Scientific Publications

A framework for the interpretation of de novo mutation in human disease.

Publication TypeJournal Article
AuthorsSamocha, KE, Robinson EB, Sanders SJ, Stevens C., Sabo A., McGrath LM, Kosmicki JA, Rehnström K., Mallick S., Kirby A., Wall DP, Macarthur DG, Gabriel SB, DePristo M., Purcell SM, Palotie A., Boerwinkle E., Buxbaum JD, Cook EH Jr, Gibbs RA, Schellenberg GD, Sutcliffe JS, Devlin B., Roeder K., Neale BM, and Daly M. J.
AbstractSpontaneously arising (de novo) mutations have an important role in medical genetics. For diseases with extensive locus heterogeneity, such as autism spectrum disorders (ASDs), the signal from de novo mutations is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. Here we provide a statistical framework for the analysis of excesses in de novo mutation per gene and gene set by calibrating a model of de novo mutation. We applied this framework to de novo mutations collected from 1,078 ASD family trios, and, whereas we affirmed a significant role for loss-of-function mutations, we found no excess of de novo loss-of-function mutations in cases with IQ above 100, suggesting that the role of de novo mutations in ASDs might reside in fundamental neurodevelopmental processes. We also used our model to identify ∼1,000 genes that are significantly lacking in functional coding variation in non-ASD samples and are enriched for de novo loss-of-function mutations identified in ASD cases.
Year of Publication2014
JournalNature genetics
Date Published (YYYY/MM/DD)2014/08/03
ISSN Number1061-4036
DOI10.1038/ng.3050
PubMedhttp://www.ncbi.nlm.nih.gov/pubmed/25086666?dopt=Abstract