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Abstract 
The time trends in the sequential series of 

measurements of the same physical quantity show a 
general pattern: the normal distribution grossly 
underestimates the probability of large deviations from 
the true values; the probability is well described by 
exponential functions. By analogy with physical 
measurements, the results indicate that the usual 95% 
confidence intervals in epidemiology and environmental 
studies should be expanded to account for unsuspected 
systematic errors. 

1 Introduction 

In a physical measurement such as length, published 
values are averages over many separate readings. If the 
estimates of the uncertainties are good, then by the 
Central Limit Theorem (CLT) the distribution around the 
true value will be asymptotically normal. or Gaussian. 
Uncertainty in a physical quantity can therefore be 
presented as an average of measurements, A. and an 
associated standard error, A. If the actual value is a then 
we expect x = (a - A)/A to be normal as well where x is 
the normalized deviation. The range A f 1.96A has a 
95% probability of including a. The presence of 
systematic uncertainties, however, violates the 
assumptions necessary for use of the UT. If most of the 
uncertainty comes from systematic errors, Gaussian 
distribution is no longer justified. Moreover, it is well 
known that researchers tend to underestimate the 
systematic uncertainties in their result3 [ll. Despite this, 
the normal distribution often remains implicit when 
researchers report measured values and the corresponding 
uncertainties 121. 

The range of systematic uncertainty is not the 
standard deviation of a specified distribution, because the 
major uncertainties involved (e.g. detector efficiency) are 
not stochastic. In practice, the range of systematic 
uncertainty is often split in half and used as a surrogate 
standard deviation of the Gaussian distribution which is 
then added in quadrature with the estimated stochastic 
errors. The range reported by the authors represents their 
subjective judgement about the probability that the “true” 
value will lie within the specified range. Therefore 
uncertainty estimates are not “confidence intexvals” in the 
classical statistical sense and are sometimes referred to as 
“subjective confidence intervals” [31. The appropriate 
interptitation of the 95% confidence intervals in physical 
measurements is that there is a 95% chance that the 
interval will include the true value. A comparison of the 
empirical frequency of large deviations from the predicted 
values with normal distribution allows an analogy with 
much better understood stochastic uncertainties. 

In this paper we analyze the time trends in five large 
nuclear data sets and describe a practical approach which 
utilizes these data in estimating the range of uncertainty 
in the individual physical measurements, observational 
and environmental studies and their meta-analytic 
syntheses. 

2 Approach 

The fmt attempts to quantify ovemnfidence in 
physical measurements come from the work of 
Bukhvostov [43 and Henrion and Fischoff 151 who 
analyzed the record of elementary particle data properties 
and fundamental constants while searching for 
occurrenes of new m ei3swement8 more than three 
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standard deviations away from the previous values. They 
compared several hundred experimental results from early 
compilations with the “exact” values taken from a more 
recent compilation. A convenient measure of the 
deviation of “new” values from the “old” values is the 
normalized deviation x = (a - A)/A. with a the exact 
value, A the measured value, and A the old standard 
deviation. The msulting distribution of ) x I had a tail 
extending beyond five standard deviations. By contrast, 
the cumulative normal distribution, e&(x/l/2), estimates 
the probability of such fluctuation at only 5.6. 10W7. 

In this paper we expand these original studies by 
following trends in five data sets: masses and lifetimes of 
elementary particles maintained by the Lawrence 
Berkeley Laboratory (LBL) Particle Data Group 161. 
magnetic moments [71 and lifetimes [83 of the excited 
nuclear states, neutron scattering lengths 191, and neutron 
resonance parameters [lO,lll. 

3 Data Sets and Analysis Procedure 

All data sets were first converted into a standard 
format. Each measurement that produced an experimental 
value. A. and an estimate of uncertainty. A, together with 
the date of publication (or incorporation into an 
electronic data bank) formed a separate line (record). 
Successive measurements of the same quantity comprised 
a block of data; a data set typically consisted of several 
hundred such blocks. 

In order to limit the effects of “noise” in the data on 
final results, two selection criteria were applied. 

i) The ratio of the old stated error, Aold. to the new 
error, A,,,,. had to be appreciable: AJA,,cpI 2 r. For large 
value of r the difference between the new value, A,,, 
and the “true” value, a. was much less than kold; 
however. this reduced the size of the final data set. The 
value r4.0 was used; since errors are combii in 
quadrature: Abt=(41:+40w2)‘R. This changed the resulting 
x values by no more than 3%. 

ii) We considered only those blocks for which the 
deviation from the true value was not too large ( I x / < 
m; m=lO was used). This ensured that no major mistake 
occurred in the old measurement, e.g. that the nuclear 
excited state was correctly identified at that time. Thus 
we are excluding major errors. 

Our selection procedure dramatically reduced the 
number of blocks remaining in each data set: from 124 
to 79 for particle data; from 805 to 185 for nuclear 
moments; from 1691 to 214 for nuclear lifetimes; from 
288 to 76 for neutron scattering; from 1203 to 62 for 
neutron resonance parameters. The remaining data were 
stable with respect to variations in the values of the 

parameters r and m. All of these sets were analyzed. For 
each block x=(%,-I&+/~,~ was calculated and empirical 
probabilities of Ix ] were derived. 

4 Parametrization of the Observed 
Distributions 

The cumulative probability distributions of 1x1 for 
each of the five data sets are also shown in Figure 1. 
They confirm the earlier findings [4.5.12,131 that a 
normal distribution grossly underestimates probability of 
large deviations from the expected values. A strikmg 
result of our analysis is that there is a general pattern in 
the empirical cumulative probability distributions of 
uncertainties of very different kinds of measurements: all 
distributions shown in Figure 1 are well fit by simple 
exponential functions with only one free parameter, u. 
which can be interpreted as a measure of overconfidence. 
A similar pattern with u values 3-4 is observed for energy 
and population projections 112-161. 

To illustrate how the exponential functions can arise 
(see [14] for details) consider a set of estimates in which 
the mean and standard deviation are calculated by the 
standard method. Assume that the mean, A, is unbiased 
but that the estimate of the standard deviatiou. A, is 
randomly biased by systematic errors with a distribution 
,f(t). The distribution for n = (a I A)/A is then no longer 
a simple Gaussian, but can be written as a compound 
distribution p(x) 0~ I”, f(t)exp[-x”D?]dt/t. It appears that 
if fct) is sufficiently broad so that for large t. 
,f(t) = exp(-t?23) then we fmd that y(x) 0~ c?.xp(- (x(/u). 
The new parameter, 0. is the relative uncertainty in the 
original standard deviation, A. 

The normal (u = 0) and exponential (u > 1) 
distributions are members of a single-parameter family of 
curves shown in Figure 2. In this framework the 
parametric uncertainty can be quantified by analyzing the 
record of prior projections and estimating the value of u. 
The cumulative probability functions for u 2 1, x 2 3. can 
be approximated by e‘ I ’ ’ KorJu + o.6’. 

5 Estimating 95% Confidence Intervals 
in Observational Studies 

Normal (Gaussian) approximations to the discrete 
distributions of the observed numbers (e.g. binomial) are 
common in epidemiology and results are usually 
presented .in the form of 95 % confidence intervals. The 
general problem with observational studies is that 
numerous sources of bias are only taken into account on 
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the basis of plausible assumptia~ which caunot be 
independently tested for the populaticn under study. As 
Figme 1 shows, the usual 95 % confidence intervals, A 
f 1.96A. estimated m the basis of early measurements 
miss the recent (,‘tnle’? values not ill 5% of cases as 
expectedbutin2O%ofcases.Thismeansthatthe 
commcnmethodsofcalculatingtheconfidenceintervals 
should be modified to account for the unknown 
systematic uncertainties. 

For example, tb approximate confidence limits of 
the excess relative risk (usually called the incidence rate 
ratio), RR, are given by the formula 1171. 

where a value for Z is arbitrarily selected to give the 
deshd txmfbxe level for the normal distribution, e.g. 
Z-l.% for 95 % confiderxze interval. Here a logarithmic 
transformation is used to compensate for the asymmetric 
sampling distributiar of rate ratios. 

If one assumes that the effects of illcorrect 
classification and unixxmnted for confounding factors in 
observational studies ate no less important than the 
analogous effects ofunknowll systematic -ties in 
physical measumments. the new confidence limits cau be 
determkd from Figure 2. In other words, we assume 
that the dative “uncertainty of umxtainty” measured by 
the parameter u is the same in both cases. For u=O 
(mspoading to normal distribution), the Z value for a 
95 % ddence interval is l.% aud for u=l (roughly . 
cm to the data set of physical measurements), 
Z=3.8. This meaus that many weak “statistically 
signif&itt” findings in observational studies actually 
should no longer be regarded as significant. 

It is evident that this procedure is valid when 
statistical sampling errors ate not dominant. In the closed 
cohort studies, the epidemiologist identifies a set of 
subjects that existed in the past and follows over a 
specifkd time duration to determine their eventual fate. 
Thestatisticalenorinsuchstudiesoftenfarexceedsthe 
systematic error and the considerations of this paper may 
not apply. However cohort studies am very expensive and 
the majority of studies in epidemiology ate caseuxitrol 
studies. In case-control studies the number of sub&ts 
with disease (“‘cases”) and withatt disease (kontrols”) is 
compared with the number of these subjects exposed and 
not exposed to the factcx in question. In case-control 
studies systematic errors are usually greater than in 
cohort studies. This paper is particularly concen& with 
the systematic errors that occur in thee epidenriological 
methods. 

The implications of the modified confidence intervals 
are illustrated in Figure 3. Here the results of 15 

epidemiologic studies (13 case-control and 2 cohort) of 
the effecta of the occupational exposure to 
electromagneticfieldsontheriskd~(describedh 
U81) are stmmnukd only those studies where the 
observed risk ratios, RK. exceeded 2 were included. With 
Z=l.%,thelowerbolmddthe95%~coofidenceintervals 
lieaboveRR=lforlOout~15studies~those 
studies “statistically significant”. However withZ=3.8. the 
lowerboundsoftheexpanded ConMerace intervals lie 
below RR=1 in all cases. 

6 Estimating 95% Confidence Intervals for 
Lognormal Distributions 

The lognormal distribution is widely used for 
describiug probability distributions of variables that ate 
essentially positive 1191. Its major advantage is that for 
the product of several factors uncertainties from different 
s-s can be easily combined without the need for 
extensive computatiats. In particular, the lognormal 
distribution is used for tmc&ainty analysis of radiation 
risks r20.211. 

If the logarithm of au estimate follows a normal 
distribution with mean, m. and standard deviation, s. then 
the estimated value follows a lognormal distribution 
character&d by its median M#. and by its geometric 
standard deviation (GSD), S=e’. Confidence intervals are 
calculated usiug the uncetk@ factor, K. which is 
defined as K=eti’! For 95% ccurfidence intervals, Z~1.96 
and there is 95% chance that the true value lies between 
(l/K)-M and K-M. 

The mults of the analysis of the data sets of 
physical measurements indicating that normal distribution 
underestimates the probability of large deviations fully 
apply to lognormal distribution as well. Instead of Z=l .% 
one should use 2-3.8 which results in much wider 
confidence intervals. For example, the NRC report [33 
estimated the 95% confidence limits far the coefficient, 
c, relating the deep-dose equivalent (rem) to the film 
badge exposure worn by participants in each of the 
atmospheric nuclear tests series. To be specifii, let us 
consider the doses for the Operation PLUMBBOB. Their 
best estimate of C (when the fihn badge exposure 
exaxded 0.2 Roentgen) was 0.77 with 95% confiince 
limits 0.51 to 1.15. Applying Ze3.8 gives new limits 0.35 
to 1.68 resulting in more than doubling the range of 
uucertainty in the dose estimates. It seems worthwhile to 
pexform this type of re-analysis for all other uncertainty 
estimates nUing to the film badge dosimetry in course 
of the recently commissioned follow-up study of the same 
cohort 1221 
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7 Testing the Recipes of MeWAnalysis 

Databases of physical measurements can be used to 
test the validity of the widely used procedure of 
calculating weighted averages over several measumments. 
More generally, this procedure is a subject of meta- 
analysis. The latter is a common name for numerical 
summaries of the results of multiple studies of the same 
effect which hopefully can offer better precision than the 
component studies [231. We shah address these issues by 
treating successive measurements of one and the same 
parameter as independent component studies (see [24] for 
more details). 

One problem with using weighted averages is that 
there may be true heterogeneity in the data. Although the 
underlying physical quantity is obviously the same for all 
studies, systematic errors could cause biased parameter 
estimates and hence contribute to the heterogeneity of the 
results. To this end Laird and Mosteller [2S] developed 
a method specifically designed to take heterogeneity into 
account by including an additional variation compcment 
representing heterogeneity which adds up in quadrature 
with the intra-study variation. The results of testing the 
Laird-Mosteller approach against the elementary particle 
data set (LBL) are shown in Figure 4; similar results 
were obtained for other data sets. Taking the interstudy 
variation into account reduces ihe frequency of large 
1x1 values, however, the curves for averaging over S 
and 10 experiments still lie far above the curve for 1 
experiment, not to mention the Gaussian curve. This 
indicates that the Laird-Mosteller algorithm indeed 
improves the description of the probability of large 
deviations but not nearly enough to offset the negative 
effect of combining the disparate studies. 

8 Discussion of the Results 

We have demonstrated that there is a general pattern 
in the empirical cumulative probability distributions of 
deviations from the old values in very different kinds of 
nuclear measurements. All distributions shown in 
Figure 1 can be fit by simple exponential functions with 
one free parameter, the ratio of the unsuspected 
systematic errors to the recognized uncertainties. For 
nuclear data u-l. Our analysis provides a novel recipe 
for calculating 95% confidence intervals based on 
observed trends in past data. 

This study shows that the standard uncertainty 
analysis must be supplemented with an additional step: 
analysis of “uncertainty of uncertainty”, comparison of 
the unsuspected errors against the known uncertainties. 

Standard uncertainty analysis provides an estimate of the 
width of the probability distribution around the simple 
point estimate. However, the commonly used 95% 
confidence intervals are demrmined by the tails of the 
distribution that are extremely sensitive to 
underestimation of the uncertainties (“overconfidence”). 
Analysis of trends in past data allows to quantify the 
degree of overconfidence by fitting the empirical 
distribution and estimating the value of parameter u for 
each type of data. 

The results of this study indicate that the commonly 
used criteria of statistical significance in observational 
and environmental studies must be revised. Measurements 
of fundamental physical cons tarns are much better defined 
than epidemiological studies, yet overconfidence about 
their accuracy is widespread among experts [ 11. There is 
every reason to expect that environmental and 
epidemiological studies incorporate no less unsuspected 
systematic error than the measurements in nuclear 
physics. Analysis of these measurements gives rise to 
tails in the probability distribution; we parametrize these 
tails by an exponential with u=l . The effects of 
systematic lmcertainties are usually hidden in 
epidemiology because calendar time is an important 
parameter in itself. Moreover, due to the inherent 
variability of the system under study the “true” values 
may not exist. 

Our analysis also shows that the common recipes for 
combining several experimental results fail to produce 
correct confidence intervals for physical measurements ( 
where the exact answer is known). Empirical probability 
distributions of large deviations from the predicted values 
suggest that much wider confidence intervals should be 
used in order to capture 95 % probability both in the 
individual studies and their meta-analytic syntheses. 
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Figure 1: Probability of unexpected resufts in physical measurements. The plots depict the 
cumulative probability, S(x)=j,“p(t)dt, that new measurements (a) wlii be at least 1 x 1 standard 
deviations (A) away from the oid results (A); x I (a - A)/A as defined in the text. The cumulative 
probability distributions of 
magnetic moments p’l and 1 

XI is shown for the five data sets: particle data [S] (heavy solid line); 
I fetimes [q of exdted nuclear states (respectively heavy centered line 

and heavy dotted line), neutron scattering lengths [S] (heavy dashed line), and average neutron 
resonance pammeters [lO,ll] (soiid line). 

Figure 2: One-parameter set of probability distributions of devfations: parameter u defines the 
uncertainty in the standard deviation of the Gaussian distribution. The values of u are indicated 
in the flgure. The curves demonstrate the continuum of probability distrfbutions: from Gaussian 
(ur0) to exponential (u B 1). 
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and fundamental constants while searching for 
occurrences of new measurements more than three 
standard deviations away from the previous values. They 
compared several hundred experimental results from early 
compilations with the “exact” values taken from a more 
recent compilation. A convenient measure of the 
deviation of “new” values from the “old” values is the 
normalized deviation x = (a - A)/A. with a the exact 
value, A the measured value, and A the old standard 
deviation. The resulting distribution of I x 1 had a tail 
extending beyond five standard deviations. By contrast. 
the cumulative normal distribution, e&(x/42). estimates 
the probability of such fluctuation at only 5.6 * lo-‘. 

In this paper we expand these original studies by 
following trends in five data sets: masses and lifetimes of 
elementary particles maintained by the Lawrence 
Berkeley Laboratory (LBL) Particle Data Group [61. 
magnetic moments 171 and lifetimes 181 of the excited 
nuclear states, neutron scattering lengths [91, and neutron 
resonance parameters [lO,lll. 

3 Data Sets and Analysis Procedure 

All data sets were first converted into a standard 
format. Each measurement that produced an experimental 
value. A. and an estimate of uncertainty, A, together with 
the date of publication (or incorporation into an 
electronic data bank) formed a separate line (record). 
Successive measurements of the same quantity comprised 
a block of data; a data set typically consisted of several 
hundred such blocks. 

In order to limit the effects of “noi,se’” in the data on 
final results, two selection criteria were applied. 

i) The ratio of the old stated error, A,,,d. to the new 
error, 4,,. had to be appreciable: Aold/kw 2 r. For large 
value of r the difference between the new value, kCw, 
and the “true” value, a. was much less than 4,& 
however, this reduced the size of the final data set. The 
value 1=4.0 was used; since errors are combined in 
quadrature: ALbl=(4,d2+4c~z>‘n. This changed the resulting 
x values by no more than 3%. 

ii) We considered only those blocks for which the 
deviation from the true value was not too large ( ) x < 
m; m=lO was used). This ensured that no major mistake 
occurred in the old measurement, e.g. that the nuclear 
excited state was correctly identified at that time. Thus 
we are excluding major errors. 

Our selection procedure dramatically reduced the 
number of blocks remaining in each data set: from 124 
to 79 for particle data; from 805 to 185 for nuclear 
moments; from 1691 to 214 for nuclear lifetimes; from 
288 to 76 for neutron scattering; from 1203 to 55 for 

neutron resonance parameters. The remaining data were 
stable with respect to variations in the values of the 
parameters r and m. All of these sets were analyzed. For 
each block ~=0idLJ4,~ was calculated and empirical 
probabilities of Ix 1 were derived. 

4 Parametrization of the Observed 
Distributions 

The cumulative probability distributions of 1x1 for 
each of the five data sets are also shown in Figure 1. 
They co&m the earlier fmdings [4,5.12,131 that a 
normal distribution grossly underestimates probability of 
large deviations from the expected values. A striking 
result of our analysis is that there is a general pattern in 
the empirical cumulative probability distributions of 
uncertainties of very different kinds of measurements: all 
distributions shown in Figure I are well fit by simple 
exponential functions with only one free parameter, u, 
which can be interpreted as a measure of overconfidence. 
A similar pattern with u values 3-4 is observed for energy 
and population projections [12-161. 

To illustrate how the exponential functions can arise 
(see [14] for details) consider a set of estimates in which 
the mean and standard deviation are calculated by the 
standard method. Assume that the mean, A. is unbiased 
but that the estimate of the standard deviation. A. is 
randomly biased by systematic errors with a distribution 
f(t). The distribution for x = (a - A)/A is then no longer 
a simple Gaussian. but can be written as a compound 
distribution p(x) 0~ JmO f(t)exp[-x’/2t2]dt/t. It appears that 
iff(t) is sufficiently broad so that for large t. 
f(t) = exp(-e/22) then we find that L’(X) = U/I,‘- Ixllu). 
The new parameter. N, is the relative uncertainty in the 
original standard deviation. A. 

The normal (u = 0) and exponential (A > I) 
distributions are members of a siugle-parameter family of 
curves shown in Figure 2. In this framework the 
parametric uncertainty can be quantified by analyzing the 
record of prior projections and estimating the value of u. 
The cumulative probability functions for u ;r 1, x 2 3. can 
be approximated by e- ’ ’ ’ ” ” + “.” 

5 Estimating ‘95 % Confidence Intervals 
in Observational Studies 

Normal (Gaussian) approximations to the discrete 
distributions of the observed numbers (e.g. binomial) are 
common in epidemiology and results are usually 
presented in the form of 95 % confidence intervals. The 
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