

 1

RankNormalize Documentation
Description: Ranks the intensity values for genes by sample within a dataset

(columns in the file) and then normalizes the ranks by a common
multiplier.

Author: Pablo Tamayo, David Eby, gp-help@broadinstitute.org

Introduction
Rank normalization allows comparison of datasets that were created on different platforms. For
microarray data, RankNormalize replaces measurements (i.e., gene expression abundance)
with their rank within each sample, and allows the user to normalize, or scale, those ranks to
facilitate comparison with other datasets. This approach preserves the ordering of genes in a
dataset while removing the incompatibilities arising from the differences in platform
technologies.

Algorithm
Note: A pseudocode representation of this algorithm is provided at the end of this document.

Step 1: Ranking the dataset
In the ranking step, each data point is replaced by its rank within its column. That is, for a
dataset with N genes (rows), the data points will be replaced by values ranging from 1 (lowest)
to N (highest). Each value corresponds to the rank of the data point within that sample
(column). If two or more genes have the same data point in a sample, their data points are
replaced by a value that is the average of their ranked positions. For example, if the data points
in positions 4 and 5 of the ranked ordering are equal, they will be replaced by 4.5 (see
Examples, below).

Step 2: Scaling the dataset
The maximum value of values in a column is determined by the scale to value parameter. For a
scale to value of V and dataset containing N rows, the final results will therefore range from V/N
to V. If you do not enter a value for the scale to value parameter, RankNormalize will not scale
the ranked results.

mailto:gp-help@broadinstitute.org

 2

Examples
Ranking:

• Given a microarray dataset consisting of 5 genes and 2 samples:

Name SampleA Sample B

gene1 1.2 7.0

gene2 0.8 4.4

gene3 3.5 3.7

gene4 8.4 9.0

gene5 0.5 0.4

• For each sample, the algorithm replaces the value of each gene with its rank in that
sample, in ascending order, i.e., the lowest value for each sample is replaced with 1:

Name SampleA Sample B

gene1 3 4

gene2 2 3

gene3 4 2

gene4 5 5

gene5 1 1

Where two or more genes have the same value in a sample, they are given the same rank.
This rank is decided by averaging the ranks occupied by all of the similar values.
For example:

• Given a microarray dataset consisting of 7 genes and 2 samples:

Name Sample A Sample B
gene1 1.2 7.0
gene2 0.8 4.4
gene3 3.5 3.7
gene4 8.4 9.0
gene5 0.5 0.4
gene6 1.2 7.0
gene7 1.2 6.5

 3

In Sample A, gene5 is ranked 1, gene2 is ranked 2, but gene1, gene6, and gene7 all have
the same value. These genes occupy ranks 3, 4, and 5. RankNormalize averages these
ranks and therefore gives gene1, gene6, and gene7 all their average rank of 4, as shown:

Name Sample A Sample B
gene1 4 5.5
gene2 2 3
gene3 6 2
gene4 7 7
gene5 1 1
gene6 4 5.5
gene7 4 4

Adjusting the Dataset Before Ranking
There are three additional parameters that can be used to constrain or adjust the dataset before
ranking:

• The threshold parameter sets the minimum for values in the dataset. Any value below
this will be increased to threshold before ranking.

• The ceiling parameter sets the maximum for values in the dataset. Any value below this
will be decreased to ceiling before ranking.

• The shift parameter provides an amount to adjust values in the dataset. This shift
adjustment value will be added to every value in the dataset before ranking.

Note: The order in which these parameters are applied is threshold, then ceiling, then shift.
These parameters are used to restrict or adjust the dynamic range of the dataset, repositioning
the data points (shift) or enforcing minimum (threshold) or maximum (ceiling) boundaries on
their values. This might be necessary, for instance, with legacy microarray datasets, or if you
suspect or know that your data is noisy in the high or low ranges. In the past, it was possible for
certain microarray instruments to report negative intensity values and, in general, the scale of
values for these was found to be noisy at the bottom of the range, causing issues in
downstream analyses. Similar issues may also be seen at the upper end of the range.

 4

Parameters

Name Description

input file
(required)

The dataset to be normalized in GCT or RES format.

output file name
(required)

The name to be given to the output file (defaults to
<input.file_basename>.NORM.<input.file_extension>)

scale to value
(optional)

Result values will be scaled to this value by multiplication
after normalization. Leaving this blank will give results scaled
from 1 to N (where N is the number of rows).

threshold
(optional)

Any value below this will be set to the threshold value before
normalization.

ceiling
(optional)

Any value above this will be set to the ceiling value before
normalization.

shift
(optional)

The shift value will be added to all values before
normalization.

Input Files
1. <input file>

A dataset in GCT or RES file format to be normalized by rank.

Output Files
1. <output file name>

The resulting normalized ranked dataset. The output format will match the input format,
either GCT or RES. Any calls in a RES file will be maintained unchanged.

http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/file-formats/sections/gct
http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/file-formats/sections/res

 5

Requirements
If you want to install this module on your own GenePattern server, the RankNormalize module
requires R2.15.2 with the following packages:

• getopt_1.17
• optparse_0.9.5

The RankNormalize module uses R’s built-in “rank” function.
These R packages will be automatically downloaded and installed when the module is installed.
R2.15.2 must be installed and configured independently; for more information, see the
GenePattern Administrator's Guide:
http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/administrators-
guide/sections/r-versions.

Platform Dependencies
Module type: Statistical Methods

CPU type: Any

OS: Any

Language: R2.15.2

GenePattern Module Version Notes
Date Version Description

3/15/13 1 Initial version.

http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/administrators-guide/sections/r-versions
http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/administrators-guide/sections/r-versions

 6

Pseudocode for RankNormalization
This pseudocode is included because it may be of interest to some users.
The rank normalization algorithm requires a Rank function that takes a list of values and returns
in their place a list of their rank positions. This works as follows:

L := [v1, v2, …, vN] # a list of values to be ranked
Rank(V):

Get a copy of the list, with values sorted from least to
greatest.
That is:
s[1] ≤ s[2] ≤ … ≤ s[i] ≤ s[i+1] ≤ … ≤ s[N]
Thus, the index of each list item equates to its ranking
position.
S := sort(L)

Create a lookup table from value to ranking position
Correct for ties in the sorted list by average as we go.
tieCount := 0; tieTotal := 0; tieValue := NULL
T := new table()
for i := 1 to N:
 if (S[i] = tieValue) # we have a tie
 tieTotal := tieTotal + i
 tieCount := tieCount + 1
 else
 T(S[i]) := i
 # If we are coming off a run of ties, find the avg
 # and use that as the ranking position for that
 # value.
 if (tieCount > 1) T(tieValue) := tieTotal/tieCount

 tieCount := 1; tieTotal := i; tieValue := S[i]
end for

Check if S ended in a run of ties and treat as above
if (tieCount > 1) T(tieValue) := tieTotal/tieCount

Now, create a new list of ranking positions corresponding
to the order of the original list of values.
R = new list(size=N)
for i := 1 to N:
 R[i] := T(L[i])
end for

Return R

Note that Rank is an R built-in function, so the actual implementation will vary from the above
for efficiency purposes. It is conceptually the same, however. For more details on sorting
algorithms, see this Wikipedia article.

http://en.wikipedia.org/wiki/Sorting_algorithm

 7

With the Rank function in place, we can now describe Rank Normalize. Given a dataset of M
samples over N genes organized as a GCT or RES file representing an MxN matrix of intensity
values IV and using a scale.to.value of V, Rank Normalize works as follows:

RankNormalize(IV):
If specified, apply threshold, ceiling and shift
if (threshold) IV := threshold(IV)
if (ceiling) IV := ceiling(IV)
if (shift) IV := shift(IV)

Norm = new matrix(size[M][N])
for i := 1 to M:
 # Get the intensity values for sample i as a list of
 # values.
 L := column(IV, i)

 # Find the ranking positions of these values
 R := Rank(L)

 # Adjust each ranking using the scale.to.value
 for j := 1 to N:
 Norm[i][j] := R[j] x (V/N)
 # end for
end for

Return Norm

Here again, though conceptually equivalent, the actual implementation is different for efficiency
purposes. Those interested in further details can review the rank_normalize.R file within the
module.

	RankNormalize Documentation
	Introduction
	Algorithm
	Step 1: Ranking the dataset
	Step 2: Scaling the dataset
	Examples

	Adjusting the Dataset Before Ranking
	Parameters
	Input Files
	Output Files
	Requirements
	Platform Dependencies
	GenePattern Module Version Notes
	Pseudocode for RankNormalization

