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Abstract 
A new format for presenting uncertainty in the results of 

multiple epidemiologic studies of the same outcome is 

suggested. A set of 95% confidence intervals for relative 

risk, RR, is transformed to a frequency distribution of the 

normalized deviations, ln(RR)/SE(ln(RR)), from the null 

value ln(RR)=O (RR=l). I assume that deviations from 

RR= 1 are due to unaccounted residual biases and 

compare the distribution of these deviations with the 

distributions of the actual errors in physical measurements 

where the true values have subsequently become known, 

and the incidence of large errors can be estimated. 

Comparison of these distributions can, by analogy, help 

to understand how convincing is the evidence of elevated 

risk in observational studies. 

1 Introduction 

Epidemiological results are often presented in terms 

of a Risk Ratio (RR). The uncertainty in sampling makes 

IPR uncertain, and for large samples, the estimate of 

Zn(RR) follows a normal (Gaussian) distribution [l]. 

Uncertainty in the results of epidemiologic studies is 

commonly reported as 95 percent confidence intervals 
(95% CI) for the relative risk, RR, which represent 

uncertainty in the value of RR. These 95% CI account 

only for one component of uncertainty, namely the 

random errors caused by the finite number of subjects. 

Non-statistical errors in observational studies become 
steadily more important as epidemiologists deal with 

smaller risk ratios. Although investigators always try to 

minimize the uncertainties caused by various possible 

biases (coming from such sources as selection, 

differential misclassification, and confounding), they 

cannot quantify the effect of the residual biases on 

uncertainty in the results. Such biases can be viewed as 

analogues of systematic uncertainties in physical 

measurements. 

Uncertainties associated with random errors in physical 

experiments are usually controlled by increasing the 

number of independent measurements until random errors 

become comparable to the estimated systematic errors. 

Random and systematic uncertainties are then combined 

into a “combined standard uncertainty” which serves as 

the basis for calculating intervals corresponding to the 

required level of confidence. Even so, the history of 

physical measurements demonstrates a strong tendency 

for researchers to underestimate uncertainties in their 

results (see refs. [2,3] and section 2 below). 

On the other hand, in observational studies, sources of 

bias and their probable effect on the value of RR are 

discussed only qualitatively. The relative magnitude of 

random and systematic errors can differ from study to 
study; one can expect that systematic errors are more 

important for large studies when 95% CI are narrow. 

In this paper, I propose a new graphical procedure for 

presenting the results of epidemiologic studies which may 
help in evaluating the strength of evidence provided by 

multiple epidemiologic studies of the same outcome. 
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The quality of data available to researchers in 

observational studies is generally lower than the quality of 

data used in experimental science [4]. The frequent 
occurrence of contradictory results in case-control studies 

of the same outcome [S] suggests that residual biases 

(such as differential misclassification and confounding) in 

observational studies may be even more widespread than 

are the unsuspected systematic errors in physical 

measurements. I assume that the true risk is not elevated 

and consider the observed RR values as deviations from 

this assumed “true” value. I then use an analogy and 

compare the distribution of RR values with the distribution 

of the actual deviations from the true values in physical 

measurements. If the two distributions are similar, one 

can argue that the reported elevated values of risk can be 

attributed to some residual biases. 

2 Distribution of errors in physical measurements 

The long record of measurements of elementary particle 

properties has prompted several early studies of the 

temporal evolution of errors. Shlyakhter et a2. [2,3] 
expanded these original studies by following trends in 

several data sets. A convenient measure of the deviation 

of “old” values from the “true” values is x=(A,,, - 

A,,J/A,, with A,, the new (“true”) value, A, the 

previously measured value, and AoLi the old standard 

error. 

In Figure 1, I present the results of the analysis of the 

data set of masses and lifetimes of elementary particles [6] 

and the data set of neutron scattering lengths [7]. 

Cumulative frequency distributions of x for each dataset 

are shown together with the cumulative normal (Gaussian) 

curve. On a logarithmic scale, this cumulative curve may 

look unfamiliar to the readers accustomed to the bell- 

shaped probability density curve of the normal 

distribution. To verify that this is the same distribution 

one can compare the upper percentiles with the values 
tabulated for the normal distribution. For example, the 

upper 97.5 percentile corresponds to x = 1.96 as it should. 

Gaussian curve obviously underestimates the probability 

of large deviations: instead of the 2.5 percent predicted 

by the normal distribution, there is a 15 to 30 percent 

chance of x > 2 for the empirical probability distributions. 

These distributions also suggest that there is a 1 percent 

chance of x > 5, while the normal distribution predicts the 

value 3 * 107, about 30 thousand times less. A better fit 

to the data at large values of x is obtained with a 

compound parametrization which has one additional 

parameter, u, the relative uncertainty of the old standard 

error [2,3]. For u=O, compound distribution is reduced 

to the cumulative normal distribution; for u = 1, it gives 

an exponential distribution which is close to a straight 

line on the semi-logarithmic graph of the cumulative 

probability, S(x), vs. the number of standard 

deviations, x. 

3 Distribution of the results of multiple studies 

I suggest the use of a similar format to consider the 

significance of multiple epidemiological results of the 

same outcome. Instead of the distribution of actual errors 

I consider frequency distribution of the normalized risk 

ratios, x = ln(RR)/SE(ln(RR)) . In the particular examples 

that I present below, the question that is being posed by 

the epidemiologists is whether or not there is an 

association between an environmental cause and a health 

effect. Alternatively stated, is the true RR value different 

from unity? In order to answer this question graphically, 

I plot the cumulative probability of the deviation of 

x = In (RR)/SE(ln (RR)) from zero. 

For example, in the study of the risk of lung cancer 

among nonsmoking U.S. women married to smokers [8] 

(shown as study #6 in Figure 2) RR of 1.32 was 

reported. The 95 % CI reported was 1.03-1.68. The 95 % 

CI of ln(RR) in that study is 0.030-0.519. 

SE(ln(RR))=(0.519-0.030)/2/1.96=0.125.Themiddleof 

the confidence interval, ln(RR)=0.274, is 
x=0.274/0.125 =2.20 standard deviations away from the 

postulated true value, ln(RR) = 0.0. 
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Results of 31 studies of lung cancer among females 

exposed to environmental tobacco smoke (ETS) 

US EPA [9] are presented in Figure 2 (see references in 

Table 2 in the recent analysis of the same studies by 

Gross [lo]). Each study reported the relative risk for lung 

cancer in nonsmoking women married to smokers vs. 

nonsmokers married to other nonsmokers. Summary value 

of the risk ratio obtained by pooling the results of 

RR= 1.19 and 95%CI is 1.01-1.38. Assuming that the true 

risk was not elevated, I calculated the x value for each 

study as described above. 

In order to understand whether the distribution of RR 

values is evidence for an effect, I assume that there is no 

association. Then the true relative risk is RR= 1 .O and in 

Figure 3 I plot the probability distribution of the 

normalized deviations, En(RR)/SE(ln(RR)), from zero. 

Presentation is similar to Figure 1. 

In Figure 3 I also plot the risk ratio, with 95% CI for 

each of 3 1 occupational studies of the possible association 

of leukemia with occupations including exposure to 

electromagnetic fields (EMF) compiled in ref. [ 111. If all 

of these studies are averaged assuming that only statistical 

sampling errors are important, then RR= 1.20 (95%CI 

1.15-1.26). Also shown in Figure 3 are the Gaussian 

curve (u=O) and the “physical constants” curve (u=I). 

The obsewed distributions of x are very similar: both 

have longer tails than the normal distribution and are 

better described by the curve u= 1. This suggests that 

these two datasets provide equally weak evidence of 

cancer risk associated with exposure to ETS and EMF 

because the observed tails of the distributions could be 

due to residual biases in the same way as the observed 

distribution of unsuspected errors in physical 
measurements shown in Figure 1. The difference between 

the attitudes concerning these hypothesized risk factors 

may lie in biological plausibility: while there is no doubt 

that some components of tobacco smoke can cause lung 

cancer, the possibility of biological effects caused by very 

weak electric and magnetic fields is doubtful [ 111. 

5 summary 

This study provides one more way of looking at the 

results of multiple epidemiological studies. I use an 

analogy with physical measurements to illustrate the well- 

known fact that uncertainty in epidemiologic studies is 

larger than the range estimated by the 95%CI. 

Measurements of fundamental physical constants are 

much better defined than epidemiologic studies, yet 

experts there are overconfident about their accuracy 

[2,3]. There is every reason to expect that observational 

studies with slightly elevated risk ratios incorporate at 

least as many unaccounted errors as the datasets of 

physical measurements. The occurrence of false-positive 

findings in case-control studies with misclassification of 

exposure for a small fraction of subjects is illustrated by 

Monte Carlo simulation by Shlyakhter and Wilson in an 

accompanying paper [12]. Therefore I suggest that a 

prudent analyst should consider as inconclusive the 

evidence derived from the sets of observational studies 

with distributions of ln(RR)/SE(ln(RR)) which fall off 

similarly to the distribution of errors in physical 

measurements (described by the curve u= 1). 

This procedure is illustrated using studies of the 

association of leukemia with occupational exposure to 

electromagnetic fields and of lung cancer among 

nonsmoking females whose husbands smoke. An 

interesting observation is that both sets of studies are 

equally inconclusive. 

One can hedge against possible biases in the individual 

epidemiologic studies by inflating the commonly reported 

95 % CI for relative risk using the observed probabilities 
of covering the null value in the studies where the true 

risk is not elevated. For a weakly positive finding, even 

a small inflation of the confidence interval can push the 

lower bound below one and make the conclusion much 

less convincing [13]. 
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Figure 1. Probability of unexpected results in physical measurements. The plots show the cumulative 

probability, S(x) = I ;p(t)dt, that old results (A) are at least x standard deviations ln! away from the 

most recent value la); x = la -Al/t as defined in the text. The cumulative probability distributions of 

x are shown for two data sets: particle data I61 and neutron scattering lengths [71. Also plotted is a 

cumulative normal distribution, erfc(xfl) (thin solid line with markers), and compound exponential 

distribution [2,31 with parameter u= 1 (solid line). Note that the scale is logarithmic and the normal 

distribution is cumulative so that it looks differently from the usual Gaussian bell-shape curve. 
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t-Ct T 
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study number 
Figure 2. Risk of lung cancer from exposure to environmental tobacco smoke (ETS). Data for 31 

studies analyzed by US EPA 191 and Gross [IO1 are shown. 
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study number 

Figure 3. Risks of leukemia from occupational exposure to electromagnetic fields (EMF). Data for 31 

studies compiled in 1111, in which combined RR for all leukemia types was reported, are shown. 

x = ln(RR) / SE (ln(RR)) 
Figure 4. Data from Figures 2,3 presented in a different format. Cumulative distribution of the 

31 ETS studies 

31 EMF studies 

Gauss 

u=l 

normalized deviations of lnlRRJ/SEmlRRJ from zero is shown for both ETS and EMF datasets together 

with the curves for u= 0 (normal distribution) and u= 1. Presentation is similar to Figure 1. 
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