Scientific Publications

Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future Type 2 Diabetes.

Publication TypeJournal Article
AuthorsWalford, GA, Porneala BC, Dauriz M., Vassy JL, Cheng S., Rhee EP, Wang TJ, Meigs JB, Gerszten RE, and Florez JC
AbstractA genetic risk score (GRS) comprised of single nucleotide polymorphisms (SNPs) and metabolite biomarkers have each been shown, separately, to predict incident type 2 diabetes. We tested whether genetic and metabolite markers provide complementary information for type 2 diabetes prediction and, together, improve the accuracy of prediction models containing clinical traits.RESEARCH DESIGN AND METHODS: Diabetes risk was modeled with a 62-SNP GRS, nine metabolites, and clinical traits. We fit age- and sex-adjusted logistic regression models to test the association of these sources of information, separately and jointly, with incident type 2 diabetes among 1,622 initially nondiabetic participants from the Framingham Offspring Study. The predictive capacity of each model was assessed by area under the curve (AUC).RESULTS: Two hundred and six new diabetes cases were observed during 13.5 years of follow-up. The AUC was greater for the model containing the GRS and metabolite measurements together versus GRS or metabolites alone (0.820 vs. 0.641, P < 0.0001, or 0.820 vs. 0.803, P = 0.01, respectively). Odds ratios for association of GRS or metabolites with type 2 diabetes were not attenuated in the combined model. The AUC was greater for the model containing the GRS, metabolites, and clinical traits versus clinical traits only (0.880 vs. 0.856, P = 0.002).CONCLUSIONS: Metabolite and genetic traits provide complementary information to each other for the prediction of future type 2 diabetes. These novel markers of diabetes risk modestly improve the predictive accuracy of incident type 2 diabetes based only on traditional clinical risk factors.
Year of Publication2014
JournalDiabetes care
Date Published (YYYY/MM/DD)2014/06/19
ISSN Number0149-5992
DOI10.2337/dc14-0560
PubMedhttp://www.ncbi.nlm.nih.gov/pubmed/24947790?dopt=Abstract