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Abstract

H.264 is currently the best way to compress media to achieve high quality at
low bandwidth. Since its inception, technologies such as video-on-demand are
increasingly realizable. Periodic broadcast is a popular way of implementing
video-on-demand, yet most current methods do not work on H.264 because they
assume a constant bit rate stream and do not account for B frames. In this
paper, we describe a new protocol for periodic broadcast of video-on-demand
that works for variable bit rate streams with B frames. We map the periodic
broadcast problem into the generalized windows scheduling problem of arbitrary
length jobs on parallel machines. Our method is lossless and practical, in that
it does not require channels of differing bandwidth. We apply our method to
H.264 encoded video traces and achieve a delay of under 10 seconds on a 1.5
Mbps channel.

1 Introduction

With the advent of H.264, movies can be compressed at higher quality with far fewer
bits than in earlier standards [25]. Technologies that were previously impractical can
now be realized. Video-on-demand (VOD), a service whereby a customer interactively
selects and downloads movies and other programming, is one such technology. A
popular way to implement VOD is via periodic broadcast, where the customer incurs
some delay and then can play the movie from start to finish. However, H.264 makes
many current methods infeasible with its use of bidirectional (B) frames and constant
quality video. B frames are predicted from previous and upcoming reference frames,
and thus cannot be decoded until their reference frames are received. A constant
quality video, in which each frame is encoded to nearly the same PSNR, requires a
variable bit rate per frame. Most current VOD methods ignore the use of B frames
and require a constant bit rate. The protocols that work for variable bit rate require
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dividing the stream into logical channels of differing bandwidth, which is impractical
for many applications.

In this paper, we introduce a new method for video-on-demand that is flexible
enough to support H.264 compressed video, practically implementable, and yet re-
duces both bandwidth and delay compared to previous methods. The key insight
is to model the problem as windows scheduling of arbitrary length jobs on parallel
machines [2]. The jobs correspond to frames of the movie. The parallel machines
correspond to multiple logical channels. In the same way that using multiple paral-
lel machines can service more jobs than just using one fast machine, using multiple
channels reduces delay compared to just increasing bandwidth.

For example, suppose we have two frames of different lengths, and suppose it takes
2 time slots to play a frame. Call the delay D. Our goal is to schedule the frames
so that, no matter when the user tunes in, she will only need to wait D time slots
before playing the movie. We also must ensure that she experiences no further delay
once the movie starts.

In order to achieve this, we need to schedule the first frame so that it is received
in every window of D time slots and the second frame so that it is received in every
window of D + 2 time slots. With this schedule, no matter when the user tunes in,
she will have completely received frame 1 after D time slots. She can play that frame
and know that she will have completely received frame 2 once she has played the first
frame.

Suppose the length of the first frame is 2 time slots and the length of the second
frame is 3 time slots (based on the bandwidth of our channel). The minimum delay D
for one channel is 5 time slots. The schedule would be a round robin between frames
1 and 2. To see why the minimum delay cannot be any smaller, consider Figure 1
and suppose the delay were 4. If the user is lucky and tunes in at the beginning of
the round robin at the first arrow, she will not experience any problems. But if she
is unlucky and tunes in at the second arrow, frame 1 will not be completely received
after 4 time slots. We cannot change the schedule from a round robin, or else she
will not receive frame 2 in time. On the other hand, if the delay is 5, she will always
receive each frame within the corresponding window.

Now suppose we send the frames over two logical channels. Each channel has half
of the bandwidth of the original. This means that our lengths are doubled, because
it takes twice as long to receive the same number of bits. The length of the first
frame is now 4 time slots and the length of the second frame is now 6 time slots. The
minimum delay on two logical channels is D = 4. The schedule is simply to send
the first frame on the first channel and the second frame on the second channel. The
second frame takes 6 time slots to receive, but does not need to be received before the
first frame is played, which takes 2 time slots. Thus, a delay of 4 time slots guarantees
the second frame will be received in every window of size D + 2.

The rest of the paper is organized as follows. In the next section, we describe some
related work on periodic broadcast VOD as well as the windows scheduling problem.
In section 3 we present our algorithms. Section 4 contains our results, and section 5
the conclusion.
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Figure 1: Schedule on one channel and two channels

2 Related Work

Video-on-demand has been studied extensively since the early nineties. There are two
main ways in which a video service can provide VOD. A reactive service responds to
requests from users. Reactive methods include unicast, in which there is a stream
between the service and each new user. This does not scale well with the number of
users, so researchers have explored multicast methods such as batching users together
[5] and merging streams [6]. A proactive service anticipates requests. Periodic broad-
cast is a proactive service that requires the users to wait for some delay before they
can begin watching the movie. This is essentially what many VOD services do today.
It is the only option for satellite television, which has high bandwidth available for
transmitting downstream but none available for transmitting upstream [9].

The primary advantage of periodic broadcast is that it takes much less bandwidth
than unicast, and that in turn could allow a video service to offer more movies.
Furthermore, research has shown that 80% of requests for movies are for the 20 or
so most popular [4]. If these were sent over a periodic broadcast channel, the video
service could meet the other 20% of requests via unicast, saving bandwidth. The main
disadvantages of periodic broadcast are the need for a large buffer on the receiving
end, lack of some VCR functionality, and the delay. Most periodic broadcast protocols
assume that there is plenty of space available on the user’s set top box, which is not
unreasonable considering the cost of memory. Most protocols also do not allow for the
VCR functionality of fast forward, though rewind and pause are easily implemented
with a large buffer. Therefore, research in the field focuses on achieving a small delay
with a minimal bandwidth. If the delay is on the order of minutes, then a user might
turn to another service, such as a regular video rental store.

Perhaps the most natural way to implement periodic broadcast is via Staggered
Broadcast [5], in which the movie is broadcast in its entirety over several channels
at different intervals. If the length of the movie is N and there are k channels, the
user experiences a maximum delay of N/k. A lower delay protocol is to send the
movie in different segments over k channels, one for each segment. The channels
may have differing bandwidth. Most of the research in the field uses this technique
[24, 11, 12, 18, 20]. For a detailed survey, see [10]. These methods assume that
the movie can be broken up in arbitrary places, or at the very least, along frame
boundaries, which is not the case with any coding standard that includes B frames.
Furthermore, they assume that the movie is received at some constant bit rate (often
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the playback rate). It is possible to encode a constant quality movie at a constant
bit rate, but the bandwidth requirement will be much higher than for the variable bit
rate version [3].

Methods for variable bit rate VOD include lossy methods that use smoothing,
server buffering and client prefetching [22, 14]. There are also several lossless meth-
ods. Variable Bandwidth Harmonic Broadcasting [17] changes the bandwidth per
channel depending on the movie; each channel has differing bandwidth. The Loss-
Less and Bandwidth-Efficient (LLBE) protocol [16] divides the movies into segments
that respect frame boundaries. Each segment is broadcast in its own channel, at differ-
ing bandwidths per channel. The segments’ divisions are chosen based on a dynamic
program that returns the division that gives rise to the minimum total bandwidth.
General Frame Level Segmentation (GFLS) [26] modifies LLBE to work on MPEG
videos with B frames. The differing bandwidths used in these lossless methods are not
co-factors, i.e., it is not generally the case that one channel’s bandwidth is a multiple
of another’s. This renders them impractical for current video service providers.

The technique most closely related to ours is harmonic broadcasting[12, 18, 19].
Harmonic broadcasting divides the movie into segments and broadcasts segment i at
bandwidth proportional to 1/i. The worst case delay for bandwidth b asymptotically
approaches 1/(eb − 1). This is optimal for constant bit rate periodic broadcast [7, 8,
10]. Harmonic broadcasting has a nice mapping to windows scheduling, explored in
[1]. That work showed that the optimal delay can be approached in the limit using
windows scheduling techniques on channels of equal bandwidth.

3 Algorithm

3.1 Conversion to windows scheduling

We wish to schedule a periodic broadcast of a variable bit rate H.264 video so that
no matter when users tune in to the broadcast, they experience a delay of D before
they can begin playing the movie. We model the problem as windows scheduling of
arbitrary length jobs on parallel machines.

The windows scheduling problem takes as input a sequence of n positive integer
pairs I = 〈(w1, `1), (w2, `2), . . . , (wn, `n)〉, representing n jobs. The ith job has length
`i and must be executed within every window of size wi. The goal is to schedule the
jobs on the minimum number of parallel processors. Solving the problem optimally
is NP-hard, but an 8-approximation is known, as well as a practical greedy algorithm
[2].

We convert the video-on-demand problem to a windows scheduling problem as
follows. The processors correspond to logical channels and the lengths correspond
to the frame sizes. The window sizes correspond to our guarantee that the users
experience only a small fixed delay before they can begin playing the movie.

Specifically, if L is the time it takes to play one frame, we must guarantee that
frame 1 is received in every window of size D, that frame 2 is received in every window
of size D +L, and that frame i is received in every window of size D +(i−1)L. Since
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the window size is in units of time, the frame lengths must be converted to time, and
this will depend on the bandwidth and the number of logical channels.

Let the bandwidth in bits per second be denoted B, the number of logical channels
k, the delay in seconds D, and the time it takes to play one frame L. Let bi be the
size in bits per frame i. Then the bandwidth per channel is B/k and the length of
each frame in seconds is bik/B. The job sequence is then

〈(D, b1k/B), (D + L, b2k/B), (D + 2L, b3k/B), . . . , (D + (n− 1)L, bnk/B)〉 .

Each window must be at least as large as the length of the job scheduled on it, so in
particular, D ≥ b1k/B.

3.2 Solving windows scheduling

Though the windows scheduling problem is NP hard, there is a greedy algorithm that
works quite well in practice [2]. The algorithm is easier to visualize with the help of
the tree representation of a schedule. Each channel is represented by a directed tree.
The nodes of the tree consist of (w, `) pairs. A (w, `) node represents a window of
size w and a length of size `, so any (w′, `′) scheduled on this node must have w ≤ w′

and ` ≥ `′. There are two ways to schedule jobs on (w, `):

1. (w, `) may be split into k children of size (wk, `). This corresponds to a round
robin schedule over the children.

2. (w, `) may be split into k children of size (w, `1), (w, `2), . . . , (w, `k) such that∑k
i=1 `i = `. This corresponds to subdividing the window and allocating the

appropriate number of slots to jobs.

For example, suppose we had a playback rate of L = 3 and converted frames
lengths of `1 = 2, `2 = 1, `3 = 1. Then to play on one channel, our minimum delay
would be 3, giving 〈(3, 2), (6, 1), (9, 1)〉. The tree representation of the schedule is in
Figure 2. In every window of size 3, the schedule would visit the (3, 2) node, then
one of the (6, 1) or (9, 1) nodes, as shown in the figure.

3,3

3,1 3,2

6,1 6,1

9,1

Frame 1 1
...

2 3 1

(w1, `1)

(w3, `3)(w2, `2)

Figure 2: Tree representation and corresponding schedule. Boxes represent jobs.
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To find the tree, the algorithm simply starts with one node of size (w1, w1) and
schedules the first job (w1, `1) as a child. That leaves a node of size (w1, w1−`1). The
next job, (w2, `2), is scheduled as a child of this node by one of the two methods listed
above. Note that our window sizes are always increasing. If the ith node cannot be
scheduled, a new tree starts with (wi, wi) as its root.

Our goal is different than that of windows scheduling; we are interested in min-
imizing the delay or the bandwidth for a given set of frame lengths. To find the
minimum delay, we set the bandwidth size and the number of channels and convert
the frame lengths. We know that the minimum delay is at least the converted size
of the first frame. We run our greedy algorithm with the delay set to this and the
number of trees capped at the number of channels. If the algorithm reaches the cap,
we run it again with double the delay. We continue doubling until we find a feasible
delay given the number of channels; a delay equal to the sum of lengths is always
feasible. Once we have a feasible delay, we perform a binary search between it and
the last infeasible delay in order to determine the smallest delay that is feasible.

To find the minimum delay over any number of channels, we run the algorithm
with the number of channels set from 1 to n, where n is the maximum number of
channels. This adds a multiplicative factor of n to the running time. The algorithm
for finding the minimum bandwidth is similar; we set the delay at the beginning and
run the greedy algorithm for differing values of bandwidth. In this case, we set a
maximum bandwidth of 100 Mbps. Since a window can never be smaller that its
length, we can throw out some infeasible bandwidths right away (e.g. those in which
D ≤ `1k/B where k is the number of channels).

3.3 H.264 modification

The above model is too simplistic in that it does not take B frames into account. In
H.264, there are three frame types: I frames, P frames, and B frames. I frames are
coded independently of the other frames in the video. P frames are predicted from
previous I or P frames. B frames are predicted from previous or future I or P frames.
If we used the above model based only on frames, we could no longer guarantee that
the user could play the movie without interruption.

Our solution is to combine the frames into segments that do not depend on future
segments. For example, a common H.264 coding sequence is IBBPBBPBBPBBI. . .
Our algorithm divides this into segments:

I, BBP, BBP, BBP, BBI, . . .

Each segment no longer depend on future segments. The windows scheduling al-
gorithm will guarantee that all preceding segments are received before the current
segment, and that the current segment is received in its entirety before it must be
played.

Since different segments will be scheduled on the same channel, we include a
unique identifier at the beginning and end of each segment. The number of segments
will certainly be smaller than 232, so we use a 32-bit integer for our unique identifier.
This adds a total of 64 bits to each segment.
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4 Results

In order to demonstrate the applicability of our algorithm, we ran it on several video
traces. The first is from [23] and uses H.26L, the working version of H.264, to encode
the movie “Starship Troopers” at constant quality. Here we use the trace file with
QP=20. The coding sequence is IBBPBBPBBPBBI. The number of frames is 90,000
and the length of the movie is 60 minutes. Figure 3 shows the minimum delay at
different bandwidths and also the minimum bandwidth at different delays, plotted
against the number of channels. The most gain occurs when we move from one
channel to two. Though the results continue to improve as we add more channels, the
returns are diminishing. Since the complexity of reading and reassembling the movie
increases as the number of channels increase, we limit the number of channels in the
graph to 25.
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Figure 3: Delay at varying bandwidths and bandwidth at varying delays for “Starship
Troopers”

These results demonstrate that a practical VOD system using H.264 is feasible,
even for satellite television, where interactivity is not possible. Note that the delay
for a 1.5 Mbps logical channel is less than 10 seconds. Since the bandwidth available
on one cable channel is at least 30 Mbps [13], the provider could divide the channel
into 20 subchannels, each of which would play one movie. Each subchannel of 1.5
Mbps would be further divided into the number of logical channels that guaranteed a
low delay; in the case of “Starship Troopers”, 5 channels would suffice. The division
process is simple since the bandwidth is distributed equally. When the user requests
one of the 20 movies, the set top box tunes into the appropriate channel and the
movie begins playing in less than 10 seconds.

We also compare our results to LLBE/GFLS (the results for the two algorithms are
quite similar [26]). The results from LLBE are expanded upon in a technical report
[15], in which they plot delay against optimal server bandwidth on 7 channels for the
MPEG-1 traces from [21]. In Table 1, we compare our minimum bandwidth using
windows scheduling (WS) on 7 logical channels to theirs for traces mtv 1, news 2, and
soccer 1 (fuss). Because MPEG-1 is a poor compression standard compared to H.264,
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the bandwidth requirements are much higher. Though their method uses different
bandwidths for different channels, our algorithm, with equal bandwidth channels,
obtains comparable results.

Delay (s) LLBE WS

mtv 1

15 3.8 3.3
30 3.2 3.0
60 2.6 2.6
90 2.3 2.4

news 2

15 2.4 2.2
30 2.0 1.9
60 1.5 1.6
90 1.4 1.5

soccer 1 (fuss)

15 4.1 3.6
30 3.5 3.3
60 2.8 2.9
90 2.4 2.6

Table 1: Minimum bandwidth (Mbps) for given delay

5 Conclusion

We have presented an algorithm for periodic broadcast of variable bit rate movies.
Our method is practical, in that it does not require channels of differing bandwidth to
achieve low delay. In the future, we will look for better windows scheduling algorithms
for this application. We would also like to explore the advantages of pre-caching the
first few frames of a movie on the user’s set top box at some point before the movie
is requested. This could provide significant improvement in minimum bandwidth for
a given delay, without taking up too much storage space. Finally, we would like to
explore other problems in the space, such as taking user bandwidth limitations into
consideration.
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[19] J.-F. Pâris, S. W. Carter, and D. D. E. Long. A low bandwidth broadcasting protocol
for video on demand. In Proc. of the IEEE Int’l Conference on Computer Communi-
cations and Networks (IC3N ’98), 1998.
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