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Abstract—The primary challenges to enabling real-time two-
way video conferencing on a cell phone are overcoming the
limits of bandwidth, computation and power. The goal of the
MobileASL project is to enable access for people who use
American Sign Language (ASL) to an off-the-shelf mobile phone
through the implementation of real-time mobile video communi-
cation. The enhancement of processor, bandwidth, and power
efficiency is investigated through SIMD optimization, region-
of-interest encoding based on skin detection, video resolution
selection (used to determine the best trade off between frame
rate and spatial resolution), and variable frame rates based on
activity recognition. Our prototype system is able to compress,
transmit, and decode 12-15 frames per second in real-time and
produce intelligible ASL at 30 kbps using a current cellular data
network in the U.S. as well as Wi-Fi. Furthermore, we can achieve
up to 23 extra minutes of talk time, or a 8% power gain over the
battery life of the phone, through our frame dropping technique.

I. INTRODUCTION

There have been a multitude of issues that have prevented
real-time video communication on the mobile phone. Mobile
sign language communication is already available in Japan and
Europe, but regardless of the higher bandwidth 3G network
there, the quality is poor, the videos are jerky, and there is
significant delay. With the advent of mobile phone PDAs
equipped with larger screens and photo/video capture, peo-
ple who communicate with American Sign Language (ASL)
should be able to use these new technologies.

Mobile phone service providers operate wireless networks
using many different wireless communication standards. The
most widely used of these technologies is called the Global
System for Mobile Communications, or GSM. On top of a
GSM network, they operate a data network called the General
Packet Radio Service (GPRS) and an upgrade for faster speeds
called Enhanced Data Rates for GSM Evolution (EDGE),
which can carry data speeds from 35.2 kbps up to 236.8
kbps. Furthermore, they have launched a high-speed network
based on UMTS and High-Speed Downlink Packet Access
(HSDPA), which is commonly known as 3G. Since a video
call is bi-directional, the effective bandwidth is limited by the
uplink. Our project, with its target bit rate of 30 kbps, is well
suited to mobile sign language communication over current
U.S. cellular data networks.

Although various approaches to processing graphics in
personal computers such as high clock frequency, dual cores

and various Single Instruction Multiple Data (SIMD) in-
struction sets have been investigated, computing capability
on mobile phones is still very low because of low clock
frequencies, single cores, and only basic SIMD. In our work,
we utilize assembly optimization to solve the issue of limited
processing power. Second, we implement dynamic region-of-
interest (ROI) coding based on skin detection to reduce the
required bandwidth while keeping the amount of quality and
intelligibility needed for American Sign Language. Third, we
investigate a variable frame rate to prolong the battery life time
by taking advantage of the fact that, for the most part, an ASL
speakers signs when the other person isn’t signing. Building
on previous work[1], [2], we optimized a variable frame rate.
Finally, we designed ASL encoders that are compatible with
the new H.264/AVC compression standard[3] by using x264[4]
at very low bit rates to achieve a high enough frame rate in
real time on the mobile phone.

II. BACKGROUND

MobileASL[5] is a video compression project at the Uni-
versity of Washington and Cornell University[6] with the goal
of making cell phone communication for people who use
sign language a reality in the U.S. Our software runs on the
Windows Mobile operating system. MobileASL is compatible
with the H.264/AVC compression standard and can be decoded
by any H.264 decoder. The x264 Open Source H.264 encoder
was selected because of its fast speed[4], [7], [8], making it
a good choice for compression on low-power devices such
as mobile phones. In [7], x264 showed better quality than
several commercial H.264/AVC encoders. When compared
with the JM reference encoder (version 10.2)[9], x264 (version
0.47.534) was shown to be 50 times faster, while providing bit
rates within 5% for the same PSNR.

A. MobileASL System

Since the Internet Protocol Suite (commonly known as
TCP/IP) is the set of communications protocols used for the
Internet and other similar networks, we designed a lightweight
TCP/IP networking system to enable use of the MobileASL
codec on two different networks: the Wi-Fi network and a
current cellular data network in the U.S. (AT&T).

In our system, we use a light and simple protocol over TCP
for situations needing reliable, ordered transport service which



is call signaling, e.g., connection establishment, connection re-
lease, and connection control such as for packet loss indication
and UDP for video transmission. Fig. 1 shows the TCP/IP
layered architecture, which is assisted by an HTTP protocol
for MobileASL.

Fig. 1. Network Architecture for MobileASL

The HTTP protocol is used to register user information
(such as IP address) to the server, which is located outside the
network. Whenever the user calls another person, our system
retrieves its IP address from the server and uses it to make a
connection.

B. Hardware Platform

We use the HTC TyTN-II mobile phone which has a
Qualcomm MSM7200 (400MHz ARM ARM1136EJ-S pro-
cessor). We chose this phone because it has a front camera
on the same side as the screen and runs Windows Mobile 6.1.
Its processor adopts the ARMv6 core having a new SIMD
instruction set[10]. This phone has a 320x240 pixel screen,
a VGA video call front camera, a QWERTY keyboard, a
H.264 hardware decoder, etc. Also, the HTC TyTN-II provides
wireless capabilities such as Wi-Fi 802.11b/g, 2G (GPRS
and EDGE) and 3G (HSDPA). Fig. 2 shows a MobileASL
screenshot.

III. SPEEDING UP THE ENCODER

Frame rates as low as 6 frames per second can be intel-
ligible for signing though it would require the user to sign
very slowly. A more comfortable frame rate would be 12
frames/second[11], and higher frame rates would be needed
for fingerspelling[12], [13], [14]. First of all, to approach our
desired frame rate of 12-15 frames/second, it was necessary
to optimize the steps of the H.264 compression algorithm
for motion estimation, mode decision, transforms, quantization
and motion compensation using SIMD instruction sets. Then
we determined which H.264 parameter settings and the video
resolution we needed to achieve our target frame rate.

Fig. 2. A screenshot of our MobileASL codec on the HTC TyTN-II. Two
UW graduate students are talking each other.

A. Assembly Optimization

The ARM1136J-S processor used in the HTC TyTN-II cell
phone is built around the ARM11 core in an integer unit that
implements the ARM architecture v6. It supports a range of
single instruction multiple data (SIMD) DSP instructions that
operate on pairs of 16-bit values held in a single register, or on
quadruplets of 8-bit values held in a single register[10]. The
main operations supplied are addition, subtraction, multiplica-
tion, selection, pack and saturation. Operations are performed
in parallel.

1) Motion Estimation: Motion estimation is the most time-
consuming module in video coding. The sum of absolute
difference (SAD) is used as the distortion measure criterion.
In the ARMv6, the instruction USADA8 performs the sum
of absolute differences of four 8-bit data and accumulates the
results.

In H.264, there are 7 different block size types (from 16×16
to 4×4). In the 16×16, 16×8, 8×16, 8×8 and 4×8 modes,
there are 8 pixels in one line which are stored consecutively
in memory. Using doubleword loading and USADA8, only
4 cycles are needed (2 loads and 2 SAD operations). Fig. 3
shows this process.
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Fig. 3. SAD calculation using the USADA8 instruction.

In the 8 × 4 and 4 × 4 modes, one line has 4 consecutive
pixels (32 bits), so we can load two lines of data to the
register with load instruction and then they are calculated
with USADA8. It spends 3 cycles. For the best optimization



Fig. 4. MobileASL Framework. The variable frame rate and ROI detector based on skin blocks are concatenated before encoding

results, we use one of two methods depending on what mode
is selected.

2) Mode Decision: The H.264 encoder uses rate-distortion
optimization to select the mode. Because of its complexity,
mode selection is clearly the next candidate for speed up.

The distortion is computed as the sum of squared differences
(SSD) between the original block and the reconstructed block.
The SSD for 4 pixels between two macroblocks can be
optimized using three SIMD instructions. There are two con-
secutive steps which are 8-bit absolute difference (UQSUB8
and ORR) and then multiplication (SMLAD). It enables us to
get approximately twice the speed otherwise possible.

3) Transforms: H.264 uses three transforms depending on
the type of residual data that are to be coded: a transform for
the 4× 4 array of luma DC coefficients in intra macroblocks
(predicted in 16×16 mode); a transform for the 2×2 array of
chroma DC coefficients (in any macroblock); and a transform
for all other 4× 4 blocks of residual data.

The DC coefficient of each 4 × 4 block in the 16 × 16
Intra prediction mode is transformed using a twice 1-D 4× 4
Hadamard transform, which uses additions and subtractions
(QADDSUBX, QADD16, QSUB16) and shifts (SHADD16)
in 16-bit arithmetic. The other two transforms are also imple-
mented in a similar way.

B. H.264 Parameters Optimization

Based on assembly optimized encoder, we determined
H.264 parameter settings that have low complexity but still
offer high video quality at 30 kbps by training on 6 videos
recorded with a cell phone at QCIF resolution. We found that
setting some x264 encoding parameters such as the number
of reference frames and motion search method used to their
lowest settings gave us almost the same quality as that of the
best settings. Furthermore, the setting for the parameters sub-
pixel motion estimation method and partition size for intra
and inter motion compensation were chosen with both speed
and quality in mind. Since the sub-pixel motion estimation
parameter is complicated, the required time highly increases
with higher settings, so we chose its lowest setting. The quality
of the partition size while keeping other parameters unchanged
is saturated as the speed increases. Therefore, we chose a

”I4x4,P8x8” because it provides the best position with respect
to speed and quality.

C. Video Resolution

Even though we sped up the processing time through
assembly and parameter optimization, we did not reach our
target frame rate. Since H.264/AVC uses block-based motion
compensation, the encoding time is highly related to the
spatial resolution of the video. We investigate tradeoffs in spa-
tial resolution versus speed for QCIF (176×144), 160×128,
144×112, 128×96, 112×80, 96×80, 80×64, 64×48, 48×32,
and 32×16. In future work, we will conduct a controlled user
study with ASL speakers to determine preferences for tradeoffs
between spatial and temporal resolution.

IV. BANDWIDTH AND POWER ENHANCEMENT

The variable frame rate and ROI detector based on skin
blocks are concatenated before encoding to achieve longer
talking time and better quality in the all-important face and
hands regions without increasing bit rates. Fig. 4 shows this
framework.

A. Bandwidth Enhancement with ROI Encoder

In [15], we used a fixed ROI by varying the level of
distortion in a fixed region surrounding the face of the signer.
We found that a tradeoff of 6 decreased quantization steps near
the face of the signer (doubling the quality in that region) was
preferred over a typical (no region-of-interest) encoding. We
then extended this enhancement by finding face and hands
regions using skin detection.

Since H.264 is the most recent block-oriented motion es-
timation based standard video codec, we first divide 16x16
blocks in each frames and then detect skin in real-time via a
simple and well-known RGB-based algorithm[16] that works
for many different skin tones. We designate macroblocks that
have more pixels than a threshold as skin blocks. These blocks
are encoded with lower quantization parameters to increase the
quality. Fig. 5 shows which areas are considered to be skin
blocks and how the quality of those blocks is enhanced.



Fig. 5. A snap shot of ROI-based Encoder (a) original frame with skin blocks (red lines) (b) 0 ROI (c) 12 ROI. The quality in skin blocks is enhanced and
quality in the rest of blocks is degraded.

B. Power Enhancements

Minimizing power consumption in mobile devices is an
important challenge. We decrease frame rate during ”listening”
which is equivalent to voice phone filtering. Since turns are
taken communicating while speaking in conversational sign
languages, the video showing the listener does not have to
move much. Therefore, we can reduce the frame rate during
the time of listening so that the usage of the encoder and
wireless link will be decreased. This, in turn, would decrease
the amount of battery consumption.

We recognized the fact that the user will not be signing all
of the time. In [1], we performed a user study to determine
if variable frame rates sacrifice intelligibility and if automatic
activity analysis is feasible. Pixel differences between succes-
sive frames in the video were considered on the phone because
it is in real-time and its results are promising.

1) Pixel Differences: For each frame k in the video, the
luminance component of each pixel location (i, j) is chosen
with which we calculate the sum of absolute differences, d(k),
between the current and previous frames at the same pixel
location. If it is greater than the threshold, τ , we classify
the frame as signing. We used ARMv6 SIMD instruction
USADA8 to calculate the differences on the phone.

2) Signing vs. Not-Signing: We reduce the frame rate to 1
fps when the user is not-signing. To reduce false negatives, that
is, signing frames being misclassified as not-signing, we only
change to not-signing mode when three consecutive frames
are detected as not-signing. In contrast, whenever we detect
signing, we return immediately back to signing mode.

V. EXPERIMENTAL RESULTS

We present experimental results. First, we show the increase
in speed we achieved with SIMD optimization. Next, we
describe how we not only reduced bandwidth but also achieved
speed enhancement through ROI, followed by a description of
battery life extension by frame dropping.

A. SIMD Performance Comparison

Experiments were conducted with fourteen QCIF (176 ×
144) test sequences, each representing a different class of
spatial detail and motion from the standard MPEG data
set and an ASL data set developed at the University of
Washington[17]. The MPEG set videos are foreman, carphone,

TABLE I
FRAME PER SECOND COMPARISON WITH MPEG AND ASL SET

(ENCODER ONLY)

Type QCIF test sequence without SIMD (fps) with SIMD (fps)
accident 13.6 15.2

day in the life 13.1 14.7
education 14.6 16.1

ASL favorite restaurant 12.2 13.8
food at home 12.6 14.3

graduation 14.6 16.2
segment8 14.3 15.9
foreman 9.7 11.2
carphone 9.8 11.3
container 11.8 13.2

MPEG grandma 12.9 14.4
missam 10.2 11.5

salesman 14.7 16.3
akiyo 14.6 16.1

TABLE II
PSNR COMPARISON OF DIFFERENT ROI

30kbps 30kbps 44kbps
0 ROI (dB) 12 ROI (dB) 0 ROI (dB)

ROI PSNR 27.5 29.8 29.8
Non-ROI PSNR 29.3 24.3 31.4

container, grandma, missam, salesman and Akiyo and the
ASL videos are accident, day in the life, education, favorite
restaurant, food at home, graduation and segment8.

The performance of our optimized H.264 encoder with and
without instruction optimization is shown. Table I shows a
frames/second comparison for the encoder only for our data
sets for two scenarios. Our instruction optimization for H.264
increased encoding frame rate up to 15.3% for the MPEG data
set and 13.4% for the ASL data set.

B. ROI Encoding

We compared the quality of the video recorded by the phone
for three different ROIs (0, 6 and 12) that were based on
the optimized H.264 encoder described earlier. Table II shows
the PSNR for two different ROIs. ROI PSNR for 12 ROI at
30 kbps corresponds to ROI PSNR for 0 ROI at 44 kbps.
Therefore, we achieved a 32% bandwidth enhancement. As
expected, 12 ROI increased quality in the ROI at the expense
of quality in the background.

Another advantage of ROI-based encoding is its speed.



TABLE III
MACROBLOCK DISTRIBUTION IN P FRAMES FOR DIFFERENT ROI

Macroblock Size 0 ROI (%) 12 ROI (%)
SKIP 45.6 57.7
Others 54.4 42.3

TABLE IV
ENCODING TIME BREAKDOWN AND COMPARISON FOR DIFFERENT ROI

Encoder Function 0 ROI (ms) 12 ROI (ms)
Mode Decision 37.3 32.5

Transform and Encoding 12.2 10.0
Entropy Coding (CAVLC) 2.0 1.7

NAL and Slice Coding 2.7 2.6
Others 27.6 27.1
Total 81.9 74.0

Table III explains how macroblocks are selected in different
ROIs during the mode decision stage of encoding. More bits
are allocated to skin blocks with lower quantization parameters
and fewer bits are used for other blocks. That is, more
blocks are chosen as the skip block in the early stage of
mode decision. The increased number of skip blocks affect
macroblock encoding, entropy coding and slice coding.

Table IV summarizes how the encoding time varied. It
proves that the video encoding stages that are related to
macroblocks such as mode decision, transform and encoding,
entropy coding, and slice coding is faster. Therefore, we can
subtract an additional 9.7% of encoding time from an already
optimized encoding time through assembly and parameters as
shown earlier.

To summarize, the encoder is not the only module that
consumes resources in real-time video communication. The
decoder, the camera interface capturing the video, the screen
interface displaying the video, and the transmission module all
operate simultaneously with the encoder. With our optimiza-
tions, our encoder occupies about 50% of the CPU time. As
a result, we are able to achieve a frame rate of 12-15 fps at
30 kbps in real-time on the HTC TyTN-II. We showed that
our system demonstrated the success of our system over Wi-
Fi and the AT&T Cellular Network. A sample encoded ASL
video can be viewed on YouTube[18].

C. Picking The Resolution

Table V shows the encoding time of different video reso-
lutions for the test sequences foreman and salesman from the
MPEG data set and accident and graduation from our ASL
data set. Based on this data, we chose the 96×80 resolution
because our encoder with our optimizations occupies about
50% of the CPU time. This enables us to achieve up to 15
fps.

D. Power Enhancement

We simulated sign language communication and measured
the instantaneous power usage every 5 seconds for an hour
on the phones with the variable frame rate on and off. The
power draw drops when the frame rate is lowered due to the
lower processing power required to encode and transmit at 1

TABLE V
ENCODING FRAME PER SECOND COMPARISON WITH ASL AND MPEG

TEST SEQUENCES

Video Resolution accident graduation foreman salesman
176x144 15.1 15.8 10.9 15.9
160x128 17.7 18.8 13.2 18.6
144x112 21.2 22.7 16.2 22.0
128x96 26.0 27.4 20.5 26.0
112x80 32.5 34.4 26.6 31.7
96x80 36.0 37.8 30.6 35.1
80x64 45.4 47.2 42.2 46.8
64x48 64.4 65.8 63.4 67.8

fps. Power saving is significant by utilizing frame dropping.
This corresponds to 23 extra minutes of talk time, or a 8%
power gain over the battery life of the phone.

VI. CONCLUSION

In this paper, assembly optimization and parameter selection
for an H.264 encoder are presented to enable real time video
communication over a mobile phone. Experimental results
demonstrate that we can provide 12-15 frames/second at
a 96×80 resolution with our optimized ASL encoder. Our
MobileASL framework with variable frame rate and ROI
encoder is suitable for video communication in very low bit
rate wireless network environments.
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