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In this paper we describe a simulation, by Monte Carlo methods, of the results of rodent carcin- 
ogenicity bioassays. Our aim is to study how the observed correlation between carcinogenic potency 
(p or ln2/TD5,) and maximum tolerated dose (MTD) arises, and whether the existence of this 
correlation leads to an artificial correlation between carcinogenic potencies in rats and mice. The 
validity of the bioassay results depends upon, among other things, certain biases in the experimental 
design of the bioassays. These include selection of chemicals for bioassay and details of the 
experimental protocoi, including dose levels. We use as variables in our simulation the following 
factors: (1) dose group size, (2) number of dose groups, (3) tumor rate in the control (zero-dose) 
group, (4) distribution of the MTD vaIues of the group of chemicals as specified by the mean and 
standard deviation, (5) the degree of correlation between /3 and the MTD, as given by the standard 
deviation of the random error term in the linear regression of log p on log (l/MTD), and (6) an 
upper limit on the number of animals with tumors. Monte Carlo simulation can show whether the 
information present in the existing rodent bioassay database is sufficient to reject the validity of 
the proposed interspecies correlations at a given level of stringency. We hope that such analysis 
will be useful for future bioassay design, and more importantly, for discussion of the whole NCI/ 
NTP program. 
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I. INTRODUCTION 

The extrapolation of carcinogenic potencies from 
animals to man is rendered plausible if it can be shown 
experimentally that it is possible to predict a chemical’s 
potency in one animal species given the potency in an- 
other species. To this end, Crouch and Wilson,@) Crouch 
et al. ,(*) and Grouch(3) analyzed the relationship between 
the carcinogenic potencies of chemicals in rats and mice, 
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and Gold et al. (4-6) created the Carcinogenic Potency 
Database to facilitate future comparisons. 

There have been severai analyses of the correlation 
between carcinogenic potencies in rats and mice, as has 
been elaborated in a recent review by Goodman and 
Wilson.(7) But the basis and relevance of this correlation 
have been the subject of considerable discussion. To 
“predict” the likelihood that humans will develop can- 
cer following a given level of exposure to specific chem- 
icals, society inevitably relies upon indirect methods. 
The usefulness of rodent bioassay data for quantitative 
prediction of human carcinogenicity depends upon sat- 
isfactory treatment of two major uncertainties: (1) the 
interspecies comparison of carcinogenic potency when 
the dose levels are similar; and (2) the ability to predict 
low-dose tumorigenicity from high-dose experiments. 

In this paper we examine the first point by means 
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of a Monte Carlo simulation. We first make certain as- 
sumptions about the system under consideration, which 
in this case is a set of possibly carcinogenic chemicals. 
We then simulate the results of bioassays in the NTP 
program. Foremost among these assumptions is that the 
number of chemicals under test form a random sample. 
Taking these simulated results, we then perform Iinear 
regression analysis for I3 regressed on MTD (analo- 
gously to Crouch and Wilson(l) and other authors). We 
repeat this for a variety of initial assumptions and com- 
pare the simulated results of experiments to the actual 
results, so that we may discover which assumptions can 
be ruled out by the actual results of the experiments, and 
which are possible descriptors of the real world. In the 
performance of the animal bioassay, the toxicity of the 
chemical determines the upper limit on the dose level: 
the maximum dose Ievel (i.e., the MTD) is adjusted so 
as not to produce overt toxicity or significant weight 
loss. As other authors have pointed out,@+g) the fact that 
the upper limit on the dose is constrained by toxicity 
effectivefy imposes an upper limit on the carcinogenicity 
values. Therefore, it places an artificial constraint on the 
results which we must mode1 in our simulation proce- 
dure. 

We perform the calcuIation in two parts. First, we 
address the correlation between carcinogenic potency and 
the maximum tolerated dose and show how constraints 
imposed by the bioassay design (such as that the dose 
approach, but not exceed, the MTD) could with some 
parameters produce a correIation which is a pure artifact 
of these experimental constraints, but by comparison with 
the actual data show that the experimentally observed 
correlation cannot be an artifact of the constraints and 
therefore must have some biological or chemical basis. 

Second, we perform a more compIex simulation of 
two bioassays (e.g., one for rats and one for mice) and 
show that the observed correlation of interspecies poten- 
cies cannot be attributed only to the design of the bioas- 
says and therefore be properly labeled artifactual. At 
least some fraction of this correiation is attributable to 
the biological similarity of the two species. 

2. METHODS 

2.1. Details of the Simulation Procedures 

In this section we describe how the correlation be- 
tween the carcinogenic potency (p) and the toxicity pa- 
rameter A, (Ai = .l/MTD,) is simulated. Throughout the 
paper, P and MTD are measured in units of mg/kg-day. 
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We assume that there are a number of chemicals 1, . . ..i. 
. ..n. and that A, is a measure of toxicity of the ith chem- 
icai. In this simulation, we assume a lognormal distri- 
bution of Ai with x = Iog,& mean i, and standard 
deviation gl. 

-- 
qx> =&$ (*ii? 

We then assume there is some relationship between 
the carcinogenic potency pi of chemical i and its toxic- 
ity. If that reIation was completely deterministic [p = 
f(A)ll we could simply determine the distribution of the 
potencies pi from the distribution of toxicities Ai. 

The Monte Carlo approach is useful for considering 
cases where the relation is not completely deterministic 
[i.e., where l3 is only “roughly equal” tof(A)]. We use 
the formula 

2.310g,fJ3i = 2.3b,log,&tA, -l-b, + Ei (2) 
where ei is a random error term. Note that we use the 
natural logarithm ofA in this equation. We assume that 
E is normally distributed: 

In this equation, when the adjustable parameter a, = 
0, E = 0, and the assumed relation between pi and 4 
is then nearly exact. When 0, 2 2, pi and Ai are virtually 
uncorrelated. 

For b, = 1, the potency l3i is proportional to the 
toxicity parameter Ai (inversely proportional to MTD,). 
If Ei is small, this proportionality is neariy exact for each 
chemical. In the set of simulations in this paper, b, is 
chosen equal to 1.0. 

Once pi is determined from Eq. (2), the probability 
that an animal will get cancer at a given dose d is de- 
termined from the simple formula 

E 
Pi(d) = 1 - (1 -a& l-u, 

Here a0 is the tumor rate in the zero-dose group. Al- 
though this formula is linear in dose at low doses, we 
emphasize that the results will not be appreciably changed 
by using more complex formulae which give similar re- 
suits for Pi between 0.25 and 0.75 but give different 
results at low doses. Using Eq. (4) we can calculate the 
tumor probability for a single animal at any one of the 
dose IeveIs d = 0, MTDJ(N,- l), 2*MTDi/(N,- l), . . . 
MTD,. We assume that the highest dose is MTD, and 
Nd is the number of dose groups including the control 
group. For most chemicals in our dataset, there were 
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only two dose groups and one control group, so this is 
the number that we chose to use in most of the simula- 
tions. Then we use the binomial distribution to obtain 
the probability that exactly k animals will get tumors, 
and finally the cumulative distribution function F,(d), 
which gives the probability that the number of animaIs 
with tumors is less than or equal to k. Values of this 
function Fj lie in the interval (0,l). Using random sam- 
piing, we choose a point in this interval and derive the 
number of animals with tumors, TJd), in the “simu- 
lated” experiment corresponding to this value of FJd). 
This completes the first step. 

The next step is to take this “simulated” number 
of cancers Ti(d) and use it to caiculate the experimental 
simulated potency, pi*, by the maximum likelihood es- 
timate (MLE) method in the same way as was done by 
Crouch and Wilson.(l) This will be different from the 
originally assumed pi because of randomness introduced 
into the simulated experiment. The value of pi* may or 
may not be statistically significant, depending on the 
criterion chosen for significance and the constants b, and 

_. b, in the original relation between p and A. Since data 
which are not statistically significant are generally ig- 
nored, this leads to a biased rejection of chemicals for 
which pi is small reIative to IIMTD,. Here we assume 
that the chemical’s potency is statistically significant if 
the maximum likelihood estimate pi* is at least two stan- 
dard deviations away from zero (95.4% confidence level}. 

The final step in the simulation is to compare pi* 
with the initial Ai for each statistically significant chem- 
ical in order to see how the “measured” relationship 
between p and A compares with that initially assumed. 
The difference is the bias that we are trying to demon- 
strate and iliustrate. 

We repeat this procedure for each chemical i for al1 
I IZ chemicals in order to derive the full distribution in the 

finally measured &. As a measure of the strength of the 
relationship between in(P) and In(A), we compute I, the 
Pearson linear correlation coefficient, and s, the estimate 
of the standard deviation (r [Eq. (3)]. 

2.2, Dataset Selection 

The dataset with which we compare our Monte Carlo 
simulations consists of a set of 248 chemicaIs which had 
been tested for carcinogenic@ in rats and mice of both 
sexes by the NCI/‘NTP and included in the Carcinogenic 
Potency Data Base (CPDB) of Gold et aZ.(4d) The TDso 
values calculated by Gold et al. were transIated into p 
values by assuming p = ln2/TD,,. For each chemical 
we selected the minimum TD,, which was statistically 

significant at p < 0.05 and assumed that the maximum 
dose (MaxD) used in that experiment was equal to the 
MTD. If the tumor incidence in the control group for a 
given site was greater than 60%, then the T&e at that 
site was disregarded. Data from combined sites (reported 
as “tumor-bearing animals”) were ignored. Only oral 
and inhalation routes were considered; therefore, we ex- 
cluded 10 chemicals for which onIy intraperitoneal in- 
jection studies were available. Data for each sex in mice 
and rats were analyzed separately. The resulting dataset 
contained 248 - 10 = 238 chemicals. 

This dataset had been assembled initially by one of 
us (GG) for a study of the effect of mutagenicity on the 
correlation between toxicity and carcinogenicity.(r*) No 
other selection criteria were used. In most cases there 
were two dose groups plus a control group with 50 an- 
imals in each. We also took note of the existence of any 
substances that produced tumors in 98% or more of the 
tested animals for analysis of the effect of the artificial 
constraints. There is only one such substance: polybrom- 
inated biphenyl mixture (Firemaster FF-1 CAS no. 67774- 
32-7). It produces tumors in 98% of the animals at the 
highest dose, but not at the intermediate dose. A fulI 
listing of the dataset, the number of chemicals tested, 
the number for which there existed a TDsO value signif- 
icant atp < 0.05 for each sex of both species, and fraction 
of chemicals in each sex-species subgroup for which 
there was no statistically significant TDsO value in the 
CPDB are available upon request from the first author. 

We chose the data for female mice as the basic set 
for comparison with the Monte Carlo simulations. Sim- 
ilar results were obtained when we used the shghtly smaller 
dataset of Grouch.(3) Ideally, we should have analyzed 
the raw data on tumors for carcinogenic potency p by 
the same MLE as performed in the simulation. However, 
it was convenient to use our computer file of TD,* vaIues 
caIcuIated by Gold et al. 

3. RESULTS AND DISCUSSION 

First, we illustrate how the simulation procedure 
works. Then we study the sensitivity of the results to 
the parameters and choose the basic parameter set. Using 
this basic set .we study the effect of allowing for the 
existence of a variable number of chemicals producing 
tumors in more than 98% of test animals, and show how 
Monte Carlo simulation can be used for optimization of 
the bioassay design. Finally, we simulate the interspe- 
ties correIation of carcinogenic potencies and the case 
of a variable number of chemicals having zero carcino- 
genic potency. 
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3.1. Illustration of the Simulation Procedure 

In Fig. 1, we show a his’togram of log,, A, mea- 
sured in mice, for the 238 chemicals in our dataset. The 
distribution of log,, A calcuIated with Eq. (1) is given 
as the smooth curve in Fig. 1. Figure 2 illustrates the 
properties of the artificial dataset that we later use as the 
input for the Monte Carlo simuiation. For this dataset, 
238 artificial “chemicals” were generated using the model 
for the dependence of carcinogenic potency I3 on log,, 
A given in Eq. (2) with slope b, = 1.0 and intercept b0 
ZZ -2.0. This we call simulation no. 0, which is not 
really a simulated bioassay at aI1, but rather the input 
dataset for the simulated bioassays to follow. For each 
“chemical,” values of log,, A were generated using the 
probability density function of Eq. (1) with.the standard 
deviation o1 set equal to 1.0. Then I3 was caIcuIated 
using this value of log,, A with a randomly generated 
value of the error term E. Values of E were generated 
using the probability density function of Eq. (3) with the 
standard deviation a, set equal to 2.0. Each chemical is 
represented by a cross in Fig. 2. The solid line represents 
the linear least-squares regression fit to the data points. 

Fig. 2. Artificial distribution with p calculated from Eq. (2). The 
datapoints (+) were generated using Eq. (2) with randomly generated 
values of log,& and the error term E (see text for details). Solid line: 
linear regression fit to the datapoints. Dashed line: plot of Eq. (2) for 
c=o. 
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Fig. 3. Results of a simulated bioassay (simulation no. 2). +, p* 
significant at ~~0.05; percentage of animals with tumors is ~98%. 
0, p* = p; precentage of animals with tumors is <98%. 0, /3* not 
significant at ~~0.05. Solid line: linear regression fit to the crosses. 
Dashed line: linear regression fit corresponding to the artificial dataset 
of Fig. 2. 

Fig. 1. Distribution of log,, A measured in mice for 238 NCIINTP 
chemicals. The histogram represents the experimental distribution of 
log,, A 3 log,,(l/MTD). MTD is measured in units of mgntg-day. 
The mean L of this distribution was - 2.36; the standard deviation o1 
was 0.94. The solid Iine is the normal curve of Eq. (1) representing 
a continuous distribution of x = log,, A with the rounded parameters 
P = -2.5 and u, = 1.0. 

To illustrate the effect of the error term E, we also plot 
Eq. (2) for the case when the error term a2 = 0 (dashed 
line). 

Figure 3 illustrates how the Monte Carlo simuiation 
procedure works. Shown are the results of a simulated 
bioassay of the 238 artificial “chemicals” described above 
for Fig. 2. This we call simulation no. 1 in Table I. For 
each “chemicai,” the simuIated experiment uses the 



Monte Car10 Simulation of Rodent Carcinogenicity Bioassays 

Table. I. Sensitivity to the Parameters” 
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Input Output 
Sim. no. N, Nd a, 1 crl o, b, NS 798% r s 

0 
1 
2 

.3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18’ 
19” 
20’ 

--- - 1.0 2.0 - 2.0 
50 3 0.1 -2.5 1.0 2.0 - 2.0 
25 3 0.1 -2.5 1.0 2.0 -2.0 

100 3 0.1 -2.5 1.0 2.0 -2.0 
200 3 0.1 -2.5 1.0 2.0 -2.0 
50 2 0.1 -2.5 1.0 2.0 - 2.0 
50 4 0.1 -2.5 1.0 2.0 -2.0 
50 3 0.1 -1.5 1.0 2.0 - 2.0 
50 3 0.1 -2.5 0.5 2.0 - 2.0 
50 3 0.05 -2.5 1.0 2.0 -2.0 
50 3 0.2 -2.5 1.0 2.0 -2.0 
50 3 0.1 -2.5 1.0 0.07 -2.0 
50 3 0.1 -2.5 1.0 3.2 - 2.0 
50 3 0.1 -2.5 1.0 2.0 - 1.0 
50 3 0.1 -2.5 1.0 2.0 -3.0 
50 3 0.1 -2.5 1.0 2.0 -2.0 
50 3 0.1 -2.5 1.0 6.4 -2.0 
50 3 0.1 -2.5 1.0 6.4 -2.0 
25 6 0.1 -2.5 1.0 2.0 -2.0 
50 3 0.1 -2.5 1.0 2.0 -2.0 
75 2 0.1 -2.5 1.0 2.0 -2.0 

122 1 
128 4 
160 6 
99 4 
79 4 

132 12 
119 4 
128 4 
128 4 
123 4 
136 5 
148 0 
129 36 
75 12 

166 1 
328 4 
123 53 
123 53 
126.4-e3.2d 
104.4 t 2.3d 
93.4-c 8.6d 

0.87 0.59 
0.78 0.54 
0.82 0.48 
0.75 0.56 
0.73 0.59 
0.79 0.52 
0.80 0.53 
0.78 0.54 
0.52 0.54 
0.73 0.57 
0.78 0.50 
0.99 0.11 
0.60 0.96 
0.77 0.55 
0.85 0.45 
0.82b 0.47b 
0.44 1.75 
0.846 0.486 

0 Unless otherwise stated we use N, = 238 and study the sensitivity to the parameters, holding 
b, = 1.0. N,, number of chemicals in simulation; N,, number of animals per dose group; 
Nd, number of dose groups (including zero dose group); a,, fraction of animals with back- 
ground tumors; R, mean value of log,,, A; ul, standard deviation of log,, A [Eq. (2)]; CQ, 
standard deviation of the error term E in [Eq. (3)]; b,, parameter in Eq. (2); NS, number of 
“nonsignificant” chemicals; > 98%, number of chemicals with more than 98% tumors; r, 
correlation coefficient of regression dt; s, standard deviation of regression fit. 

b Chemicals which produce tumors in more than 98% of test animals were excluded from this 
regression. 

= NC = 200 
d NS was averaged over five separate simulations. 

probabilities from Eq. (4) to compute the number of 
animals that have developed tumors and, from this num- 
ber, the “experimental” simulated potency p*, by the 
MLE method. The 114 L‘chemicals” that have statisti- 
cally significant (‘JJ < 0.05) p vahres and produce tumors 
in 598% of the animals are shown by crosses. As can 
be seen simply by overlaying Fig. 3 on Fig. 2, they are 
slightly shifted compared to their original positions, re- 
flecting the limited statistical power of the simulated 
bioassay in determining the potencies. Those “chemi- 
cals” which are predicted to produce tumors in more 
than 98% of the animak are shown as circles. These are 
not shifted in position because, unabIe to calculate pi* 
for these cases, we used the original values of pi. The 
chemicals for which the simulated p* values are statis- 
tically nonsignificant are shown as squares. Because of 
the greater magnitude of associated uncertainty, they are 

shifted even more from their original positions in Fig. 2 
than are the chemicals for which p* is significant. 

The regression (solid) line which was the “output” 
of Fig. 2 is drawn as the dashed line in Fig. 3 and is the 
“input” for the experimental simulation. The solid line 
in Fig. 3 is the linear least-squares regression fit to the 
crosses (i.e., the chemicals with significant p* values 
that produce tumors in ~98% of the animals). Since the 
128 chemicals which give nonsignificant vaIues of p lie 
below the others, the regression (solid) line lies higher 
than the dashed line. 

The parameters for the other simulations are also 
shown in TabIe I. Also listed are the correlation coef- 
ficient (r) and standard deviation (s) for each of the solid 
lines. As anticipated, the biased selection of chemicak 
in simuIation no. 1 (Fig. 3) results in a higher correlation 
coefficient (r = 0.78 for regression 1 instead of 0.59 
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for regression 0) and less deviation from the regression 
line (s = 0.54 instead of 0.87) than is obtained from 
the unconstrained data set of simulation no. 0 (Fig. 2). 

3.2. Sensitivity to the Parameters 

In order to choose which parameter sets give pos- _ _ 
sible fits to the data, we studied how the results depend 
upon parameters. Since we assume the same parameter 
values in Eqs. (2) and (3) for each chemical and choose 
the doses for each chemical i proportional to its MTD,, 
it follows from Eq. (5) that our results do not depend on 
the mean value of log,, A,. If the mean value of log,, 
Ai is changed, but nothing else, only the distribution as 
a whole is shifted. [Since pi = A,*exp(b,+ Ei) and d = 
c-MTD, where c is constant, then &-d = 
c-exp(b, + &4,-MTD) and does not depend on the values 
of AJ. Variation of the standard deviation of log,, A (a,) 
(simulation no. 8) shows, as expected, an effect only on 
the linear correlation coefficient Y, but not on the standard 
deviation s of In(p) or the number of chemicals considered 
statistically nonsignificant. 

One can see that when be is varied from - 1 to - 3 
[exp(b,) varied from 0.368 to 0.050], shown in simu- 
lations no. 13 and 14, the carcinogenic potency is de- 
rived from Eq. (2) to be steadily smaller with respect to 
the MTD, and the number of chemicals where potency 
is statistically nonsignificant increases from 75 - 166; 
but the number of chemicals producing tumors in more 
than 98% of the animals decreases from 12 to 1. 

Figures similar to Fig. 3 were drawn for each of 
the simulations; they are available upon request. 

3.3. Comparison of Simulated Experiments with the 
Real Experiment 

We now take a final step; we compare the various 
artificial datasets with the experimental dataset to see 
whether the initial assumptions could possibIy be cor- 
rect. 

With only two variable parameters, b. and u, one 
cannot fit four parameters: NS, >98%, r, and s. We 
chose to fit NS, >98%, and s as closely as possible, 
since the first two are sensitive indicators of the potency 
vs. toxicity distribution and s gives the “band width.” 
We now compare the parameters for the experimenta 
dataset (close to simulation no. 0) and the simulated 
artificial datasets (simulations nos. 1-14 in Table II). A 
reasonable match is achieved with simulation no. 1 (b, 
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Table 11. Sensitivity of Interspecies Potency correlation to Parameter 
CA” 

Input output 
Sim. no. a, NS P s” rp SD 

v - 61 0.94 0.38 0.84 0.67 
21 0.07 58 1.00 0.06 0.70 0.64 
22 0.21 58 0.97 0.19 0.69 0.65 
23 0.35 58 0.91 0.32 0.67 0.70 
24 0.53 58 0.83 0.48 0.63 0.77 
25 0.71 58 0.74 0.64 0.59 0.87 
26 1.41 58 0.48 1.28 0.42 1.39 

n a,, standard deviation of the error term in Eq. (6); NS, number of 
“nonsignificant” chemicals; P, correlation of interspecies toxicities 
(from regression fit); s”, standard deviation of interspecies toxicities 
(from iegression fit); +, correlation of interspecies potencies (from 
regression fit); s@, standard deviation of interspecies potencies (from 
regression fit). 

b Correlations for NCILNTi’ dataset. 

-2.00, cr = 2.0), for which NS = 128, >98% = 
4: r = 0.78, and s = 0.54. 

Small variations of the parameters be and o2 around 
b. = - 1.75 and uz = 2.0 (not shown here) do not 
improve the simultaneous fit to NS, >98%, s, and g- 
For example, realistic values of s are correlated with 
unrealistic values of >98% and vice versa. This is an 
indication that our mode1 needs further refinement. At 
this stage we chose a compromise and use the set of 
parameters of simulation no. 1 in Table II as a basic one. 
For future study, one possible alternative to Eq. (4) could 
be to multiply the right-hand side by 0.9, describing a 
possibility that only 90% of animals ever get cancers. 
This would introduce a Iogical upper constraint on the 
data. 

As noted before, the constraint of excluding cases 
with 98% or more of the animals deveIoping tumors, 
used by Bernstein et al. ,(*) is artificial and unnecessary. 
If any such case occurred in practice, no scientistwould 
ignore it, and certainly no regulatory agency. We sim- 
ulated the effect of including or not including this con- 
straint, expecting to find a better correiation with it, 
which would indicate that it introduces a spurious cor- 
relation. For the basic parameter set (simulation no. l), 
including the constraint results in only a small effect on 
the correlation coefficient Y or standard deviation s (r 
rises from 0.78 - 0.82 and s falls from 0.54 - 0.47, 
simulation no. 15). This is not surprising, because in the 
actual dataset less than 2% of the chemicals yield more 
than 98% animals with tumors. 

However, an artifactual correlation can arise when 
a2 is large enough. This is ilmstrated in simulation nos. 
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16, 17, where the basic set of parameters of simulation 
no, 1 is used, except for cr,, which is made very large. 
In this case there are 53 chemicals which produce tumors 
in more than 98% of the animals at the MTD. Deletion 
of these chemicals decreases the number of chemicals 
with statistically significant potencies from 115 to 62. 
There is a good correlation if chemicals which produce 
tumors in more than 98% of the animals are deleted, but 
not if they are kept. The good correlation with these 
chemicals deleted is, therefore, clearly spurious and ar- 
tifactual. It is interesting to compare the simuIations no. 
15, which uses the basic parameter set, and no. 17, 
which differs from 15 only in that it has a large (T. The 
values of r and s in the simulated data are very close in 
both simulations. This was the point stressed by Bem- 
stein et al.,@) and it shows that by looking at the con- 
strained data only, one can tell little about the reality of 
the correlation. The shuffling method of reference 2 
showed that the data in the bioassays is inconsistent with 
the proposition that there is no real correlation between 
carcinogenic potency in rats and mice. However, it did 
not claim to, and could not by its nature, show how 
constraints make measured correlation parameters differ 
from the true ones. That is the reason for this paper. 
However, we show here what Bernstein et al. did not: 
that the correlation is already contained in the following 
statements: (1) for nearly all chemicals, less than 98% 
of the animals get tumors; (2) about half of the chemicals 
have statistically nonsignificant potencies. The simula- 
tion of Bernstein et al. was less realistic than the one 
here: they assume that P*MTD is uniformly distributed 
between two limits (nonsignificance and 98% of animals 
with tumors), a sharp cutoff and no chemicals producing 
tumors in more than 98% of the animals. Our simulation 
uses a smoother distribution, and we perform the sim- 
ulation before applying the constraints, not after apply- 
ing them. 

4. OPTIMIZATION OF BIOASSAYS 

In simulation nos. 18, 19, and 20, only 200 chem- 
icals were used, and the number of dose groups is varied 
from 6 to 2 while the number of animals per dose group 
is varied from 25 to 75 to keep the total number of 
animals constant at 1.50. The results were averaged ovei 
five independent simulations to provide an estimate of 
the uncertainty. The mean values and errors were esti- 
mated using the NS values obtained for each simulation. 

Simulation no. 18 suggests that increasing the num- 
ber of dose groups beyond a reasonable minimum value 
(while keeping the total number of animals constant) 

increases the number of nonsignificant chemicals appre- 
ciably; and simulation no. 20 shows that increasing the 
number of animals per dose group decreases that 
ber. However, this conclusion depends critically 
the assumption of the dose-response relationship. 

num- 
upon 

5. INTERSPECIES CORRELATION OF 
CARCINOGENIC POTENCIES 

We finally. examined the correlation between the 
carcinogenic potency in female rats (/3(v) and the car- 
cinogenic potency in female mice (p(‘@). The correlation 
between carcinogenic potencies in two different species 
is closely connected with the correlation between tox- 
icity A and carcinogenic potency p in each of the spc 
ties, and the existence of a correlation between toxicity 
in rats and mice (A(‘) VS. A@‘)). As shown by Crouch et 
al c2) if three of the correlations exist, the fourth must 
eiit also. If three of the $orrelations are exact, the fourth 
must also be exact. In this section we address the ques- 
tion whether the interspecies potency correlation that is 
observed is solely a consequence of the other three cor- 
relations or not. 

We have performed some simulations of two simui- 
taneous bioassays which may represent, for example, 
experiments on two different species: mice and rats. This 
is accomplished by assuming that MTDs (or MaxDs) in 
mice@*) and in rats A?) are related by equations similar 
to Eqs. (1) and (3): 

iog,d?fi(r) = log,@4Ai(m) + Es (5) 

The error term +, is normally distributed, with vari- 
ance a, chosen to fit the data (see the dataset section 
above). Given a value of log,, Ai, Eq. (2) is used to 
calculate a value of log&. Estimated correlation coef- 
ficients and standard deviations are calculated for both 
(A)@‘) VS. (A)(“) and (p)(‘) vs. (p)@). If we manage to fit 
the (A)@) v,s. (A)(“) distribution but the observed corre- 
lation of potencies appears stronger than the simulated 
one, we should conclude that the interspecies potency 
correlation contains additional information and is not just 
a consequence of the relation between A@) and p@) and 
between A(“) and /3@). It would not be a statistical ar- 
tifact of the experimental design in any case since we 
have demonstrated that the correlations between A and 
f3 are not statistical artifacts of testing. 

It is also interesting to analyze the interspecies cor- 
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relation of the number of “positive” (statistically sig- 
nificant) and “negative” (statistically nonsignificant) 
chemicals. If the interspecies potency correlation has some 
basis in biology and is not just a consequence of both 
the potency/toxicity correlation for each species and the 
interspecies toxicity correlation, one would expect that 
the observed number of chemicaIs that are “positive” 
( i.e. , their carcinogenic potencies are statistically sig- 
nificant at a given confidence level) in both species is 
higher than the number simulated. 

We use our basic set of parameters (simulation no. 
1) for simulating both the female mice and female rats 
datasets. Note that the additional error term eA increases 
the width of the lognormal distribution of toxicities in 
the second species. As we-discussed earlier, this has no 
effect on the number of statistically nonsignificant chem- 
icals or the parameter s; only the correlation coefficient 
r will be increased. However, r is already high and not 
very sensitive to the value of U. 

The results are presented in Table II. Here IA and 
ti refer to (A)(‘) vs. (A)(“), and ?-(@and ,(@ refer to (/3)(‘) 
vs. (p)(r) vs. (p)(m), respectively. 

The vaiue o;, = 0.35 fits the observed correIation 
parameters (# and ti) reasonably well. The interspecies 
potency correlation is stronger than any of the other three 
discussed in this paper, as is well known. The simulated 
interspecies correlation of carcinogenic potencies is 
somewhat weaker than the observed interspecies corre- 
lation of potencies. It is not yet clear whether this dis- 
crepancy proves that the observed interspecies correlation 
of potencies is enhanced reIative to our simulation as a 
consequences of the toxicityicarcinogenicity relations, 
whether it is a statistical fluctuation, or whether it reveals 
some flaws of our model. Further work is needed to 
clarify the situation. Crouch et aZ.c2) pointed out that the 
interspecies correlation of carcinogenic potencies ap- 
pears to be stronger than the correlation of toxicity and 
carcinogenic potency, and that this may have some (un- 
known) biological meaning. 

We note that in these simulations we have assumed 
that the correlations A(“) VS. p(“‘) andA(r) vs. /3@) are sta- 
tistically completely independent. One way of describing 
the fact that p(T) and l3(m) are more closely correlated 
than either A(“*) and 13crn) or A@) and p(“) is to postulate 
that if a chemical is more carcinogenic in rats than the 
correlation betweenA and I3 suggests, it is likewise more 
carcinogenic in mice than this correlation suggests. If 
the relationship between Ai and pi is identical for rats 
and mice for each chemical i, then we expect the error 
term cU to be identical with the error term EiP in an 
equivalent expression relating 13’~) and 13(“‘). It is cIearIy 
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not, suggesting that the true situation lies between these 
two extremes. 

6. HOW MANY NONCARCINOGENS CAN 
EXIST? 

In the above simulations we assumed a loglinear 
relationship between carcinogenic potency pi and tox- 
icity Ai [Eqs. (2) and (3)] and in no case took I3 = 0. 
This is in accord with our belief that it is wise to assume 
that all chemicals have some finite carcinogenic potency 
and that there is a “smooth” distribution of potencies, 
correlated in some way with toxicity. We note that this 
assumption is impIicit in most of the published concord- 
ance and correlation studies. 

Many toxicoIogists take another view, that there 
exist chemicals that are truly noncarcinogenic (pi = 0) 
at any dose level. These we term ‘<true” noncarcino- 
gens. In the intermediate case, a11 chemicaIs would have 
nonzero carcinogenic potency if administered at high 
enough doses. Ames and GoId recently reviewed the 
evidence that chemicals which produce cell proliferation 
due to cytotoxicity at high doses may be carcinogenic 
due to this mechanism only. These we term “threshold” 
noncarcinogens. It is easy to see how to simulate both 
the “true” and the “threshold” noncarcinogens. For 
example, we might assume that 41% (100) of all the 238 
chemicals tested in female mice in the experimental da- 
taset are true noncarcinogens (pi = 0) and 9% (23) are 
carcinogens that have statistically nonsignificant poten- 
cies in female mice. This gives a total of 123 chemicals 
with either zero potency or statistically nonsignificant 
potency, and the remaining 115 have measurable, sta- 
tistically significant, potency. For the “threshold” non- 
carcinogens, we assume that pi = 0 only at MTlY2, but 
not at the MTD. 

We then match these assumptions to the experi- 
mental datasets by performing two simulations, one 
(simulation no. 27) for which 41% of the 238 chemicals 
“threshold noncarcinogens” and one (simulation no. 28) 
for which 41% of the chemicals are “true noncarcino- 
gens”; while only 9% of the chemicals are assumed to 
be carcinogens with statistically nonsignificant poten- 
cies. Simulations nos. 27 and 28 are shown along with 
the experimental dataset, simulation no. 0, in Table III. 

We see that our parameter set is consistent with the 
existence of 41% “threshold” noncarcinogens (simula- 
tion no 27). However, assuming 41% “true” carcino- 
gens (simulation no 28), we get too high a fraction of 
statisticaIly nonsignificant chemicals. We then repeat the 
parameter fitting and, if a reasonable fit is not achieved 
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Table III. Effect of Noncarcinogens” 

Sim. Input output 
no. No Nd a0 2 u1 0; 6, NS >98% r s 

0 50 3 0.1 -2.5 1.0 2.0 -2.00 122 1 0.87 0.59 
27h 50 3 0.1 -2.5 1.0 2.0 - 2.00 122 1 0.83 0.45 
28’ 50 3 0.1 -2.5 1.0 2.0 -2.00 174 1 0.75 0.53 
29” 50 3 0.1 -2:s 1.0 1.0 -0.50 115 1 0.84 0.40 

D Notation from Table I. 
b 41% (100) chemicals assumed “secondary” noncarcinogens (i.e., 

with nonzero potency at the MTD, and zero potency at MTD/2). 
c 41% (100) chemicals assumed “true” noncarcinogens with zero po- 

tency. 

for any. choice of parameters, it indicates that such a 
fraction of noncarcinogens is incompatible with the data 
and can be excluded. One attempt is shown in Table III 
(simulation no. 29). It gives reasonable fits to the pa- 
rameters NS, >98%, and r, but too low a value of s. 

We ask if it is consistent with the observed inter- 
species potency correlation to assume that Yrue” non- 
carcinogens exist. The results of these simulations suggest 
that true noncarcinogens may exist but only if those 
chemicaIs that are truly carcinogenic have a closer cor- 
relation between toxicity (4) and carcinogenic potency 
(8) than what is experimentally observed for the 238 
chemicals in our dataset. 

7. SUMMARY 

1. Algorithms and comprehensive software for 
Monte Carlo simulation of animal bioassays have 
been developed. 

2. Simulations of carcinogenic potency VS. l/MTD 
and simulations of the interspecies correlation 
suggest, as it was anticipated, that the initial 
correlation can be enhanced, or spurious corre- 
lations can arise, when constraints (such as Iim- 
iting the percentage of animals with tumors to 
< 98%) are added. However, for realistic values 
of the parameters (i.e., those that fit actual data), 
there is already a strong correlation that arises 
due to the interspecies toxicity relation and the 
toxicity/potency relation; the observed correla- 
tion is onIy slightty stronger than what can be 
attributed to these two reiations. Therefore, the 
effect seems to be insignificant. Important fac- 
tors contributing to this conclusion are: (1) that 
there are very few chemicals for which more 
than 98% of the animaIs get tumors; and (2) for 

3. 

4. 

about half of the chemicals only a statistically 
nonsignificant number of animals get tumors. 
These two statements contain almost a11 our 
present information about the correlation. 
Monte Carlo simulations can be heIpfu1 for plan- 
ning future bioassays. For example, given a fiied 
number of animals for use in a bioassay, it is 
instructive to examine the influence of the num- 
ber of dose groups and the number of animals 
per dose group on the number of chemicals that 
are found to have statistically significant carcin- 
ogenic potencies. 
Monte Carlo simulations may turn out to be 
helpful in addressing such controversial issues 
as the interspecies potency correlation and the 
possible existence of noncarcinogens. However, 
further refinement and verification of our model 
are necessary before definite biological infer- 
ences can be drawn. 

Since there has been a lot of confusion about the 
correiation between carcinogenic potency and toxicity, 
it may be useful to describe what we have not demon- 
strated. 

We have assumed that the 238 chemicals in our 
dataset are a fair, random sampIe of chemicals of inter- 
est. While we have made no deliberate selection, we 
suspect that this may be the weakest of our assumptions. 

We have barely discussed dose-response relation- 
shiops. Our comparison of Monte Carlo calculations with 
the measured correlation have been with potencies mostly 
measured in the region where l&90% of animals get 
tumors. Equation (4) implies a linear dose-response at 
low doses, which is almost certainly not true for some 
chemicals. Ahhough our approach can be extended to 
nonlinear dose-response curves, we have not done so in 
this paper. 

Our comparison of the Monte Carlo calculations 
with measured correlations only applies to the set of 
chemicals in teh NCI/NTP dataset. We do not address 
the representativeness of that set of chemicals. 
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