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The Distribution of Thermal Neutron Cross Sections 
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An estimate of the cross sections of nuclear reactions with thermal neutrons in terms 
of the average parameters of the target nucleus (the strength function, the average level 
spacing, and the average reaction width) is obtained. The probability distributions for 
the ratios of actual thermal neutron cross sections to their estimated values are introduced. 
These f&Sons can be calculated from the statistical model. They are calculated for 
neutron radiative capture and for inelastic neutron acceleration by the isomeric nuclei 
[as well as the (n,a) reaction, etc./. Using these results, one can predict the probability of 
finding the actual thermal neutron cross section in a given interval. 

t. INTROlXlCTION 

The capture cross sections for thermal neutrons 
[the (n,-y) reaction] have been measured for hundreds 
of nuclei. ’ However, for many nuclei (mainly un- 
stable) they are still unknown. There are still fewer 
data on (n,or) thermal neutron cross sections’y* while 
thermal neutron cross section of the INelastic Neu- 
tron Acceleration (INNA reaction) by nuclear isomers 
was only recently first measured for 1s2mE~ (Ref. 3). 
However, the need of estimating these cross sections 
in advance arises in a number of cases. One needs 
such estimates while planning the measurements of 
cross sections. They are also useful to estimate 
changes in the isotopic composition of the materials 
irradiated in nuclear reactors by a high neutron 
flux, etc. 

At thermal energies, the cross section of a 
reaction is completely determined by the parameters 
of several low-lying resonances. These parameters 
vary significantly from one nucleus to another. 

*S. F. MUGHABHAB and D. I. GARBER, 
Cross Sections,” Vol. 1, “Resonance Parameters,” 
3rd ed., Brookhaven National Laboratory (I 973). 

“Neutron 
BNL-325, 

‘YLJ. P. POPOV, Preprint LNPI-267, Leningrad (1976); 
A. ANTONOV et al., Preprint JINR-P3-10372, Dubna (1977); 
(in Russian). 

3YU. V. PETROV. ZhETP (USSR), 37, I 170 (1959); 
see also, JETP (SW. Phys.), 10, 833 (1960); I. A. KON- 
DUROV, E. M. KOROTKIKH, and YU. P. PETROV,ZhETP, 
Pis’ma, 31,254 (1980). 

Hence, even for the neighboring nuclei, cross sections 
can differ by several orders of magnitude and their 
exact values are unpredictable. 

In the present paper, the thermal neutron cross 
section of each nucleus is considered as a random 
variable distributed about its estimated value. The 
latter is expressed in terms of the average parameters 
of this nucleus, such as the neutron strength function, 
the mean level spacing, and the average reaction 
width. All these quantities can be either calculated 
or measured at energies much greater than thermal. 
Then the distribution function for the ratio of the 
actual thermal neutron cross section to its estimated 
value is introduced. Within the limits of the statistical 
model, it is determined by the laws of the distribu- 
tion of resonance parameters near the corresponding 
mean values. Hence, the distribution function is 
the same for similar reactions with nuclei having a 
given spin. Once calculated, this function can be used 
for the quantitative prediction of the probability 
that cross sections will deviate considerably from 
their expected values. 

A similar function was first introduced by 
Gurevich4 as long ago as 1939. It was used for 
estimating the mean level spacing between s-reso- 
nances in heavy nuclei. The actual distribution of the 
level spacings and the reduced neutron-width fluctua- 
tions had been unknown at that time. So, only the 
type of asymptotic behavior of the distribution func- 
tion in the limit of very large cross sections had 

41. I. GUREVICH,ZhETF(USSR), 9, 1283 (1939). 
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been established. However, it allowed Gurevich to 
arrive at an important conclusion about the sharp 
increase of the level density in the region of the 
rare earth nuclei. 

In the region of unresolved resonances, Nikolaev 
and Filippovs and later Levitt6 applied the probabilis- 
tic approach to the description of the cross-section 
energy dependence. However, their probability dis- 
tributions are not universal, depending on the isotope 
and the energy interval considered. 

In Sec. II we express the expected thermal 
neutron cross sections in terms of the mean values 
of the resonance parameters. In Sec. III the prob 
ability of the occurrence of large cross sections is 
considered and the distribution function S(z) is intro- 
duced. Here, S(z) is the probability of the ratio of the 
actual and estimated cross sections being less than z. 
In Sec. IV the capture cross-section distribution func- 
tion S,(z) is obtained analytically within the model of 
equidistant resonances. In Sec. V the fluctuations of 
the level spacings are taken into account using the 
Monte Carlo method. Our results are compared with 
the data on resonance parameters and capture cross 
sections for 105 nuclei from Refs. 1 and 7. This 
comparison confirms the validity of the latter model. 
In Sec. V we also consider the opposite case when 
the width of the exit channel obeys the Porter- 
Thomas distribution in the (II,(Y) reaction, the in- 
elastic neutron acceleration by nuclear isomers, etc. 
The distribution functions, Sin(?), sirr.ilar to S,(z), is 
obtained using the same model. 

II. THE EXPECTED VALUES OF THERMAL 
NEUTRON CROSS SECTIONS 

1I.A. Basic Formulas 

The contribution of a single resonance with 
spin J, energy ,E’i, neutron width F,i and the exit 
channel width Fri, to the reaction cross section is 
described by the Breit-Wigner formula as 

Here, 

E = incident neutron energy in the labora- 
tory system 

A and I = atomic weight Of the target nucleus 
and its spin. 

5M. N. NIKOLAI3 and V. V. FILJPPOV. Atontn~y~ 
Energia (USSR}, 15, 493 ( 1963 1. 

6L. B. LEVITT. IVUCL Sci I:‘ng., 49,450 (1972). 
‘W. DILG et al., NucZ. P~vs. A, 217. 169 (1973). 

At thermal energy, E = ET G 0.0253 eV, only 
the s-resonances contribute to the cross section, 
i.e., J = 1 i: 3. The inequalities ET << Ei and I’i << Ei 
are usually true, so that Eq. ( 1) turns into 

(2) 

To estimate the cross-section value, let us repre- 
sent it as the sum of the independent resonance 
contributions under the following simplifying as- 
sumptions: 

1. All reaction widths are equal to the corre- 
sponding mean values (depending on J): Fri = 
Fr(J), rni = i+,0(J)(E/E,)i/2, E0 = 1 eV. 

2. The energy spacings between the resonances 
with spin J are constant: Ei+l - Ei = B(J). 

3. The resonances are located symmetrically with 
respect to the zero neutron energy point: 
Ej = B(J)(i - 3). 

Using these assumptions, we come to the fol- 
lowing expression for the expected cross-section 
value o,*, which should not be confused with the 
mean value 3,: 

Here, T:(J) is the mean neutron width, reduced to 
E0 3 1 eV, and g(J) = (25 + l)/[ 2(2Z + l)] is the 
statistical factor. The value of the sum in Eq. (3) is 
equal to x2/4 (see Eq. 0.234.2 in Ref. 8). 

II. B. The Expected Value of the Thermal Neutron 
Cuplure Cross Section 

For the neutron capture reaction rr(,(J) = F,, 
there are two systems of resonances (with spins 
J, = I + 4 and Jz = 1 - $-) that give comparable 
contributions to the cross section. After substitution 
of the numerical factors corresponding to the thermal 
energy of the incident neutron (E = ET), we obtain 

- 

Here, 

F(I) = s2(Jb + s2(J2) = ‘:;;r 1;;’ , 

‘I. S. GRADSTEIN and I. M. RYJIK, Tables of Integrals, 
Sunu, Series and Products, 5 th ed.. Nauka, Moscow (197 1). 
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gi$ 
S,, = 6-z strength function for s-neutrons 

exp 
Dexp(Z)= average spacing between s-resonances 

of the target nucleus with the spin I, 
which is connected with D(J) by the 
equality D,,,(l) = g(J). D(J); 

For Z = 0, Eq. (4) is reduced to 

’ - 2 (b) . (W 

For example, let us estimate the capture cross 
section of thermal neutrons by the isomeric nucleus 
‘52mEu (1; = 3-, Z; = 0-, rg = 17.9 yr. r, = 13.4 h, 
EnI = 0.05 MeV, from Ref. 9). Vertebny et al.” 
obtained for the ground state of this nucleus So = 
(3.6 + 1.2). 10-4, T, = (0.160 + 0.025) eV, and 
n,,(3) = (0.25 +- 0.04) eV. The evaluation of Bexp 
for the spin of 15zmEu using the Fermi gas model” 
gives Dexp(0) =Z 1.4 eV. The values of So and Fy are 
spin independent. They should not change notice- 
ably while the excitation energy is shifted by the 
isomer energy E,. Assuming them to be actually con- 
stant and using Eq. (4a), we obtain cry* = 1.7. lo3 b. 

II. C The E~pectcd Value o.f the I:Y?dA 
Thermal Neutron Cross Section 

We now consider the INNA reaction that is 
possible when the neutron collides with the isomeric 
nucleus.3 As a result of the INNA reaction, the 
emitted neutron carries away the isomeric transition 
energy em. Here, we consider only the magnetic-type 
isomers. In this case, the cross section is determined 
only by the system of resonances with spin corre- 
sponding to the lowest momentum of the emitted 
neutron. If we replace r, by i?i,(e,) and take into 
account the approximate relation ~~iii,(~m)/~~ z 
Tti(em)/To(Eo) [here, Tti(L] is the transmission coef- 
ficient for neutrons with the energy E, the orbital 
momentum I, and the total momentum j that are 
allowed by the selection rules of the transition], we 
have instead of Eq. (4), 

c7j,=o.404~108 $J 2*g(J).s2,$$b) . (5) 
( > 

The transmission coefficients Tti can be calculated 
using the optical model. 

Let us use Eq. (5) to estimate the INNA thermal 
neutron cross sections for M4 isomers 87mSr, i13mIn, 
115mIn and ‘23mTe. The important point here is the 
choice’ of reasonable parameters for the optical 

911. J. flOREN, Ed., Nuclear Levd Schemes, Academic 
Press, Inc., New York (1973). 

‘9. P. VERTEBNY et al., Yad. fz., 26, 1137 (1977). 
“A. BOflR and B. MOTTELSON, Nuclear Structure, 

Vol. I, Benjamin, Inc., New York and Amsterdam (1969). 

potential. In our earlier paper’* we chose these 
parameters following the idea of the SPRT method 
by Lagrange.13p14 The imaginary part of the po- 
tential W was obtained by fitting the strength 
function So, while other parameters were nearly 
those obtained by Lagrange for 89Y and 93Nb. The 
strength function S,, the potential scattering radius 
R’, and the total cross section u,(E) were in rea- 
sonable agreement with the experimental data1>15 
[within 20% for S, and 10% for both R’ and o,(E)]. 
This allowed us to describe the INNA cross section 
for ‘lsmIn in the incident neutron-energy interval 
0.02 to 0.3 MeV to an accuracy of -20%. If we 
obtain the values of W for ““Sr, “3mIn, and 123mTe 
in the same way, we arrive at u&, as listed in Table I. 

This table shows that INNA cross sections, as a 
function of the isomer energy and of the strength 
function, can differ by orders of magnitude in spite 
of similar selection rules of the transition (M4). In 
particular ‘23mTe must have a very small INNA cross 
section. The experimental limit cfn G 20 mb estab- 
lished by Hamermesh i6 does not contradict our 
estimate. 

III. TfIE PROBABILITY OF THE APPEARANCE 
OF LARGE CROSS SECTIONS 

ii1.A. The Single Level Approximatiotz 

We now consider the distribution of the actual 
cross sections u about their expected values u*. If 
we introduce the variable z = u/u* and consider it 
as random, we can define the probability density 
of Z. p(z), and the distribution function S(z) as 

S(z) = “/y P(?,)dv I (6) 

Here, S(z) is the probability that the ratio of the 
actual cross section to the expected one does not 
exceed Z. 

Let us suppose that some resonance is located 
occasionally quite near zero energy. Then the cross 
section is determined mainly by the parameters of 
this resonance and its actual value may greatly 
exceed the expected one. Thus, for large z the 

12YU. V. PETROV and A. I. SflLYAKHTER, Nucf. 
Phys. A,292,88(1977). 

‘?W. LAGRANGE, in froc. Third Sov. Nutl. ConJ: on 
Neutron Ph?/sics, Kiev, May 26-30, 1975, CONF 750555, 
3,65, Moscow (1976). 

14J. P. DELAROCHE, CH. LAGRANGE. and J. SALVY, 
Consultants’ Mtg. hktclear Theon, in Neutron Nuclear Data 
Evaluation, IAEA-190, 1, 25 1, international Atomic Energy 
Agency (1976). 

lsD I GARBER and K. R. KINSEY, “Neutron Cross . . 
Sections,” BNL-325, 3rd ed., Vol. 2, Brookhaven National 
Laboratory (1976). 

*6B. HAMERMESH, Phys. Rev. C, lo,2397 (1974). 
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TABLE I 

Expected INNA Thermal Neutron Cross Sections 

Isomer 

“*Sr 

lr3mIn 

iismIn 

1a3mTe 

I&+$ 

1- 9+ 2-r 

1- 9+ 5-r 

I- 9+ 
TI- 

11- 3+ T’i- 

&.& 

4.0 

2.74 

6.5 

4.1.103 

em, MeV so, 1o-4 
(Ref. 9) (Ref. 1) 

0.388 0.26 

0.392 0.85 

0.335 0.26 

0.088 0.98 

W,, MeV 

1.8 

5.3 

1.4 

3.7 

T31 (em) 2 
ToU ev) 

8.9 

3.3 

2.4 

0.01 

o,b 

0.19 

0.74 

0.05 

0.002 

Note: Other parameters of the optical potential are those from Ref. 12. The values of V and W depend slightly on the incident 
neutron energy: F’= 49.5 - 0.28E (MeV), W = W, + 0.3 E (MeV). 

asymptotic behavior of P(z) and S(z) is completely 
determined by the nearest resonance contribution 
and we can use the single level approximation. Taking 
into account Eqs. (2) and (3), we obtain for I = 0 

Here, t E Fzi/ri, u E I’?#,“, and u. G (E, - &)/a 
are, respectively, the reduced width of the first 
positive resonance and its spacing from the first 
negative level normalized to the corresponding mean 
values; x s -(E, + E,)lD. 

III. B. Probability Distributions of the 
Resonance Parameters 

Within the framework of the statistical model, 
the fluctuations of the reduced widths are described 
by X2(v) distribution. The number of degrees-of- 
freedom v is equal to the number of final states for 
the reaction considered. 

There are only s-neutrons in the entrance channel; 
hence, v = 1 and the reduced neutron width should 
follow the Porter-Thomas distribution”: 

(8) 

The distribution of the reduced widths in the 
exit channel is determined by the type of the 
reaction. For radiative capture, there are a great 
number of final states. Hence, v >> 1 and the 
X2(v) distribution is reduced to the delta function 
and one must put u = 1. In the opposite case, the 
compound nucleus decays into a single final state. 
Examples are the INNA reaction (the outgoing 
neutron has the lowest angular momentum allowed 
by the selection rules) and the (%a) reaction (the 
compound nucleus decays preferably to the lowest 
level allowed). In the latter case, the Porter-Thomas 
distribution Eq. (8) agrees with the existing data.2 

The fluctuations of the energy spacings between 
the neighboring levels with a given spin are usually 
described by a Wigner distribution” as 

(9) 

Here, ui E (Ei+i - Ej)/D. 
The distribution of the energy of the first 

positive resonance is determined by the difference 
(uo - s)/Z. It depends on the distribution of the 
incident neutron zero energ point on the scale 
of compound nucleus levels. It seems natural to 
suppose that the latter distribution is uniform. The 
total probability of finding the zero neutron energy 
in a given interval is proportional to its width uc,. The 
density function of the variable .Y is normalized to 
u. (due to the symmetry, one may consider only 
positive values of .Y>: 

P,(s) = 1 , 0 <x Gu, . (10) 

The validity of this density function is confirmed by 
the comparison of the theoretical distribution of the 
first resonance position with the available data 
(see Fig. 1 and Appendix A). 

III. C. Distribution Functions in the Single 
Level Approximation 

We now use the single level approximation to 
calculate the function S(z) for a neutron radiative- 
capture reaction taking into account the distributions 
of Eqs. (8), (9), and (10). Denoting it by S,(z) we 
have 

(11) 
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I ” 3 ’ I r_ 

I.$ 
1.5 

P(w) = f3(1 -w) 

0.5 1.0 1.5 2.0 2.5 

Resonance energy in units of w = E,/b 

Fig. 1. The distribution of the first resonance energy (in 
units of w E El/D) with (solid line) and without (dashed line) 
the Wigner distribution of Eq. (9). 

Here, 0(x-) = 1, if x > 0; otherwise fl(.u) = 0. Inte- 
grating over x we come to 

s;‘)(z) = jy&J.P&) jy dzr* f,(ff> 

(n2/4w;/u)z 

X 
J dt-Pp-T(f) . [uo-p)“*] . (12) 

0 

Evaluation of this integral finally gives 

S(‘)(z) = 1 - 2 arctg -L 
( > 

l/2 

Y 7r xz . 

At z >> 1 the upper limit of the inner internal of 
Eq. (12) can be replaced by infinity and S$l) is re- 
duced to 

s;‘)(z) = (u& 

(14) 

Here, (u,), = 1, Mh- = (2/n)“*, (da, = I. 
It is immediately seen from Eq. (1 i> that the 

rootlike asymptotic behavior of S,(z) is due to the 
uniform distribution of the position of the first 
resonance [Eq. (lo)]. The averaging of the neutron- 
width fluctuatioris in the entrance channel gives 
the factor (2/n)“* while the distribution of resonance 
spacings does not change the asymptotics at a1117 
(see case k = 1 in Fig. 2). 

“It should be mentioned that the asymptotic formula 
similar to Eq. (14) can be derived from the expression 
obtained by Gurevich in 1939 (Ref. 4). He had neglected 
the fluctuations of the reduced neutron widths that were 
unknown at that time. Thus, in the limit of very large cross 
sections, his result can be reduced to the formula that differs 
from Eq. (14) by only the factor (2/n)“‘. 

z = o.++ 

Fig. 2. The capture cross-section distribution function 
S$k)(~) for zero spin nuclei with (solid line) and without 
(dashed line) the Wigner distribution of Eq. (9). Here, k is the 
number of resonances considered. In the case where k = 400, 
the Monte Carlo method was used. 

The validity of the latter statement is illustrated 
in Fig. 1 where the distribution of the position of the 
first resonance (measured in LV f El/is units) with 
(solid line) and without (dashed line) Wigner dis- 
tributions Eq. (9) is shown. At small \t’, the density 
function p(btl) does not depend on the model 
chosen. It means that at z >> 1 the cross-section 
value is completely determined by the parameters 
of the nearest resonance and does not depend on 
the positions of the other resonances. 

The single level approximation can also be used 
to obtain the function SF:)(z) for the INNA and 
the (~a) reaction by substituting a Porter-Thomas 
di’stribution Eq. (8) instead of Pi in Eq. (11). 
However, the result appears to be cumbersome and 
is not reproduced here (see case k = 1 in Fig. 3 and 

Fig. 3. The thermal INNA [as well as (n,cu), etc.] reaction 
cross-section distribution function S),“)(Z) with (solid line) and 
without (dashed line) the Wigner distribution of Eq. (9). Here, 
k is the number of iesonances considered. In the case where 
k = 400, the Monte Carlo method was used. 
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Ref. 18). The asymptotic formula at large z can be noticeable. For example Hamermesh16 made an at- 
obtained in the same way as Eq. (14) tempt to measure the INNA thermal neutron cross 

- - section for ‘23mTe. The accuracy achieved was an 
s jn = (u,), - --& tx.mp-?+/3P-T = 1 - -& ‘ order of magnitude less than that required (see 

Sec. 1I.C). However there existed a considerable 
(15) probability (-13%) of measuring the effect; unfor- 

It differs from Eq. ( 14) by an additional factor 
tunately it was not the case. 

(ml’*, arising from the averaging of the width 
Let us note in conclusion that for very large z, 

fluctuations in the exit channel. 
the asymptotic formulas, Eqs. (14) and ( 1 S), should 
fail. This is due to the violation of the condition 
I’: << 4(E, - ET)~ that allowed us to reduce Eq. (1) 

III. D. Discussion to Eq. (2). The corrections become significant at 
It follows from Eqs. ( 14) and (I 5) that the z = a2/2P2, which is usually large. 

probability of large cross-section occurrence is not 
small and with the increase in z it decreases rather IV. DISTRIBUTION OF THE CAPTURE CROSS 
slowly (see Table II and Figs. 2 and 3). The thermal- SECTIONS IN THE MODEL OF 
cauture cross section can exceed the expected value EQUIDlSTANT RESONANCES 
b; more than 100 times with a probadility of 5%. 
Almost 1% of the nuclei have capture cross sections IV. A. Zero Spin of the Target Nucleus 
that exceed their estimated values by more than a 
factor of 3. I 03. Thus, the existence of a number of 
strong absorbers is not surprising. 

The probability of large INNA cross sections 
occurring is slightly smaller (by 20%) but still 

18YU V. PETROV and A. I. SHLYAKHTER, Preprint 
LNPI-45i, Leningrad (1979) (in Russian). 

“The details of numerical calculations can be found in 

As the nearest resonance is removed from zero 
neutron energy, its contribution to the cross section 
diminishes and one should take into account other 
resonances. We obtain the function S,(z) within the 
framework of the following simple model. We sup 
pose that the s-resonances form an equidistant system 
displaced an amount D on the energy axis. Thus, 
we replace the Wipner distribution Eq. (9) by 

Ref. 18. P(q) = 6(Uj - 1) . (16) 

TABLE II 

The Distribution Functions X,(z) and Sin(z) 

z 

0.03 
0.04 
0.05 
0.06 
0.07 
0.08 

0.001 
0.002 
0.003 

0.001 
0.002 
0.004 

0.001 
0.002 
0.004 

0.0006 0.50 0.27 
0.003 0.60 0.32 
0.007 0.70 0.37 
0.015 0.80 0.40 
0.024 0.90 0.43 
0.035 1 .o 0.46 

0.09 0.006 0.006 0.006 0.046 
0.10 0.009 0.010 0.010 0.059 
0.12 0.017 0.020 0.020 0.085 
0.14 0.028 0.032 0.032 0.11 
0.16 0.040 0.046 0.047 0.14 
0.18 0.054 0.062 0.063 0.16 

0.070 
0.11 
0.14 
0.18 
0.22 
0.25 

0.079 
0.12 
0.16 
0.20 
0.24 
0.27 

0.081 
0.12 
0.17 
0.20 
0.24 
0.27 

0.19 
0.24 
0.28 
0.32 
0.36 
0.39 

T- 
O 

q4a r 
I I I2 

00 Mz)a z 
r 

0 

Sy(z) 

.I 1 I2 

0.30 
0.35 
0.39 
0.42 
0.45 
0.48 

00 Sin(Z) 

0.30 0.42 
0.35 0.46 
0.40 0.50 
0.43 0.53 
0.46 0.55 
0.49 0.57 

0.56 0.58 0.58 0.65 
0.62 0.63 0.63 0.70 
0.66 0.67 0.67 0.73 
0.69 0.70 0.70 0.75 
0.72 0.72 0.72 0.77 
0.74 0.74 0.74 0.79 

0.75 
0.77 
0.83 
0.88 
0.93 
0.95 

0.76 
0.77 
0.83 
0.88 
0.93 
0.95 

0.76 
0.77 
0.83 
0.88 
0.93 
0.95 

0.80 
0.81 
0.87 
0.91 
0.94 
0.96 

r 
J 

aThe distribution functions S&z) and S&z) were calculated by the Monte Carlo method (Ref. 19). The contributions of 200 
positive and 200 negative nearest resonances to the cross section were taken into account. For the calculation of each function, 
1 OS sample cross sections were generated. 
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The energy of the i’th resonance is 
- 

Ej +2i- 1 -x) (17) 

(in the notations of Sec. III). Here, i is an integer 
and x is the random variable, distributed uniformly 
in the interval 0 G x < 1. 

The contribution of the i’th resonance to the 
cross section is 

4 ti 
Yi = 7 (3 _ 1 - 42 - 

We calculate the probability density function 
using the Porter-Thomas distribution for the reduced 
neutron widths and neglecting the multilevel inter- 
ference phenomena, and the fluctuations df the 
radiation widths (these are the usual approxima- 
tions20) 

I co \ 

X6 (Z - C Yij - 
i’ z--o0 

(19) 

Here, yi are those defined in Eq. (18). The expression 
for the Laplace transform of the function P,(z) is 

p&q) = z arctg exp[-(2q)“2] . (20) 

It is inconvenient to use Eqs. (22) and (23) at 
small z. After developing the arc tangent in Eq. (20) 
as a power series in exp[-( 2q)“2] and inverting 
each term, we obtain 

P,(z) = z ( > 
2 3’2. 2 (-l)n.exp _ m + II2 

n=O [ 22 I - (24) 

This series converges rapidly for small z and the 
following approximation has an accuracy of better 
than 2%up toz= 1: 

P,(z) = ($)""exp(- 2) . GW 

The fast decrease of P,(z) at z + 0 is due to the 
fact that z can become small only if the widths of 
the large number of resonances become small simul- 
taneously. The function Eq. (24a) reaches its maxi- 
mum value at z, = & i.e., P,(z,> = 0.589. The plot 
of the function P,(z) is shown in Fig. 4. After 
integration of Eq. (24) from zero to z, we obtain’ 
the expression for S,(z), which is convenient at 
small z: 

S,(Z) = z 5 (-lY erfc $-$!y . 
n=O (2n + 1) [ 1 (25) 

Hence, 

S,(z) ,zo s (,z)1’2- exp(- &) . (25a) 

Equation (20) is derived in Appendix B. It leads to The function S,(z) is shown in Fig. 2. As was 

P,(z) = $ im exp(q) * Arth(siny)dy . 
expected, it differs significantly from the single level 

(21) approximation used in Sec. III at small z. 

For small y lying within the circle 141 < 7r2/8, p&q) 
can be developed as a series in (~cJ)“~. The inversion 
of each of its terms gives us the asymptotic expansion 
for large z: 72 

z 

( ) 

l/2 O” 

P,(z) =; 2 c 
lE2n I 

:- 1.5 

n=O n!(2z)"+i 
‘i; 

=(-g2(l +&+&+...) . (22) i la0 

$ 
Here, Ean are the Euler numbers E, = 1, E, = - 1, .$ 
b-4 = 5, E, = -61, .& = 1385 . . . (see Sets. 9.63 and z 0.5 
9.72 in Ref. 8). Hence, 2 

2 
1 1 a 

1+62+s+... (23 

This expression gives the accuracy of the single 2 = o/o’ 
level approximation of Eq. (14). 

Fig. 4. The probability density functions P,(z) and Pin(Z) 
for thermal neutron cross sections with (solid l&e, the Monte 

“G. de SAUSSURE and R. B. PEREZ, Nucl. Sci Erg., Carlo calculation) and without (dashed line) the Wigner dis- 
52,382 (1973). tribution of Eq. (9). 
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/V.B. Arbitrary Spin of the Target Nucleus 

It is convenient to take the expected capture 
cross section for I = 0 [Eq. (4a)l as a unit. The 
contributions of the systems of equidistant reso- 
nances with the spins 1, = (I + f) and J2 = (I- :) are 
proportional to g: = (I + 1)2/(21 + 1)2 and g$ = 12/ 
(21+ 1)2, respectively. 

Assuming both systems to be independent, we 
have for the Laplace transform of the distribution 
function 

Z&J) = % 2 iarctg exp[-g,(2q)1’2]arctg 0 

X exp [-g2(2q)“21 . (26) 

Equation (26) is derived in Appendix B. We 
develop arctg {exp[-gK(2q)“211 as a power series in 
exp[-gK(2q)*‘2](k = 1, 2) and invert it term by term 
just as in the case of / = 0: 

S,(z) = 0 5 4 2 * g i. (217 + 1:1:1- 2m + 1, 

X erfc 
1 

(22 + l)g, + (2n - 2m + l)g2 
(2z)“2 ] + (27) 

This expression is convenient at small z. For 7 << 1 
we have 

S,(i) ,To (z)‘($ z)“’ exp(- 2) . (27a) 

The comparison of Eqs. (27) and (27a) shows that 
spin causes the appearance of the pre-exponential 
factor 4/7f = 1.27. 

In the opposite case (large z) the following 
expression is valid for P,(z): 

X Arth(siny)*Jl*djj ,, z >>xg: 
7r2 . 

Hence, Eqs. (21), (22), and (23) give us 

S,(z) = 1 - / O” P,(y)& = 1 
z 

2 2 l/2 - IE2J(g:“+ +g;n+l) 
-44 = 7rz c n=* (2n + l)*n!(2z)” 

(28) 

. (29) 

Unlike the expansions (21) and (23), which are 
exactly equal to Eqs. (24) and (25), Eqs. (28) and 
(29) are valid only at z >> 8g$/n2 with the exponen- 
tial accuracy. 

Comparison of Eqs. (29) and (23) show that the 
spin influence appears only in the second term of 
the expansion as 

cqz)= 1 -; 2 1’2 0 ( 1 +v+p+... ) 
(29d 

and at large z the spin corrections are small. Thus, 
in the model of equidistant resonances, a small 
correction at large z and a factor 1.27 at small z 
appear to be due to spin. The direct calculation 
shows that the influence of spin is small at all z. 
A more accurate treatment confirms this conclusion 
(see Sec. V). 

V. THE INFLUENCE OF THE LEVEL 
SPACING FLUCTUATIONS 

V.A. The Capture Reaction 

The fluctuations of the level spacings change the 
distribution of the cross sections. As was shown in 
Sec. III at z >> 1, these fluctuations do not influence 
the asymptotics of S,(z). In the region z << 1, the 
cross section is determined by the parameters of 
many resonances. Therefore, there is a possibility 
that the cross section will decrease due to the 
increase of the level spacings. This effect slows the 
rapid decrease of S,(z). The exact analytical solution 
was not obtained in this case. However, the direct 
Monte Carlo simulation of the cross sections by 
means of a computer proved sufficient. Figure 2 
shows the functions S,(z) for / = 0 that were 
calculated with (solid line) and without (dashed 
line) the Wigner distribution of the level spacings. 
Apparently the accuracy of the model of equidistant 
resonances decreases quickly while z + 0. 

The influence of the level spacings fluctuations 
on the function P,(z) at z 5 1 is shown in Fig. 4. 
This function reaches its upper limit at z = z,; here, 
z, is -1.5 times less than in the model of equidistant 
resonances while the maximum value is higher. Thus, 
the most probable capture cross section is almost 
one-fifth the expected value, UT, calculated using 
Eq. (4a). (The scatter of points due to the Monte 
Carlo calculation prevents the exact determination 
of z,.) 

The probability of very small values of z is 
negligible (see Figs. 2 and 4 and Table II): S,(z) G 
I o-3 at z < 0.05. So, one can neglect the probability 
of the cross section being 20 (or more) times less 
than uy* and thus can establish the lower limit on 
possible values of uy. 

V. B. ld%!%‘A Reaction 

Here, we consider the case of the compound 
nucleus decay into a single final state. Now the 
widths of both the initial and final channel obey 
the Porter-Thomas distribution [ INNA reaction, 
(/~.a), etc.]. We calculated the function Yin(z) taking 
into account the Wigner distribution. The Monte 
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Carlo method was used. The results are shown in 
Fig. 4. The upper limit of pi,(z) is considerably 
higher and it is shifted to the left compared to 
P,(z). The most probable cross-section value appears 
to be about eight times less than 0% within the 
accuracy of the calculation. 

The influence of the level spacings fluctuations 
can be seen in Fig. 3 where the functions &(z) 
calculated with and without the Wigner distribution 
are shown. This influence appears to be less impor- 
tant than in the case of S,(z) (see Fig. 2). 

The probability of small z is considerably greater 
for the INNA reaction than for capture as one can 
see in Fig. 4 and Table II. However, the values less 
than z = 0.03 are hardly probable and one can adopt 
it as a lower limit of z. 

V. C The Data Analysis 

The calculated values of S,(z) are compared with 
data in Fig. 5. We have already noted that the 
calculated curves at the target nucleus spin values 
I = 0 and I f 0 are close to one another. The 
influence of spin is less than in the model of 
equidistant resonances. The difference between S,(z) 
for I = 3 and I = 00 is not more than the thickness of 
the curve I f 0 (see also Table II). 

We have included in the data set the nuclei for 
which both the thermal neutron capture cross sec- 
tions. and the parameters of several lowest s-reso- 
nances were known. Having the ratio z,.+ = u7exp/uT 
for each nucleus, one can plot a histogram for 
S rexp(z). Such a histogram based on the data for 
105 nuclei 45 G A < 240 (41 nuclei have zero spin) 
from Refs. 1 and 7 is shown in Fig. 5. All the nuclei 
(not fissionable in the thermal region), for which 
the parameters in Eq. (4a) could be determined 
reliably enough, were included. 

The agreement between our calculations and the 

2 = u/u* 
Fig. 5. Comparison of the calculated distribution func- 

tions ST(z) (depending on the target nucleus spin I) with the 
experimental data from Refs. 1 and 7. The data set includes 
105 nuclei with 45 <A G 240. 

experimental data is quite satisfactory. In the region 
z >> 1, it confirms the purely random distribution 
of the zero neutron energy on the scale of nuclear 
levels. The agreement in asymptotic behavior also 
confirms the validity of the Porter-Thomas distribu- 
tion Eq. (8) [see the discussion of Eq. ( 14) in 
Sec. III]. At z 5 1 the agreement with the data can 
be reached by taking into account only the latter 
distribution and the one of Wigner, Eq. (9). Within 
the accuracy of the data available, one can neglect 
possible deviations from these purely statistical dis- 
tributions as well as the possible multilevel inter- 
ference phenomena. 

There are no experimental data to verify the 
function Sin(z). However, it was obtained within the 
same model. The interference phenomena can appear 
to be more important in this case.*’ Nevertheless, 
we can recommend it for estimating the probability 
of the considerable deviations of thermal INNA cross 
sections [as well as (n,cu>, etc.1 from their expected 
values. 

V. D. Conclusion 

It appears convenient to consider actual thermal 
neutron cross sections as random variables distributed 
about their estimated values. Equations (4a) and (5), 
taken with the corresponding distribution functions 
(see Figs. 3 and 5 and Table II), allow prediction of 
the probability of various cross-section values. 

The probability of small values of z E uexp/u* is 
exponentially small. Thus, the lower limit of the 
possible cross-section values can be established reli- 
ably enough. On the other hand, the probability of 
the occurrence of the cross sections by orders of 
magnitude exceeding their expected values is notice- 
able. 

The agreement of the calculated distribution 
function for capture S,(z) with the experimental 
data (see Fig. 5) indicates that the statistical approach 
can be used both for resonance parameters and 
thermal cross sections. This seems to be an indepen- 
dent confirmation of the statistical model. 

APPENDIX A 

In this Appendix we verify the hypothesis that 
the zero energy of the incident neutron is located 
in a purely random way with respect to the com- 
pound nucleus levels scale. 

In the statistical model, it is generally assumed 
that the levels of the excited nucleus are scattered 
near the neutron emission threshold in such a way 
that spacings between the neighboring resonances 
obey the Wigner distribution, Eq. (9). If the neutron 
zero energy can enter any point of the energy scale 
with equal probability, then the chance to enter a 
given interval is proportional to its width uo. Inside 
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this interval, the zero neutron energy is distributed 
with uniform probability and P,(x) = ), being inde- 
pendent on the first negative level position. The 
distribution P,,(x) is still normalized to u,,, but unlike 
Eq. (10) the possibility of x variation in both 
directions must be considered (-us <x < uO). 

Let us obtain the probability density of the 
first resonance position w = (u, - x)/2. It is deter- 
mined by the difference of the two independent 
random numbers u0 and x following P,(u,) and 
P,(x) distributions. Hence, 

Xa(w-y)=exp(--$w2) . (A.l) 

The PL(w) distribution was obtained in 1968 by 
Lynn2’ in connection with the problem of the 
possible nonstatistical effect in the distribution of 
the neutron emission thresholds. Lynn compared 
the Pi(w) distribution with the data and satisfactory 
agreement was found. Since the new data appeared 
during the last years, it seems reasonable to repeat 
the comparison with the improved statistics. 

All the nuclei with known spin of the first- 
resonance and mean spacing between the s-reso- 
nances”’ were included in our analysis. The level 
systems with J, = I + 3 and J, = I - 3 were analyzed 
independently. The final data set contained 206 
points (instead of the 60 points in Ref. 21). 

The experimental histogram is shown in Fig. 1. 
The probability densities p(w) were calculated both 
with (solid line) and without (dashed line) the 
Wigner distribution. The good agreement of the 
Lynn distribution with the experiment confirms the 
hypothesis on the random distribution of the inci- 
dent neutron zero energy with respect to the com- 
pound nucleus levels. 

In the region of small w, the Wigner distribution 
does not change the result obtained in the model of 
equidistant resonances noticeably, the difference 
becoming significant only at w x 1. The existing 
agreement of PL(w) distribution with the data gives 
an additional support to the Wigner distribution of 
Eq. (9). It should be emphasized that here tire 
statistical approach was applied to the totality of 
the resonances of many nuclei, not of a single 
nucleus. 

APPENDIX B 

LAPLACE TRANSFORM OF THE FUNCTION S,(z) 
IN THE MODEL OF EQUIDISTANT RESONANCES 

Let us consider the target nucleus with zero 
spin 1. In accordance with Eq. (19), the function 

P,(z) can be represented as 

P,(z) = J’ dx fi f=-OS 1 ~mdti.Pp-T(fi) 1 
X6 [ z - yj y&y) . it=-cc 1 

I 

(B-1) i 

Carrying out the Laplace transformation and ! 
changing the order of integrations, we obtain 1 1 

q(q) = drn exp(-qz) -P,(z)& 

“d*i.exp[-.~~(ti)].Pp-T(Ti) I 
i 

03.2) 

Calculating the inner integrals and taking into ac- 
count Eqs. (8) and (18), we obtain 

q(q) = jy dx fi 1 I 

i=-00 1 + S 

[ 
4 

I 

i/2 . 

7r2 (2i - 1 - x)2 
i 

I 
04.3) 

For this infinite product, the following formula is 
i 

valid (see Eq. 1.438 in Ref. 8): i 5 
1 

I+?- Cl 1 ch( t3qy2 + COS7r.Y 
7r2 (2i - 1 - X)’ = 1 + cos7T.x . i 

(B.4) 1 

Substituting Eq. (B.4) into Eq. (B.3) and integrating 
over x, we obtain finally the Laplace transforms of I 
P,(z) and S,(z): i 

F&q) = z arctg exp[-(2q)“2] 

5;(q) = 6 arctg exp[ -( 2q)lj2] . (B.5) i 

In the case of the arbitrary spin of the target ! 
nucleus, the contribution of the i’th resonance 
belonging to the k’th system differs from Eq. (18) 
by the factor gg: 

ti 
- 1 -x)i ’ k=l,2. (B.6) 

I 
Assuming both systems to be independent we have, 
instead of Eq. (B. I), 

*‘J. E. LYNN, The Theory of Neutron ResOna*ce 
Reactions, Oxford (1968). 
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Note Added in Proof: After this work was com- 
pleted, we learned about the paper by Cook and 
Wa11.22 They used data on the position of the first 
resonance and Monte Carlo method for generating 
probability distributions of thermal capture cross 
sections around estimated values. No exact analytical 
solution was obtained. 

Just as in the case I = 0, we obtain 
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P&q) = ; 0 2. =ctg expf-gl(2qY~21 
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