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ABSTRACT

As epidemiologists search for smaller and smaller effects,
the statistical uncertainty in their studies can be dwarfed by
biases and systematic uncertainty.   We here suggest that Monte
Carlo techniques are very useful to estimate some of these biases
and uncertainties, and perhaps to avoid them entirely.  We
illustrate this by two simple Monte Carlo simulations.  Firstly
we show how often false positive findings, and sometimes false
negative findings, can result from differential misclassification
of the exposure status. Secondly we show how a bias, that we call
"the binning bias", can be caused if the investigator chooses bin
boundaries after he has seen the data.  We show how an allowance
might be made for such a bias by increasing the uncertainty
bounds.   This would put the presentation of the results on a par
with the presentation in physical sciences where a quantitative
estimate of systematic errors is routinely included with the
final result.   Finally we suggest how similar Monte Carlo
simulations carried out before and during the study can be used
to avoid the biases entirely.
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1. INTRODUCTION

     The first publication of one of the authors (RW) was an
electronic device to produce random numbers for use in
statistical experiments on extrasensory perception (Wilson 1949). 
The earliest exposure to Monte Carlo analyses was during  a visit
to Cornell University in 1950 where Robert Wilson was using Monte
Carlo methods to follow the development of electromagnetic
showers of electrons and photons in a block of lead (Wilson
1950).   This is a complex problem that is only analytically
solvable using simplistic approximations (Rossi and Greisen
1947).  In this case the random  numbers were selected by a
roulette wheel. Now, 45 years later, this problem is routinely
solved by the EGS Monte Carlo program,  and although the random
numbers are routinely selected electronically by  computer, the
principle is the same. 
 
    In the field of risk analysis, it is often necessary to fold
a number of independent distributions of quantities that are
combined together. When the  quantities are multiplied, and the
distributions can be  approximated by lognormal distributions, a
simple analytic solution is possible (Crouch and Wilson 1981).
The result is itself a lognormal distribution with the standard
deviation obtained from the standard deviations of the individual
distributions by adding in quadrature.   When many 
 distributions, that are not lognormal but nonetheless smooth, 
are folded together, the result approaches closer and closer to
the lognormal,  making a lognormal approximation adequate for
most purposes.  However, when different distributions are added,
this analytic solution is not possible, and a Monte Carlo
approach has been used for many years (Crouch, Wilson and Zeise
1983). In 1996, Monte Carlo programs are often used for the
simpler problem of combining distributions of quantities that are
multiplied together also.

     A much more powerful and important role of Monte Carlo
techniques in science lies in the simulation of complex
experiments and observational protocols where all the parameter
space  is unavailable for measurement.  There are often
experimental "constraints" on the measurement.   In such
situations analytic solutions are not possible. In physical
sciences Monte Carlo programs are now routinely used in such
simulations.   This is done both before the experiment is done,
to ensure that the experimental parameters are chosen so that the
experiment has a possibility of detecting the effect under study,
and after the experiment is performed the data are compared with
results of Monte Carlo simulations one of which includes the
effect be



xg observed and the other deliberately excludes it.

We have used, and are now using,  Monte Carlo simulations in
toxicology,  for modeling the  results of the rodent bioassays of
the National Toxicology Program (NTP).  We are studying how the
choice of a significance value (P value) in the rodent bioassay
affects the number of claimed carcinogens and anticarcinogens.  
(Gray, Linkov, Shlyakhter and Wilson 1996).   In an earlier paper
we demonstrated how the constraints that are set by  limited
sensitivity, and the observed relationship between toxicity and
carcinogenicity affect correlations of carcinogenic potency 
(Shlyakhter, Goodman, and Wilson 1992). This simulation involved
many steps;
 (a)  simulating the distribution of toxicity of the chemicals in
the rodent bioassays,
(b)  simulating the approximate carcinogenicity/toxicity
relationship including using a Monte Carlo program to include the
random fluctuations in this relationship,
(c) simulating the rodent bioassay experiment including the
random sampling error, 
(d) analyzing the results of that simulated experiment for
carcinogenicity, and then
(e)  studying the correlations between the "carcinogenic potency"
calculated from the simulated results.

Attempts to discuss this analytically were less complete and
resulted in confusion and criticism.

The purpose of this paper is to illustrate how these Monte
Carlo techniques might be helpful in studying potential biases,
and hence uncertainties,  in epidemiological studies.  These
biases are becoming steadily more important as epidemiologists
search for smaller and smaller effects.   Yet epidemiologists
still routinely quote only the statistical sampling error for
their studies.  
Such biases can be viewed as analogues of systematic
uncertainties in physical measurements.   The aim of many modern
epidemiologists is to quantify these biases and uncertainties as
much as possible.   We suggest that Monte Carlo simulations are a
useful tool to this end.   The idea of using Monte Carlo studies
in  epidemiological design is not new.  Feinstein and Landis
(1976)  used them to quantify the effect of residual biases on
the  frequency of spuriously significant results in randomized
clinical  trials. More recently, Richardson and Gilks (1993)
demonstrated how Bayesian estimation of risk factors in the
presence of measurement errors can be carried out for common
epidemiologic designs.  In this they used Gibbs sampling, an
advanced sampling technique that is gaining increasing popularity
in statistical and biomedical applications (Gilks et al. 1993). 
These are approaches that are complex enough that they might
inhibit widespread application.  However, the procedure is in
fact, very simple and can be simply applied.   To illustrate this
we give two examples of using simple Monte Carlo simulations.  



In the first we show how the effects of exposure
misclassification can create false positives in an
epidemiological study and in the second, an effect we call
"binning bias",  we show how big a bias can be created by
choosing the boundaries of the bins in which the data are
presented and calculated after the data have been collected.

2.  SIMULATION OF EXPOSURE MISCLASSIFICATION
 IN CASE-CONTROL STUDIES 

  We simulated a case control study with a population
exposed to a non-harmful agent.   We assume that everyone has a
small probability, p=0.001 of contracting a certain disease and
study the statistical association of the incidence of this
disease with exposure to the agent in a 2 X 2 table.  As is usual
for epidemiological studies the results are presented in terms of
a Risk Ratio (RR). The uncertainty in sampling makes RR
uncertain, and for large samples, the estimate of ln(RR) follows
a normal (Gaussian) distribution (Rothman 1986). Uncertainty in
the results of epidemiologic studies is reported as 95 percent
confidence intervals (95% CI) for the relative risk, RR, which
represent uncertainty in the value of RR.   If the agent is non-
harmful the odds ratio should be close to unity, and deviate from
it only by statistical, sampling error.  Therefore we define the
"true" odds ratio to be unity (OR=1) (odds ratio is the measure
of relative risk in case-control studies). We assumed that in a
small fraction (f) of subjects the exposure status was
misclassified, and we further assumed that this misclassification
can depend upon whether the subject is a "case" or a "control".  
The question asked was how often do the 95% confidence intervals
cover this true value under different assumptions about the
fraction (f) of subjects for whom exposure status has been
misclassified?   The simulation was repeated 1000 times, each
with a different set of random numbers, to reduce the statistical
(sampling) error in the answers.

 A population sample was considered with 100,000 exposed and
100,000 subjects.    The number of "control" subjects was chosen
to keep, on average, the numbers of "cases" and "controls" equal.
In this example the expectation values for cases was 100, so that
the number of exposed plus non-exposed controls was assumed to be
200.   For each "case-control simulation," the computer simulated
the numbers in four cells of the 2x2 table: exposed cases, a,
exposed controls, b, non-exposed cases, c, and non-exposed
controls, d.     In the simulation the observed numbers will
differ from the expectation by the sampling error.

The effects of misclassification were simulated by moving a
random fraction of subjects across the cells of the 2x2 table. It
was assumed that the observed numbers in each cell are a1, b1, c1,
d1. Here a1=a+r1"c, c1=c(1-f1), b1=b+f2d, d1=d(1-f2) and f1, f2 are



random numbers representing the fractions of misclassified
subjects among cases and controls. 

Specifically, we assumed that f1 followed a normal
distribution with zero mean and standard deviation F truncated
at zero so that only positive values of f1 were allowed.

The parameter F sets the scale of the misclassification
rate.

The value of f1 is randomly determined from this
distribution in each Monte Carlo simulation.  This describes a
situation where all truly exposed cases were classified correctly
but some non-exposed cases were classified as exposed. For f2 a
non-truncated normal distribution with zero mean and the same
standard deviation F was assumed.

This simulates a situation where exposed and non-exposed
controls were equally likely to give wrong answers about their
exposure history.

This example was deliberately chosen to simulate to describe
a describe a tendency (which has often been suggested in
epidemiological studies) of cases to better recall (and sometimes
to exaggerate) their exposure history as compared with controls.
For each of the 1000 different simulations (in a given set of
simulations) different misclassification fractions f1 and f2 are
randomly chosen.  The rate of misclassification is determined by
the parameter F which remains the same for each of the 1000
simulations.

If one sets f1/f2/f one can simulate a study with a fixed
amount of misclassification.  However, in many cases we only have
a probabilistic estimate of the misclassification to use a
distribution for f1.  If one sets f2 to be larger than f1, or the



distribution happened to be larger, one simulates a differential
misclassification.

The simulated odds ratio was calculated to be OR = a1d1/b1c1;
the upper and lower bounds of the 95% Confidence Interval (CI)
were calculated to be: OR " exp(±1.96(1/a1+1/b1+1/c1+1/d1)1/2).

We illustrate these results by plotting a cumulative
distribution of the normalized deviation x from the "expectation"
value (unity) of the Odds Ratio (OR).   This procedure is similar
to that used by one of us in a graphical representation of
unsuspected (systematic) errors (Shlyakhter 1994).   The
normalized deviation x is given by ln(OR)/SE(ln(OR) where SE is
the standard error. Accordingly x was calculated to be
x=ln(OR)/(1/a1+1/b1+1/c1+1/d1)1/2 and the cumulative distribution
of the x values in the 1000 simulated studies is plotted in
Figure 1. In this plot the intersection with the vertical at the
deviation value of 1.96 (the value of y with x = 1.96) is the
"fraction of false positives" at this chosen "level of
significance" gien by x.  The intersection with the horizontal at
the cumulative probability (fraction of false positives) = 0.025
is the normalized 95% confidence bound.  For F=0.01 the
misclassification is minuscule and the results of Monte Carlo
calculation follows a Gaussian distribution - as it should
(verifying that our calculation is correct). But even for a
relatively small fraction of misclassification (F=0.1) the tails
extend far beyond the Gaussian distribution and the upper 95%
Confidence bound (corresponding to 0.025 on the y axis) is given
by x = 3.8 instead of x = 1.96 for the Gaussian distribution.
Looked at another way, the probability that errors exceed 3.8
standard deviations is 2.5% compared to the much smaller
1.45"10-4 for the Gaussian distribution.

Differential misclassification of exposure status produces
both false-positive findings and false-negative findings but the
increase of false negatives is not nearly as much as the increase
of false-positives. This is illustrated in Figure 2 where both
Cumulative Distribution Functions (CDFs) and complementary CDFs
(1-CDF) are shown with (F=0.1) and without (F=0.0)
misclassification. As before the true OR=1. Statistically
significant False-negative findings ("exposure is beneficial")
occur when the upper bound of the 95% CI is below one; this
corresponds to x<-1.96.



3. ANALYSIS OF POOLED STUDIES

As epidemiologists look at smaller and smaller effects no
one epidemiological study is large enough to provide a
statistically significant result.   For example, the various
studies of workers at nuclear power plants have been pooled
together to provide a "pooled" result.   If each of the studies
was free of biases and other non-statistical errors, the
combination is straightforward.  

The summary estimate of OR from n studies pooled together is
calculated as follows. First, we assign to each study (i) a
weight, wi=1/var(ln(ORi)) where var is the variance of the
lognormal distribution; wi is inverse of the squared width of the
95% CI on the log scale. These weights are used in calculation of
the summary odds ratio OR and 95% CI: ln(OR)=(Ewiln(ORi))/Ewi,
1/var(ln(OR))=E(1/var(ln(ORi)) (Greenland 1987).  But this does
not tell us what to do about various biases and the non-
statistical errors.
 

Monte Carlo simulations can also help in the understanding
of how uncertainties change when several studies are pooled
together. As before, we simulate a set of studies conducted on
the population exposed to a non-harmful agent so that the "true"
odds ratio OR=1. We ask the following question: for a given
fraction of subjects with misclassified exposure status, how does
pooling several studies together affect the probability that the
95% confidence intervals cover this true value? 

We again consider a population sample with 100,000 exposed
and 100,000 non-exposed subjects and assume that both groups have
the small probability, p=0.01, (the same for both exposed and non
exposed groups but a larger probability than in the previous set
of simulations) of contracting the disease under study. For the
i-th "case-control study," we simulate the "true" numbers of
exposed cases, ai, exposed controls, bi, non-exposed cases, ci,
and non-exposed controls, di and the "apparent" numbers, a1i, b1i,
c1i, d1i; the difference between "true" and "apparent" numbers
accounts for exposure misclassification. For each study, we then
calculate the simulated odds ratio, ORi=a1id1/b1ic1i, the upper and
lower bounds of 95% CI: ORi"exp(±1.96(1/a1i+1/b1i+1/c1i+1/d1i)1/2).  

We again calculate the normalized deviation from the null
value, x=ln(OR)/SE(ln(OR)), and plot the cumulative distribution
of x values. A set of pooled studies will produce false-positive
results if the apparent value of pooled estimate ln(OR) is more
than its two standard errors away from the null value. Results of
1,000 trials for individual studies (n=1) and combinations of
n=5, n=10 and n=30 studies assuming 10% average misclassification
rate (ERR=0.10) are presented in Figure 3. The probability of a
statistically significant false positive finding, x>2, increases
from 12% for n=1 to 28% for n=5, to 40% for n=10, and to 70% for



n=30. 

This is not an unexpected result.   As the number of people
in the total of all the pooled studies increases, the statistical
sampling error decreases.   But the biases and misclassification
errors remain the same and can now dominate the total
uncertainty.
The Monte Carlo technique lends itself easily to complex
extensions.   One can simulate, for example, the pooling of a set
of studies where the average rate of exposure misclassification 
(determined by ERR) varies from study to study in a defined way.

4. ADJUSTMENT OF PARAMETERS AFTER THE DATA COLLECTION

It is a well known principle of statistics that in assessing
the statistical probability of an event or experimental result,
decisions about what data to include and exclude, the size of the
cohort and the boundaries of the bins in which the data are
collected must not be modified to maximize the result.   Feynman
had a dramatic way of expressing this to his freshman class.   
Coming into class he said, "You know, the most amazing thing
happened to me tonight. I was coming here, on the way to the
lecture, and I came in through the parking lot.  And you won't
believe what happened.  I saw a car with the license plate ARW
357!  Can you imagine?  Of all the millions of license plates in
the state, what was the chance that I would see that particular
one tonight?" (Goodstein, 1989)  We can easily work it out: 3 is
one out of 10 numbers, 5 is one out of 10 numbers, 7 is one of 10
numbers, A is one of 26 letters, R is one out of 26 letters, and
W is one out of 26 letters.  If we multiply these numbers
together we find a low probability of one in eighteen million. 
Yet Feynman saw it.  This commonplace experience does not seem
that improbable. What is the answer to this paradox? 

As presented, the answer to this paradox is obvious:
Feynman did not ask the question about the particular license
plate until he knew the answer.  It then made no sense to ask the
question. This appears in disguised forms in many branches
of science.  When a scientist makes this mistake we have called
the error "falling into the Feynman trap" (Shihab-Eldin,
Shlyakhter and Wilson (1992).  When this leads to an error in an
experimental science, the experiment can be repeated and the
mistake corrected.  In the field of epidemiology, there are
several well-known examples of such errors persisting into public
policy.  In addition to the radiation examples in the paper noted
above, we note that an early study of whether soft tissue
sarcomas are caused by herbicide sprays (2-4-5T) the paper
erroneously included in the analysis those cases that had brought
the subject to the authors attention in the first place (Eriksson
et al. 1981). These should have been left out as "hypothesis
generating" events.   It is therefore especially important for
any future investigator to be sure that no such logical errors
are made.  



Ideally in epidemiology a prospective study is performed and
a rigid protocol for the study is developed before any cases even
develop.  But few scientific experiments and few epidemiological
studies keep to this ideal.  It is therefore important to
understand the extent of any possible bias or uncertainty that
can be introduced by such a failure.  In this study we analyze
one such possible failure:  the adjustment of the boundaries of
the bins into which the data are sorted and analyzed after the
data have been collected and seen by the investigator.   That
this can lead to error (a version of the Feynman trap) is known
to most epidemiologists.   The present authors have discussed
this with a small (non random) sample of epidemiologists who
regard such fine tuning of bin boundaries as the usual practice.  
One good epidemiologist stated to us that he routinely varies the
bin boundaries to ensure that the data are "robust" with respect
to such a change, and if they seem to be, then he chooses the
boundaries that makes them look the best in the final
publication.   Ensuring robustness in this way can avoid the most
egregious of errors, but a more structured approach would be
preferable.

In this simulation, we investigate the magnitude of the
errors that arise from incorrectly adjusting bin boundaries in
full knowledge of the data to maximize the effect.   In
situations where the error introduced is small, no problems
arise.  In situations where the error introduced is large, the
level of statistical significance can be appropriately modified. 
It will be shown that in some realistic circumstances the errors
introduced are large.   This being so, we urge epidemiologists to
state in their papers the extent to which the protocols were
rigidly chosen in advance.

Although we have chosen this particular set of simulations
with a particular controversial epidemiological study in mind,
where it has been informally suggested that the authors
deliberately did so adjust the bins, we feel to make a specific
reference would detract from the general argument that we are
endeavoring to discuss and merely turn the paper into an
undesirable ad hominem discussion.

5. SIMULATION OF THE BINNING BIAS

We assume that there is an epidemiological study where data
are collected into six bins.   For example they can be five
different exposure categories.  The odds ratio is calculated for
the data in each bin.   The epidemiologist expresses the result
in terms of the odds ratio and the confidence limits.   According
to the usual rules, the confidence limits are chosen so that 95%
of the data lie within the limits:  2 1/2% lie above the upper
limit, and 2 1/2% lie below the lower limit.  The epidemiologist
then describes a situation where the lower confidence limit is
greater than 1 as statistically significant.  



In this example, 2.5% of all studies where the true odds
ratio is unity will be described as statistically significant.
The first (very elementary) example in which an unwary
epidemiologist might modify the way of presenting the results
after the data were seen is to decide to choose only the one bin
out of six where the odds ratio deviates most from unity.   Then
the number of false positives becomes 6 X 2.5% = 15% instead of
the usual 2.5%%   This is an example of an error emphasized by
Tippett, which elsewhere we have called the "Tippett trap"
(Shihab-Eldin, Shlyakhter and Wilson 1992).  This typically
occurs when a distribution of cases is plotted on a map grid,
(each element of the map grid being a "bin" for this purpose.  
If the distribution of people in the grid is unequal, this simple
calculation is no longer applicable, but the true calculation can
be made by Monte Carlo methods.   But there are more
sophisticated errors.

We simulate a group of case control studies that are done
with N cases (where N is varied from 50 to 2000) and an equal
number of controls, taken from a large pool of 10,000 persons.  
Using the pseudorandom numbers generated by the computer we
simulated the study 30,000 times.  Each case and each control has
a dose value assigned randomly equally distributed between 0 and
2.  Exposed is inexactly defined as a dose between 1 and 2; and
unexposed is defined as a dose between 0 and 1.  This also
simulates a more general distribution of doses by imagining them
to represent distribution of the function f(d) uniform between 0
and 2. In Figure 3 we show a cumulative plot of the deviations of
the logarithm of the odds ratio from the theoretically expected
zero value.  In a proper study design, it will be normally
distributed.  We see that in 2.5% of the simulations the
deviation exceeds 1.96 as expected.  This quantity is sometimes
called the percentage (fraction) of false positives.

We have then modified the bin boundaries (as shown in figure
4) by up to a fraction a of the bin width matching the dose
boundaries from 1 to 1±a.  We recalculated the odds ratio and
decided to choose this simulation if thereby the odds ratio can
be increased.  Figure 4 shows a typical simulation with a=0.5
where the boundary was moved progressively from 0.5 to 1.5
increases. The odds ratio is the greatest (=2.2) at 1.3 which
point is selected.  In Figure 5 we show several plots such as to
that of Figure 3 for different values of a assuming the above
selection.

The fractional number of times the deviation exceeds 1.96
(fraction of false positives) increases from a value of 2.5%,
with no bin readjustment, to 12.5% if the boundary can be
readjusted (moved) by 30% (a = 0.3).  This is shown further in
figure 6, where fraction of false positives is plotted as a
function of the amplitude of the movement of the bin boundary
(expressed as a fraction of the bin size).



     2  We note here that physical scientists often use the word
"error" in statistical calculations.  In any field close to
medicine "error" has a pejorative meaning, often with legal
consequences, and the word "uncertainty" is to be preferred.

We can also look at the result in a different way.  We can
demand, for good and sufficient reasons, that we will accept 2.5%
of false positives, but no more.  How much do we have to alter
the significance value to ensure that this is the case?  In
figure 7 the intersection of the horizontal line at 2.5% shows
the confidence limit properly adjusted for the bias (or error)
introduced by bin boundary readjustment.   It can be seen that
this readjustment increases the uncertainty, or "error"2, from
1.96 standard deviations to 2.4 standard deviations as a
increases from 0 to 0.45.  

This increase in false positives at the 1.96 sigma limit, 
is slightly larger when the number of cases increases but this
increase saturates.  The increase in the confidence limits, can
approximately be expressed by multiplying the statistical
uncertainty by a factor (2.4/1.96)=1.22 which is approximately
independent of the number of cases.

6. ALTERNATE PROCEDURES

Although it is possible to estimate the magnitude of a bias
or error introduced by varying the bins after seeing the data, 
and even expand the uncertainty range to include this
possibility, it would obviously be preferable to avoid having to
make any such correction.   Monte Carlo simulation of an
experiment or study enables one to adjust bin boundaries to
maximize or minimize the effect under study before the data are
analyzed.   The procedure, already widely used in the physical
sciences,  is to simulate the epidemiological study in advance,
and to simulate any possible change in the binning or other
criterion without reference to the data.

It has already become standard practice to ask questions in
advance:   what are the questions that we hope that this study
will answer?   and given the known biases and known statistical
(sampling) error, can the proposed study, with its chosen
protocol answer them?   

These questions are usually answered by an analytic
calculation.   But they can also be answered by a Monte Carlo
simulation, at which time these more sophisticated questions can
also be asked.   For example if one has a reasonable number for
the expected incidence of the disease being studied,  and a
knowledge of the number of people and their age distribution in
the study, one can decide on the appropriate bins in which to
present the data using the simulated data.  Then the bins so
chosen can be used for presentation of the actual data.   This



would avoid completely the troublesome bias.

7. CONCLUSIONS

The, interpretation of the results of observational studies
and their use in regulatory risk assessment becomes progressively
more difficult as epidemiologists deal with smaller risk ratios
(Taubes 1995). Currently, the reported 95% confidence intervals
reflect only sampling errors and do not formally include
uncertainty caused by misclassification and confounding. This
makes it hard to describe an overall uncertainty in the
epidemiological result. We have applied the techniques of Monte
Carlo simulation to the analysis of the effects of two possible
sources of systematic uncertainties in case-control studies with
slightly elevated risk ratios. We show that even a small fraction
of subjects with misclassified exposure status (differential
among cases and controls) can cause a considerable fraction of
statistically significant, but false positive, results. The
effect of differential misclassification is more important for
large studies where random errors are relatively small and when
several studies are pooled: upon pooling, the statistical
uncertainty is reduced but the misclassification uncertainty
stays approximately constant.

We have seen that in an example which is not implausible,
adjustment of the bins, or other choice of data presentation
after the data are collected can result in considerable error,
which can be allowed for by increasing the statistical error
considerably.  In high energy physics, a field in which one of us
has had considerable experience, it has been noted that good
experimenters emphasize in their papers any important feature of
experimental design, or data analysis.  If an important feature
is not emphasized in a paper, the usual reason is that it has
been ignored.  By analogy we suggest that it is important for
each epidemiologist to make clear and obvious the extent to which
the prechosen protocol was strictly obeyed in his study, and if
it was not, the estimated effect of this failure.  This is
especially important now that epidemiologists are looking at
smaller and smaller risk effects.   It has, for example, been
noted that if the risk ratios are less than about 2, information
other than from the epidemiological studies is essential before
any association can be accepted as causal or even real.  Solution
of problems often travels by parallel roads in different branches
of science: as a particular branch matures and starts looking for 
smaller and smaller effects, researchers pay more attention to
uncertainty analysis and modeling. We hope that this study will
help epidemiologists in this effort.
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FIGURE CAPTIONS

Figure 1: Results of Monte Carlo simulations illustrating the
effect of exposure misclassification on the frequency of false-
positive results in case-control studies. Cumulative probability
that apparent normalized logarithm of the odds ratio, (OR),
x=ln(OR)/SE(ln(OR)) exceeds given value is shown for several
values of the parameter ERR. This parameter represents the
average fraction of subjects with misclassified exposure status
(see Section 2 for details). The true value of OR=1 (the risk is
not elevated). Studies that produce values x>2 are false-positive
because the lower bound of the 95% confidence interval (95%CI)
for OR is above the true value OR=1.

Figure 2: Probability of false-positive (x>2) and false-negative
(x<-2) findings for true OR=1.00.  For ERR=0.01, probabilities of
false-positive and false negative findings are both close to 2.5%
as they should. For ERR=0.1, fraction of false-negatives is 6%,
while fraction of false positives is 30% due to differential
misclassification of exposure status. 

Figure 3: Probability of false positive findings in case control
studies for individual studies (n=1) and combinations of n=5,
n=10, and n=30 studies assuming that exposure status was
differentially misclassified for 5% of subjects (ERR=0.05).

Figure 4: Illustra arbitrary selection of the bin boundary.  In
this particular simulation the bin boundary is varied from 0.5 to
1.5 (a=±0.5).  The number of simulated controls and cases for
each dose is shown with the calculated odds ratio.

Figure 5. Cumulative distribution of X values obtained by the
arbitrary binning procedure.   Distributions were obtained for
different values of amplitudes of bin shifting:
(a=0.01, 0.1 and 0.4). 

Figure 6.Fraction of false positives obtained by binning
procedure as a function of the amplitude of bin shifting for
different study sizes (number of cases = 200, 400 and 600).

Figure 7. 95% confidence interval for the distributions of X
values obtained by binning procedure as a function of amplitude
of bin shifting, a. The Confidence interval was estimated as
value of X which has 2.5% of cases with X above it. The sampling
error of this estimate is about 0.05.
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Table I.

cases controls
 exposed a b 

unexposed c d

Odds Ratio, OR=ad/bc

ln(OR) follows normal distribution with the mean
ln(ad/bc) and 
st. deviation SE(ln(OR)=%(1/a+1/b+1/c+1/d)

Simulation:

cases controls
 exposed a1=a+f1c b1=b+f2d 

unexposed c1=c(1-f1) d1=d(1-f2)
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