Quantitative proteomics suggests decrease in the secretogranin-1 cerebrospinal fluid levels during the disease course of multiple sclerosis.

Proteomics
Authors
Keywords
Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with unknown cause. Proteins with different abundance in the cerebrospinal fluid (CSF) from relapsing-remitting MS (RRMS) patients and neurological controls could give novel insight to the MS pathogenesis and be used to improve diagnosis, predict prognosis and disease course, and guide in therapy decisions. We combined iTRAQ labeling and Orbitrap mass spectrometry to discover proteins with different CSF abundance between six RRMS patients and 18 neurological disease controls. From 777 quantified proteins seven were selected as biomarker candidates, namely chitinase-3-like protein 1, secretogranin-1 (Sg1), cerebellin-1, neuroserpin, cell surface glycoprotein MUC18, testican-2 and glutamate receptor 4. An independent sample set of 13 early-MS patients, 13 RRMS patients and 13 neurological controls was used in a multiple reaction monitoring verification study. We found the intracellular calcium binding protein Sg1 to be increased in early-MS patients compared to RRMS and neurological controls. Sg1 should be included in further studies to elucidate its role in the early phases of MS pathogenesis and its potential as a biomarker for this disease.

Year of Publication
2015
Journal
Proteomics
Volume
15
Issue
19
Pages
3361-9
Date Published
2015 Oct
ISSN
1615-9861
URL
DOI
10.1002/pmic.201400142
PubMed ID
26152395
Links