Synthetic biology devices for in vitro and in vivo diagnostics.

Proc Natl Acad Sci U S A
Authors
Keywords
Abstract

There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms.

Year of Publication
2015
Journal
Proc Natl Acad Sci U S A
Volume
112
Issue
47
Pages
14429-35
Date Published
2015 Nov 24
ISSN
1091-6490
URL
DOI
10.1073/pnas.1508521112
PubMed ID
26598662
PubMed Central ID
PMC4664311
Links
Grant list
Howard Hughes Medical Institute / United States