Mechanisms of Resistance to Mitogen-Activated Protein Kinase Pathway Inhibition in BRAF-Mutant Melanoma.

Am Soc Clin Oncol Educ Book
Authors
Abstract

Anticancer drug resistance remains a crucial impediment to the care of many patients with cancer. Although the exact mechanisms of resistance may differ for each therapy, common mechanisms of resistance predominate, including drug inactivation or modification, mutation of the target protein, reduced drug accumulation, or bypass of target inhibition. With the discovery and use of targeted therapies (such as small-molecule kinase inhibitors), resistance has received renewed attention-especially in light of the dramatic responses that may emerge from such therapeutics in particular genetic or molecular contexts. Recently, the mitogen-activated protein kinase (MAPK) pathway has become exemplary in this regard, since it is activated in many different cancers. Drugs targeting RAF and MAPK kinase (MEK) are currently in clinical trials for the treatment of several types of cancer. Vemurafenib, a selective RAF kinase inhibitor recently approved for the treatment of BRAF(V600E) melanoma, shows strong efficacy initially; however, the development of resistance is nearly ubiquitous. In vitro testing and analysis of patient samples have uncovered several mechanisms of resistance to RAF inhibition. Surprisingly, mutations in the drug-binding pocket have not thus far been observed; however, other alterations at the level of RAF, as well as downstream activation of MEK and bypass of MEK/extracellular signal-regulated kinase (ERK) signaling altogether, confer resistance to vemurafenib. Looking forward, combined RAF and MEK inhibitor treatments may improve efficacy-yet we must anticipate mechanisms of resistance to this combination as well. Therefore, understanding and/or determining the mechanism of resistance are paramount to effective cancer treatment.

Year of Publication
2012
Journal
Am Soc Clin Oncol Educ Book
Pages
680-4
Date Published
2012
ISSN
1548-8748
URL
DOI
10.14694/EdBook_AM.2012.32.680
PubMed ID
24451818
Links