x, x = x1…xn. Then:
I(s) = -log2(N(s)/T)

I(x) = ∑ I(xi)

80

Cost measure continued
• The cost of replacing a rule is the

number of time the rule appears times
its information:

R(A) = N(A)I(x) + N(A’)I(x’)

U(A) = I(x) + C + (N(A) - 2)I(A) + N(A’)I(A’)

• The cost of using a rule is the cost of its
right hand side, plus its fixed code cost,
plus the cost of its subsequent
appearances:

81

Total Results

0

0.5

1

1.5

2

2.5

Human
dystrophin

Human
growth

Plant
mitochondry

Plant
chloroplast

Vaccinia
virus

B
it

s
p

e
r

sy
m

b
o

l

Sequitur

Marker
method

Bzip2

Improved

DNA
Compress

82

Conclusions
• We’ve taken a good general

compression technique and tried it on a
new, important domain
– We’ve created a new algorithm that

exploits the structure of DNA to infer better
grammars

– We’ve optimized each step of the grammar
compression process and improved the
final grammar

83

Future Work
• Bottom line: DNA compression is hard.

– Best method for DNA compression not great
(close to simple arithmetic coding)

– Uses inexact matches (i.e., repeat + insert a
character, replace a character, etc)

• Edit grammars could be a good way of
capturing exact and inexact matches
– Grammar rules include A → X[editop]

– [editop] is insertion, replacement, or deletion

84

Questions?

