
Sea-level rise orfall? 
SIR - Schneider’ provides just one ex- 
ample of how a change in the accepted 
values of parameters in climate-change 
models can completely alter the conclu- 
sions, turning a predicted sea-level rise 
into a predicted fall. If a model predicts 
a sea-level rise of 33 -+ 32 cm in the year 
2050 (ref. 2), what is the probability of 
an extreme rise of 150 cm? Or, for 
example, how should one interpret the 
bconfidence interval’ defined by low- and 
high-growth schemes for future changes 
in population and energy production? 
Such questions can be addressed by 
comparing the data on the history of 
previous measurements in other fields 
and corresponding uncertainty estimates 
with the ‘true’ or ‘best guess’ values 
obtained later. 

A convenient measure of the deviation 
of ‘new’ values from the ‘old’ values is 
x = (a - A)/A, where a is the exact 
value, A the previously measured value, 
and A the old standard deviation. We 
analysed 79 elementary particle prop- 
erties (mainly meson masses and life- 
times; thick dashed line in the figure), 69 
forecasts of the primary energy demand 
for the United States projected for the 
year 2000 (thick dotted line) and the 
predictions of population for 133 coun- 
tries for the year 1985 made in 1973 (thin 
dotted line, assuming that high and low 
estimates encompass 50% confidence 
in terval)3. The cumulative probability 
distributions are shown in the figure 
together with the gaussian curve (thin 
solid line), which obviously grossly 
underestimate probability of large devia- 
tions. Also plotted is the Student’s dis- 
tribution for 10 degrees of freedom 
(heavy broken dashed line), illustrating 
the maximum effect of the finite sample 
size for energy forecasts (11 points per 
bin, or 10 degrees of freedom). A better 
fit to the data is obtained with a simple 
exponential distribution, eiX / 
solid line). 
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This asymptotic behaviour appears 
naturally in a compound distribution 
where both the mean and standard de- 
viation are independknt, normally distri- 
buted, random variables. Following ref. 
4, we assume that the calculated stan- 
dard deviation A’ is distributed arodnd 
its true value A; we denote this distribu- 
tion by f(t), where t=A’lA. If for simpli- 
city, we assume f(t) to be asym 
gaussian, that is, !? 

totically 
f(t)-exp(-t /26*) as 

t-+00, and consider only the asymptotic 
hhaviour of the probability distribution 
p(x) when IX ( >> 1, it is straightforward 
to show that for 1 x ( ~4, the probability 
distribution is not gaussian but exponen- 
tial: P(X) - exp(-1x1 lu). Here the new 
parameter u, 
known system 

u=d/A, measures the un- 
atic component of the total 

error and quantifies the uncertainty, 6, 
in the estimation of A. Gaussian and 
exponential distributions can be related 
by a single-parameter family of curves, 
so that the parametric uncertainty of 
current models can be quantified by 
analysing the record of earlier projec- 
tions and estimating the value of u (ref. 
3). From the figure, it emerges that u - 
1 for physical constants and projections 
of energy demand, and u - 3 for models 
of population growth. 

Fundamental physical constants are 
generally considered to be the ronost 
reliably known parameters, yet analysis 
of the trends in their measured values 
indicates widespread overconfidence in 
the completeness of our knowledge5. 
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Cumulative probability of finding a deviation 
greater than /x, . I The data are drawn from 
various sources: projections of US energy 
demand in 2000 AD (heavy dotted line); 
measured parameters in elementary particle 
physics (heavy dashed line); projections for 
population in 2000 AD for 133 countries (thin 
dotted line). Theoretical curves for a gaus- 
sian distribution (thin solid line), Student 
distribution (heavy broken dash line) corres- 
ponding to the sample size per bin fir the 
energy data, and an exponential distribution 
(heavy solid line) with u = 1. 

There is every reason to expect similar 
or greater effects in models of glob& 
environmental change. For 
rise, there is no long history 
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educated guesses; if we conservatively 
assume u = 1, in the ‘business-as-usual’ 
scheme the normal distribution places 
the probability in 2050 AD of extwne 
sea-level rise greater than 1 m at 0.5% 
(ref. 2) in contrast to the 5% probability 
based on an exponential distribution3, a 
difference of an order of magnitude. We 
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wish to encourage others to quantiQ the a~: 
predictive capabilities of their models by :,.,S;: 
using the historical trends in parametcg -,<& 
values from previous studies. c . 
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