Human Gene Set: BIOCARTA_NO1_PATHWAY


Standard name BIOCARTA_NO1_PATHWAY
Systematic name M4383
Brief description Actions of Nitric Oxide in the Heart
Full description or abstract Nitric oxide (NO) has a number of important physiological actions in the cardiovascular system. In the heart, NO plays role in keeping the vessels patent via vasodilation and prevention of platelet aggregation. It also plays an important role in regulating the force and rate of contraction. In vivo NO is released by shear stress of ligands that increase intracellular Ca2+ in endothelial cells. The increase intracellular Ca2+ activates nitric oxide synthase III (NOSIII) by promoting the binding of Ca/Calmodulin to the enzyme. NOSIII, which is resident in the Golgi complex, is transported together with caveolin-1 to the caveolae at the plasma membrane via vesicles. Shear stress signals via a potassium channel and the cytoskeleton, which results in tyrosine phosphorylation of specific proteins, activation of phosphatidylinositol 3-kinase, and subsequently in activation of Akt kinase. Akt activation by shear stress but also by VEGF activates NOSIII by serine phosphorylation, which increases the affinity of NOSIII for calmodulin. After agonist binding at the plasma membrane, NOSIII-activating receptors translocate to caveolae. VEGF receptor signals via its tyrosine kinase domain. Furthermore, agonist receptors activate calcium channels of the endoplasmic reticulum (ER) via phospholipase C and inositol 1,4,5-trisphosphate. This calcium flux induces binding of calmodulin to NOSIII, whereas the NOSIII-caveolin-1 interaction is disrupted. At the same time, NOSIII is translocated into the cytosol. On binding of calmodulin, NOSIII generates NO, is enhanced by the interaction with Hsp90. Once activated, NOSIII catabolizes L-arginine to NO, which diffuses out of the cell. NO stimulates guanylate (G-) cyclase and increases cGMP levels. cGMP activates cGMP-dependent protein kinase (PKG), cGMP-inhibited phosphodiesterase (PDEIII), and cGMP-stimulated phosphodiesterase (PDEII). PKG may reduce the force and rate of contraction, possibly by phosphorylating troponin I or by phosphorylating phospholamban. PDEIII is inhibited by the increases in cGMP brought about by NO. This may result in an increase in cAMP and cAMP-dependent protein kinase (PKA). PKA in turn activates Ca2+ channels, countering the effects of PKG. In contrast, cGMP may stimulate PDEII, reduce cAMP levels and PKA activity, and thereby reduce Ca2+ channel activity. Ach, acetylcholine. CAT-1, cationic amino acid transporter.
Collection C2: Curated
      CP: Canonical Pathways
            CP:BIOCARTA: BioCarta Pathways
Source publication  
Exact source  
Related gene sets  
External links https://data.broadinstitute.org/gsea-msigdb/msigdb/biocarta/human/h_no1Pathway.gif
Filtered by similarity ?
Source species Homo sapiens
Contributed by BioCarta
Source platform or
identifier namespace
HUMAN_SEQ_ACCESSION
Dataset references  
Download gene set format: grp | gmt | xml | json | TSV metadata
Compute overlaps ? (show collections to investigate for overlap with this gene set)
Compendia expression profiles ? NG-CHM interactive heatmaps
(Please note that clustering takes a few seconds)
GTEx compendium
Human tissue compendium (Novartis)
Global Cancer Map (Broad Institute)
NCI-60 cell lines (National Cancer Institute)

Legacy heatmaps (PNG)
GTEx compendium
Human tissue compendium (Novartis)
Global Cancer Map (Broad Institute)
NCI-60 cell lines (National Cancer Institute)
Advanced query Further investigate these 28 genes
Gene families ? Categorize these 28 genes by gene family
Show members (show 84 source identifiers mapped to 28 genes)
Version history 7.0: Changed members. Upgraded to final version of Biocarta.

See MSigDB license terms here. Please note that certain gene sets have special access terms.